PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 138, Number 12, December 2010, Pages 4291-4302
S 0002-9939(2010)10510-5

Article electronically published on May 26, 2010
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ABSTRACT. Our aim in this paper is to estimate the weighted Orlicz-Riesz
capacity of balls.

1. INTRODUCTION AND STATEMENT OF RESULTS

Several versions of capacities for Orlicz-Riesz spaces have appeared in research
papers, for example those by Aissaoui and Benkirane [5], Kuznetsov [14], Mizuta
[T7], Adams and Hurri-Syrjanen [3| [4], and Joensuu [I2]. The notion of capacity
offers a standard way to characterize exceptional sets and is indispensable to an
understanding of the local behavior of functions in Orlicz-Riesz spaces. Various
capacity estimates also play an important role in the study of solutions to partial
differential equations.

Recently the authors [8] gave an estimate of the Orlicz-Riesz capacity of balls
as an extension of Adams and Hurri-Syrjanen [4] and Joensuu [12]. An estimate of
the weighted Sobolev capacity of balls can be found e.g. in Heinonen, Kilpeladinen
and Martio [9].

A positive measurable function w on R"™ is called an A, weight (written as
w € Ap) if there exists a positive constant C), such that

() () < <o

for all balls B, where 1 < p < oo, | - | denotes the n-dimensional Lebesgue measure
and

w(B) = /B w(y) dy.

As an example, we have that the function w(z) = |z|° is an A, weight if and
only if —n < & < n(p —1). It is well known that, for an A, weight w, the corre-
sponding measure w is doubling, that is, w(2B) < cw(B) for all balls B = B(z,r);
here the constant ¢ depends only on n,p and C}, and 2B stands for the enlarged
ball B(x,2r). For these and other fundamental properties of A, weights, see, for
example, Heinonen, Kilpeldinen and Martio [9].
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For 0 < a@ < n and a locally integrable function f on R", we define the Riesz
potential I, f of order a by

Inf(@) = [ o=y () dy

In the present paper, we treat functions f satisfying an Orlicz condition with an
Ay, weight w:

(1.1) | ellf@hat) dy < .
Here ¢, (r) is a positive nondecreasing function on the interval (0, 00) of the form

pp(r) = r7p(r),
where p > 1 and ¢(r) is a positive quasi-increasing function on (0, 00) which is of
logarithmic type; that is, there exists ¢; > 0 such that

(p1) et o(r) < o(r?) < erp(r) whenever r > 0.
We say that ¢(r) is quasi-increasing if there exists ¢ > 0 such that
o(s) < ep(t) whenever 0 < s < t.
We set
¢p(0) =0,
because we will see from (p4) below that
Jim gy (r) = 0;

see [19] p. 205].
For an open set G C R", we denote by L#»% (@) the family of all locally inte-
grable functions f on G such that

/G o1 f ) (y) dy < oo,
and define

|f||¢,,,w,a—inf{x>0: [ et dy<1}.

This is a quasi-norm in L¥»“(G). For E C G, the relative («, ¢p, w)-capacity is
defined by

Bl E3G) =it [ (110t .
where the infimum is taken over all functions f such that f = 0 outside G and
Inf(z)>1 forallz € B

(cf. Adams and Hedberg [2], Meyers [15], Ziemer [22] and the first author [16] [17]).

Our first aim in the present note is to give an estimate of the modular capacity
Ba,p,w of open balls B(z,r) centered at x of radius r, as an extension of Adams
and Hurri-Syrjdnen [4, Theorem 2.11], Joensuu [I2], Heinonen, Kilpeldinen and
Martio [9, Theorems 2.18 and 2.19] and the authors [8, Theorem A]. In fact, our
first theorem is stated in the following.
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Theorem A (cf. [I6, Lemma 7.3]). Suppose p > 1 and w € A,. For R > 0, there
exists a constant A > 0 such that

R I=p
A ( R G T S dt/t) < Bagy o (Bla,1); BO, B)
R 1=p
<4 ( | e (B 0y /0 dt/t)
whenever B(z,r) C B(0,R/4).
We write f ~ g if there exists a constant A so that A=1g < f < Ag.
Example 1.1. Let w(z) = |z|° and ¢(t) = (log(e + t))~.
(1) fap—n<d<n(p—1), then

R
/ {t=Po(t™w(B(0, 1)}/ =P dt /t ~ (Pt t0)/(A=P) (Jog(e 4 1 /7))A/(1=P)

for 0 < 7 < R/2 < 1. In this case,
Bap, w(B(0,7); B(0,R)) ~ 7~ Pt (log(e + 1/7))”.

(2) fap—n=4dand 8 <p—1, then

R
/ {t7Po(t (B0, 6))}V/ P dt/t ~ (log(e + 1/r))?/ 1P+
for 0 <r < R/2 < 1. In this case,

Ba,sop,w(B(O, r); B(0, R)) ~ (log(e + 1/7,))/3-{-1—[).

(3) f ap—n =20 and 8 =p—1, then

/R{t_“pap(t_l)w(B(O,t))}l/(l_”) dt/t ~ log(e + (log(e + 1/r)))
r
for 0 < r < R/2 < 1. In this case,
Bapy0(B(0,7); B(0, R)) ~ (log(e + (log(e + 1/r)))) 1.
(4 fap—n>d>-norap—n=474and §>p—1, then
Ba,p, ({0} B(0,1)) > 0.
Next we are concerned with the norm capacity. For £ C G, we define
Coppw(E;G) = f [ fllg, .6,

where the infimum is taken over all functions f such that f = 0 outside G and

I f(zx) >1 for all z € E.
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Theorem B. Supposep > 1 andw € A,. For R > 0, there exists a constant A > 0
such that

R (1-p)/p
A (/ {t=*Po(t™ " )w(B(w, 1)}/ P dt/t> < Coppw(B(z,7); B(0, R))

R (1-p)/p
<A (/ {7 Pt w(B(a, 1)}/ P dt/t>

whenever B(z,r) C B(0,R/4).

In view of Theorems A and B, we have the following result, which extends the
results by Adams and Hurri-Syrjénen [4], Joensuu [I2] and the authors [g].

Corollary 1.2. Suppose p > 1 and w € A,. For R > 0, there is a constant A > 0
such that

A7'Ba g, w(B(z,7); B(0, R))'/?
< Capyw(B(x,7); B(0,R)) < ABq ., o(B(x,1); B0, R))'/?
whenever B(x,r) C B(0,R/4).

For further related results, we refer the reader to Adams [1], Adams and Hurri-
Syrjénen [3], Edmunds and Evans [7], Kilpeldinen [13] and Mizuta and Shimomura
[19, 20}, 21].

Throughout this paper, let A denote various constants independent of the vari-
ables in question and let A(a,b,---) be a constant that depends on a,b, - - -.

2. PROOF OF THEOREM A

First we collect properties which follow from condition (¢1) (see [I7], [19
Lemma 2.3], [18 Section 7]).

(¢2) ¢ satisfies the doubling condition; that is, there exists ¢o > 1 such that
ey to(r) < p(2r) < cap(r) whenever r > 0.
(¢3) For each v > 0, there exists cg = ¢3(y) > 1 such that
c3to(r) < p(r7) < ezp(r) whenever r > 0.
(¢p4) For each v > 0, there exists ¢4 = ¢4(7y) > 1 such that
sTp(s) < eqt?o(t) whenever 0 < s < t.
(¢5) For each v > 0, there exists c¢5 = c5(7y) > 1 such that
7 7p(t) < css (s) whenever 0 < s < t.

(¢6) If ¢ and ¢ are positive monotone functions on [0, o) satisfying (1), then
for each v > 0, there exists a constant cg = cg(y) > 1 such that

c6 Lo(r) < o(r7y(r)) < cep(r) whenever r > 0.

Let us begin with an upper estimate for the modular B, ., ,-capacity of balls.
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Theorem 2.1. Suppose p > 1 and w is a positive locally integrable function on
R™. Then there exists a constant A > 0 such that

2R

2r

Ba,g,w(B(0,7); B0, R)) < A ( (=P ot~ Hw(B(0, 1))}/ 1P dt/t>

whenever 0 < r < R/2 < 0.
Proof. For r > 0, consider the function

fr(y) = [y[~*

for r < |y| < 2r and f,. = 0 elsewhere. If z € B(0,7) and y € B(0,2r) \ B(0,r),
then |z — y| < 3r, so that

Infil@) = (30 [ 7 dy = 4,
B(0,2r)\B(0,r)
with a constant A1 = A;(a,n) > 0.

Now let 0 < r < R/2, and take jo such that 270*'r < R < 290%2r. For {a;} such
that a; > 0 and Z] oaj =1, set

Jo
F=>a;fa/Ar

Jj=0

Then
Jo
= Afl Zajlaf2-7r(x) >1
3=0
for x € B(0,r). Therefore we have by (¢2) and (¢3) that

B, w(B(0.r); BO,R)) < /B o ES )

= 5 ] O A0 Ao

B(0,R)

IN

AQZa (277) P ((277) " Hw(B(0, 271 7)).

Now, letting K = Zg(’zo{@jr)’apap((er)*l)w(B((),23'“7"))}1/(1*1’) and

_ @) P ((27r) (BO, 2+ 1)}
a; = K 5

we find

B, w(B(0,7); B(O,R)) < AyK~ pZ{ 277) " Pp((27r) " w(B(0, 27 1r)) /0P
7=0

= AK'P
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Here we have

Jo 2043,
K > Agz/ {t=Po(tw(B(0,8)} /=P dt/t
=0 /2t
2903
> o[ BN d
2r
so that
2R
K > As | {7t Hw(B(0,))}/ P dt/t,
2r
which proves the result. O

Corollary 2.2. If w is doubling, then there exists a constant A > 0 such that

1-p
Ba,app,w(B(x,/r); B(Ov R)) S A </R{tap<p(t1)w(B(x,t))}1/(1p) dt/t)

whenever B(z,r) C B(0,R/4). In fact,
Ba,g,w(B(z,7); B(O,R)) < Ba,w(B(z,r); Bz, R/2))

R I-p
A ( / (P ot Yw(B(z, 1))}/ 0 dt/t)

IN

whenever B(z,r) C B(0,R/4).
Next we give a lower estimate for the modular B, -capacity of balls.

Theorem 2.3. Suppose p > 1 and w € A,. For R > 0, there exists a constant
A = A(R) > 0 such that

1-p
B, w(B(0,7); B(0,R)) > A (/R{ttxmp(t1)w(B(0,t))}1/(1p) dt/t)

whenever 0 < r < R/2 < 0.

Proof. For 0 < r < R/2, take a nonnegative measurable function f on B(0, R) such
that

Inf(z) >1 for x € B(0,r).

Then we have by Fubini’s theorem
/ de < / I, f(x) dx
B(0,r) B(0,r)

/ (/ |z —y|*" d:v) f(y) dy
B(O,R) B(O,T)

< Apn / (r + [y)° " £ (y) dy.
B(0,R)

IN
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For e > 0 and 0 < 6 < a, we see from Holder’s inequality that
[ b dy
B(0,R)

/ (r+ [y £ (y) dy
{yeB(0,R):f(y)>e(r+|y))~°}

+ / (r + )" F (y) dy
{yeB(0,R):f(y)<e(r+|y|)—%}

IN

1/p'
</ [+ Iy ple(r + |y|>—6>w<y>}-1/p1p’dy>
B(0,R)

1/p
a—n—9
x ( /B o P dy> e /B R D

where 1/p+ 1/p’ = 1. Since w € A, we find by (¢2) and (¢3) that

/ [+ [y {p(elr + [y]) ~)w(y)} /71 dy
B(0,R)

IN

R
dt
As(e) / (r+ )P D ((r 4 1)~ ) ( / w(y)!/ dy>7
0 B(0,t)

1/(1-p)
dt
w(y) dy) —

IA

(0,7+1) t

As(e) /OR(T+t)ap/(p—l)<p((r+t)—1)1/(1—p) (/B
2R

< Az(e) [ { et w(B(0,0)} 7P dt/t

R
< Aue) / (ot (B0, 1)}V dit.
Thus we derive

/ (r+ )™ F(y) dy
B(0,R)

R 1/?’
< o) ( / (P (B0, 1)}/ 0P) dt/t)

1/p
x </ op(f(y))w(y) dy) + Ase,
B(0,R)

so that

R 1/p
1 < Agle) ( / {t=Po(tHw(B(0,1))} /1P dt/t)

1/p
X ( / ep(f(y))w(y) dy) + Are.
B(0,R)
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If Aze =1/2, then we establish

R 1-p
Bap,w(B(0,7); B0, R)) > A (/ {t=Pp(t™ M w(B(0,1))}/ P dt/t> ;
as required. 0

Corollary 2.4. Suppose p > 1 and w € A,. For R > 0, there exists a constant
A= A(R) > 0 such that

R 1—p
Basy (B, 1) BO, B)) > A ( [t et (B o dt/t)

whenever B(z,r) C B(0,R/4).

Now Theorem A follows from Corollaries and 241

3. PROOF OF THEOREM B

Let us begin with an upper estimate for the norm Cy,,, o-capacity of balls.
Theorem 3.1. Suppose that p > 1 and that w(B(0,7)) satisfies the doubling con-

dition. Then there exists a constant A > 0 such that

R (1-p)/p
Covpp w(B(0,7); B0, R)) < A (/ {7 Pt w(B(0, )}/ 07 dt/t)

whenever 0 <r < R/2 < 0.

Proof. Set
R
G0 = [Tt (B e
for » > 0. Consider the function

F(y) = Lyl LIyl Pyl Hw(B(0, [y)) 1 P o (r) =17

for r < ly| < R and f = 0 elsewhere. If x € B(0,r) and y € B(0, R) \ B(0,r), then
|z — y| < 2|y|, so that

L f(z) > 20" (r) VP /

I~ Iyl P (lyl = w(B(O, [y)}/ P dy
B(0,R)\B(0,r)

— A1¢*(r)(p*1)/p
with a constant 41 = A;(a,n) > 0. It follows from the definition of capacity that

Ca,p,w(B(0,7); B(O,R)) < Al_léﬁ*(7")(kp)/p”fﬂgap,w,B(mR)-

Thus it suffices to show that

Hf”«p,,,w,B(O,R) < A2-
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For this purpose, we first note that

/ o (F(y))w(y)dy
B(0,R)

= / FW)Pe(f(y))w(y)dy
B(0,R)\B(0,r)
—e) ! | 1=l Pl (B, )}/
B(0,R)\B(0,r)

% (Il Ly =PIyl (B, [y} 07" (r) 717 oly)dy.
Here we see from the doubling condition of w(B(0,r)) that

1= {1 Py~ Hw (B0, [y]) }1/ TP p* (r) =2/
< Aslyl=*{lyl= eyl (B0, [y} P

(/2R{t—ap§0(t_1)w(3(0,t))}l/(l_p) dt/t)
< Aalyl = {lyI~ Pyl w(B(O, [y]))}/ P

Y —1/p
( / o (B0, )0 dt/t)
|

-1/p

yl
< Agep(lyl™) " HPw(B(0, [yl) P

for y € B(0,R) \ B(0,7). Further we can find constants Ap > 0 and v > 0 such
that

w(B(0,t)) > Aot”
for all ¢ > 0. Hence, as in Theorem 2] we obtain by (¢6):

/ ep(f(y))w(y)dy
B(0,R)

SAW*(T)_I/ 1=yl =P (lyl~w(B(O, ly))} P e(lylw(y)dy
B(0,R)\B(0,r)

:Aﬁu

as required. Il

Corollary 3.2. Suppose that p > 1 and w is doubling. Then there exists a constant
A > 0 such that

R (1-p)/p
Cﬂf#’pvw(‘B(mvT); B(Ov R)) <A </ {t_apﬁp(t_l)w(B(x’t))}l/(l—P) dt/t)

whenever B(x,r) C B(0,R/4).

Next we give a lower estimate for the norm C, , ,-capacity of balls.
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Theorem 3.3. Suppose p > 1 and w € A,. For R > 0, there exists a constant
A= A(R) > 0 such that

R (1-p)/p
Covipp o (B(0,7); B(0, R)) > A ( / {17 Pt )w(B(0, 1))}/ 0P dt/t)

whenever 0 <r < R/2 < co.

Proof. For 0 < r < R/2 take a nonnegative measurable function f on B(0, R) such
that

Inf(z) > 1 for x € B(0,r).

Then we have by Fubini’s theorem
/ de < / I, f(x) dx
B(0,r) B(0,r)

/ (/ lx —y|*7" d:v) f(y) dy
B(O,R) \JB(0,r)

< Ay / (r + [y)* " f(y) dy,
B(0,R)

IN

so that
1< 4 / (r + Jy)* " f(y) dy.
B(0,R)

We show that

/ (r 4 )" () dy
B(0,R)

R (p—1)/p
< Ay </ {t=Pp(t™ " w(B(0, )}/ =) dtﬁ) £l op.0.B(0,R)-

For this purpose, suppose that | f|l,, w.50,r) < 1. For 0 < § < a, we see from
Hoélder’s inequality that

/ (r+1[y)* " f(y) dy
B(0,R)

/ (-4 )" S ) dy
{y€B(0,R):f(y)>(r+|y)—?}

+ / (r+ [y £ (y) dy
{yeB(0,R): f(y)<(r+|y[)—%}

A

1/p
< </ [(r+ [y " {e((r + yl)‘s)w(y)}l/p]p/dy>
B(0,R)

1/p
a—n—=~8
x ( /B o W dy) + /B P

)
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Here note from w € A, (¢2) and (¢3) that

/ [+ Ty Lo ((r + [y)) )w(y)} /71 dy
B(0,R)

R
dt
As/ (r 4 £) @R/ =D (1 4 )=1)1/(1=1) (/B( w(y) /=) dy> -
0

0,t)

IN

IN

R
v 4 1)/ (4 )11/ (1-D)
A4/O (r+t) o((r 7Y (/B

< Ay QR{t_O‘ng(t_l)w(B(O,t))}l/(l_p) dt/t

(0,r+t)

7/‘R
< s [Tl BP0 di,
so that
[ s ay
B(0,R)

R 1/p
< A5 </ {t7Pp(t™ " )w(B(0,1))} /P dt/t>

1/p
X (/ ©p(f(y))w(y) dy) + Ag
B(0,R)

R 1/p’
< Ay (/ {t7P(t™ " )w(B(0,1))}/ 1P df/t> :

Hence we establish

R (1-p)/p
Coappw(B(0,7); B(O,R)) > A (/ {t™ Pt w(B(0, 1)}/ dt/t> ;

as required. O

Corollary 3.4. Suppose p > 1 and w € A,. For R > 0, there exists a constant
A = A(R) > 0 such that

R (1-p)/p
Coavippo(Bl@,7); B(0, R)) > A (/ {1 Pt w(B(w, 1))}/ 77 dt/t)

whenever B(z,r) C B(0,R/4).

As in the proof of Theorem A, Theorem B follows readily from Corollaries
and 34
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