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Abstract

In this study, we investigate the infinite-horizon linear quadratic control involving state- and control-dependent noise in
weakly coupled large-scale systems. In contrast to the existing results, we allow the control and state weighting matrices
in the cost function to be indefinite. After establishing an asymptotic structure for the solutions of the stochastic algebraic
Riccati equation (SARE), a weak coupling parameter-independent control is provided. Moreover, by solving the reduced-
order linear matrix inequality (LMI), we can easily obtain the proposed control without using any numerical algorithms. As
a result, although the small positive weak coupling parameter that connects the other subsystems is very small or unknown,
it is possible to compute the desired controller. Finally, the extension of the result of the study to the static output feedback
control problem is discussed by considering the Lagrange multiplier method.

Index Terms

weakly coupled large-scale systems, stochastic systems, linear matrix inequality (LMI), Lagrange multiplier method.

I. INTRODUCTION

The stability analysis, control, filtering, and differential games of large-scale interconnected systems that are parameterized
by a small weak coupling parametethave been extensively investigated [8]. For example, the weakly coupled systems
have been used to illustrate multi-area power systems [1], [2]. Even though weakly coupled systems have been studied
in engineering and mathematics for more than forty years, weakly coupled stochastic systems that are govebised by It
differential equation are still an interesting and challenging research area, as demonstrated in several recent papers [11],
[12], [23].

Over the last decade, stochastic control problems governedodhsy differential equation have attracted considerable
research interest. Recently, the indefinite stochastic linear quadratic (LQ) control problem with state- and control-dependent
noise has been investigated via linear matrix inequality (LMI) [3]. Although the results of [3] are very efficient and powerful
in theory and the control is easy by solving the LMI for a normal system, the indefinite stochastic LQ control problem for
a weakly coupled stochastic system, which is more complicated than a normal system, is still an issue to be considered.

In order to design the stochastic LQ control for the weakly coupled large-scale systems, the stochastic algebraic Riccati

equation (SARE) that is parameterized by the positive and small coupling pararstieuld be solved. Various reliable
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approaches for solving the SARE have been well documented in many literatures (see e.g., [3], [7], [9], [11], [12]). If
the small positive weak coupling parameter that connects the other subsystems is relatively small, these approaches are
very useful. However, a limitation of these approaches is that the small parameter is assumed to be known. Thus, it is
not applicable to a large class of problems where the parameters represent a small unknown perturbation whose value
is not exactly known. Although Newton’s method is still useful for solving the reduced-order solution of the parameter-
independent SARE [11], the convergence of the algorithm becomes very sensitive when the control weighting matrix in
the cost function is indefinite.

In this paper, we study the stochastic LQ control problem with the state- and control-dependent noise of weakly coupled
large-scale systems. Particularly, this study is challenged by a class of stochastic LQ control problems with sign indefinite
state and control weighting matrices. The main contributions of this paper can be summarized as follows. First, the
asymptotic structure of the SARE is established. Second, by using the asymptotic structure, a new near-optimal controller
that does not depend on the values of the small parameter is obtained. Moreover, we claim that the near-optimal controller
can be computed via the LMI approach. As a result, although the small positive weak coupling parameter that connects
the other subsystems is very small or unknown, it is possible to compute the desired controller under the reduced-order
computation. As another important feature, it is newly shown that the resulting controller achig?esapproximation of
the optimal cost. Furthermore, the static output feedback LQ control problem is solved by using the Lagrange multiplier
method. A necessary condition is derived in the form of cross-coupled stochastic algebraic Riccati equations (CSARE).
Finally, in order to demonstrate the efficiency and validity of the algorithm, a numerical example is included.

Notation: The notations used in this paper are fairly standéyddenotes am x n identity matrix.block diag denotes a
block diagonal matrix| - | denotes the Euclidean norm of a matri®.denotes the expectatiom denotes the Kronecker

product.

Il. PROBLEM FORMULATION AND PRELIMINARY RESULTS

Consider stochastic linear time-invariant weakly coupled large-scale systems.

dx(t) = [Acx(t) + Bou(t)]dt + [Cex(t) + Dou(t)]dw(t), 2(0) = 22, 1)
where

w1 (t) uy (t)
l‘(t) = ) u(t) = )

TN (1) un ()

A €Ay - AN Byy  eBip -+ eBin

Ao Az <o gAon By Bas -+ eBan
A, = , B, := _ _ _ ,

eAn1 €An2 - Ann eBy1 €Bn2 -+ Bwn
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Cii €Ci2 -+ eCin D1 €Dy -+ eDin

eCyp  Cap -+ elon €Da1 Daa -+ €Dy
C. = . . . . , D, =
eCn1 eCnz -+ Cnn eDny1 eDn2 -+ Dpn
x;(t) e R™, i =1, ..., N represents théth state vectorsu;(t) € R™i, i =1, ... , N represents théth control inputs.

w(t) € RN is a one-dimensional standard Wiener process defined in the filtered probability space [3], [4k Henetes
a relatively small positive coupling parameter that relates the linear system with the other subsystems.

The cost function for each strategy subset is defined by
T 2(0) = E [ [+ (Qu(t) + T () Routt)] dt, @
0

where

Q11 eQi2 - e@n

5Q1T2 Q22 < EQan

Qe = . . , Qe = Za
eQiy @iy - Qnn

Ry := block diag ( Ry, --- Ryy ), Ro=RY.

It should be noted that the weighting matric@s and R, are assumed to be sign indefinite. Moreover, supposeRhat
is an invertible matrix.

The stochastic LQ problem for weakly coupled large-scale systems is given below.

“Find a matrix K. such that the control(t) = K.x(t) minimizes the cost function (2) along the trajectories of the
system (1) corresponding to all admissible controls.”

According to [3], [16] (see also [17] chapter 5), the class of admissible controls consists of the stochastic processes;
{u(t)}+=0 adapted to the filtration generated by the Wiener proeéss having the additional properties: [ |u(t)|*dt <
+00 andlim; o |z, (¢, xo)|* = 0, for all zo € R", wherex,, (¢, zo) is the solution of (1) determined by the inputand
starting fromay att = 0.

By using the existing result [3], an optimal feedback control will be as given in
u*(t) = =R '(BI' P. + DI P.CL)x(t), ®)
where R, := Ry + DT P.D. > 0 and
F(P.) = P.A. + ATP. + CTP.C. — (BYP. + DI'P.C.)" R-Y(BY P. + DI P.C.) + Q. = 0. @)

Furthermore, the following result was proved [3]. The feedback gdéinscan be obtained by solving the following

semidefinite programming (SDP). Moreovét, is a maximal solution of?*, which is the unique optimal solution.

maximize Tr [P.], (5a)
P.A.+ATP. + CTP.C BTp. + DTpP.C.)T
subject to e P+ Co PG+ Qe (B R e FCe) >0, (5b)
BI'P. + DTP.C. Ro+ DIP.D,
Ro+ DIP.D. > 0. (5¢)
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If the positive weak coupling parameter is sufficiently small, the Riccati direct method or LMI approach that is based on
the SDP is very useful. However, a limitation of these approaches is that the small paranseésssumed to be known.
Thus, we propose the design method of the parameter-independent controller by means of the reduced-order computation.
Without loss of generality, the stochastic LQ control problem is investigated under the following basic assumptions [4].

Assumption 1:For eachi € {1, 2, ... , N} the subsystems in

is stochastic stabilizable.

For precise definition, as well as necessary and sufficient conditions for stochastic stabilizability, we refer to [3], [17].
Remark 1:If K;; € ®™*"i is a stabilizing feedback gain for the subsystems (6), wéset K = block diag(K1, ..., Kyn).
On the basis of the fact that the exponential stability in the mean square is preserved under small perturbations of the
coefficients of the system one deduces that there existsich that the contrak(t) = Kz(t) stabilizes the system (1) for

anye € (0, £*]. Therefore, if Assumption 1 is fulfilled, then the system in (1) is stochastic stabilizabke o, which

is sufficiently small.

A. Asymptotic Structure of SARE

Firstly, in order to obtain the controller, the asymptotic structure of SARE (4) is established. &iné&, C. and D,
include the term of the small parameterthe solutionP. of SARE (4) with the following structure is considered [11],

[12], [13].

Py ePip - €PN
€P17; P22 e €P2N

P, = . . (7)
ePly ePly -+ Pnn

By substituting the coefficient matrices aitL into SARE (4), settinge = 0, and partitioning SARE (4), the following
reduced-order algebraic Riccati equations (ARES) are obtained, whgré = 1, ... , N is the zeroth-order solutions of
SARE (4) ass = 0.

where R;; := Ry; + D P;iD;; > 0.
In order to guarantee the existence of a stabilizing solution of SARE (4), the following conditions are assumed.

Assumption 2:There exists a solutio®? for all

POA; + ALPY + CEPIC, + Qu (BLPY+ DEPYCH)T

1T 1 1 (22 A2 X2 1T

BEPY + DLPIC;, Ry + DEPYD;,

23 Z3 1 T

>0 9)

2T

It should be noted that under Assumptions 1 and 2, fori,athe reduced-order SAREs in (8) have a maximal and

stabilizing solutionP;;, which verifiesR;; + DX P D;; > 0. Moreover, since the weight matrices are sign indefinite, it is

12 (22
not expected that the stabilizing solutidh of (4) and the stabilizing solutio®;; of (8) are positive semidefinite.
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The asymptotic expansion of SARE (4)at= 0 is described by the following lemma.
Lemma 1:Under Assumptions 1 and 2, there exists the small congtarguch that for alle € (0, ¢*), SARE (4)

admits a unique stabilizing solutioR*, which verifies (5c). Moreover, this solution can be written as given in
P.:= P* = P+ O(c) = block diag ( Py - Pyw ) +0(e). (10)
Proof: This can be proved by applying the implicit function theorem on SARE (4). In order to do this, it is sufficient

to show that the corresponding Jacobian is nonsingular=at). The JacobianJ is given by

OvecF (P:) B )
= W . = block dlag ( vl cee VN ) . (11)
For eachi € {1, ... , N}, the matrixV, is invertible due to the fact thaP,; is the stabilizing solution of (8). Thus,

detJ # 0, i.e., J is non-singular for= = 0. As a consequence of the implicit function theorem, this implies that there

exists a unique continuous mappidyy := G(e) that possesses the Taylor series expansion at0; in other words,

P. = G(0) + > .2, %G(”(O). Thus, we have an equation in the form given in (10). On the other hand, taking into

account the fact thab;; verifies R;; + DL P D;; > 0, then for a sufficiently small parameter P. will verify (5c). Thus,

the proof is complete. ]
Remark 2:In Lemma 1, the existence of a bound @h is only guaranteed. Since it is well-known that it is very hard

to compute the exact bound ef [8], this issue is still an open problem.

Ill. PARAMETER INDEPENDENTCONTROLLER

Since there exist many cases such that the parameters represent small unknown perturbations whose values are not
exactly known, it is desirable to have the parameter-independent controller. Therefore, a parameter-independent stochastic

LQ controller is considered. Using the result in (10), the approximate stochastic controller is given below.

a(t) := Kz(t) = —R~Y(BTP + DT PC)x(t), (12)
whereR = Ry + DT PD and
B := block diag ( Bi -+ Bww ) ,
D := block diag ( Du -+ Dww ) ,
C := block diag( Cii -+ Cwn )

In order to obtain the parameter-independent controller (12), we have to solve the reduced-order SARE (8). Various reliable
approaches for solving SARE have been well documented in many literatures (see e.qg., [3], [7], [9], [11], [12]). However,
there are some difficulties with SARE (8). Firgty has the sign indefinite and ti}%i_il involves the unknowrP;;. Second,

there is an additional strictly positive definiteness constraint. Thus, we try to examine the LMI design method. Let us

consider the following reduced-order SDP.

maximize Tr [P;], (13a)
PiiAii + AL Pii + CL PiCii + Qi L};
subject to @ >0, where L;; := Bq;j;Piq', + D;; P;iCii,
L;; Rii+ DLP;D;;
Rii + DEPy;D;; >0, i=1, ... ,N. (13b)
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By using the existing result [3], we obtain the following result.
Lemma 2:Under Assumptions 1 and 2, SARE (8) has a maximal and stabilizing solBtjorerifying R;;+ DL P:D;; >

0, which is the unique optimal solution to the above-mentioned SDP problem.

A. Degradation of Cost

The main result for the degradation of the value of the cost function (2) via the proposed approximate controller (12)
is presented as follows.

Theorem 1:Under Assumptions 1 and 2, the use of the approximate controller (12) results in (14).

J(u*, £(0)) = J(a@, z(0)) + O(?), (14)

where
J(w*, z(0)) = 2T (0)P.z(0), (15a)
J(@, z(0)) = 27 (0)X.2(0), (15b)
X (A + B.K) + (A + B-K)" X, + (C. + D.K)"X.(C. + D.K) + K"RyK + Q. = 0, (15c)
K=-RYBTP+ DTPC). (15d)

Proof: Let us consider Newton’s method.
P€(71,+1)[A€ _ Bg(égn))—ll/gn)] 4 [Ae _ BE(Rgn))—ngn)]TPE(n—H)
+[Ce = D(RE) LT P [CL — D(RU) LM + LT (RO T Ry (RUV) T LY + Q. =0, (16)

whereP\” = P, R™ .= Ry + DTP™ D, and L") := BTP™ 4+ DT P ..
There exists a smali such that for alls € (0, 4), 0 < & < 4, the iterative algorithm represented by equation (16)
converges to a maximal solutioR. with a rate equal to that of quadratic convergence. In other words, the following

condition is satisfied [11].
|P™ — P =0(*), n=0, 1, ... (17)
On the other hand, setting= 0 for Newton’s method (16), we obtain
PW(A. + B.K) + (Ac + B.K)" PO + (C. + D.K)" PY(C. + D.K) + K" RyK + Q. = 0. (18)
Subtracting (15d) from (18). = X. — Pa(l) satisfies the following stochastic algebraic Lyapunov equation (SALE)
VAD(A: + B.K) + (A + B.K)"V) + (C. + D.K)"V)(C. + D.K) = 0. (19)

Under Assumption 1, since the above SALE (19) has the unique solutien 0, the following equation holds by using

the result given in (17).
X. =PY =P. +0(?). (20)

This is the desired result. [ |
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B. Fixed Point Iteration

When the reduced-order SARE (8) or LMI (13b) is solved, it is well known that the norm of the mal€igdsand
|D;;| for the practical plant are small [12], [13]. Thus, using this feature, the fixed point algorithm for solving SARE (8)
is established. By taking into account the fact that = uC and D;; = pD, we consider SALE (21) in its general form.

H(p, P):= PA+ ATP 4+ 2C"PC — (BTP + 112 D" PC)'R™Y(B"P + 1>DTPC) + Q = 0, (21)

whereR := R+ .2DTPD and R = R” is assumed to be sign indefinite and invertible.

It should be noted that if the parameieiis sufficiently small, the fixed point algorithm is also useful in the sense that
only the required workspace @t":*": is required. Moreover, the solution can be obtained directly by usingatbe
function in MATLAB.

By settingu = 0 for the previous SARE (21), the following ordinary algebraic Riccati equation (ARE) holds.

H(0, P):= PA+ATP - PBR'BTP+Q =0, (22)

where P is the zeroth-order solutions of SARE (21).
The asymptotic structure of the solutiofls= P(u) is given.
Lemma 3:There exists a smajl > 0 such that for allu € (0, &), SARE (21) permits a unique solutioR in the

neighbourhood of. = 0, which can be written as given in

P(p) = P+ 0(i?). (23)
Proof. This can be done by applying an implicit function theorem to SARE (21). In order to do so, it is sufficient to
show that the corresponding Jacobian is non-singular-at0. Obtaining the partial derivative of the functidd (., P),
with respect toP, and settingu = 0 yields (24).

OvecH (u, P)

3lvecD)T =(A-BR'BTP)T@I+1®(A-BR'BTP)T. (24)

n=0
Obviously, 4 — BR~' BT P is nonsingular because the ARE (22) has stabilizing solutions under stabilizable and detectable
conditions. Thus, the corresponding Jacobian is non-singular=at0. The conclusion of Lemma 3 is obtained directly
by using the implicit function theorem. [ ]

In order to obtain solutions for SARE (21), the following algorithm that is based on the fixed point algorithm is

considered.
—pED BRI BT peth) 20T PO — T PODRNIDTPIC+Q=0,i=0,1, ... (25)
where P©) = P and R := R+ DTPW D,
Theorem 2:Let us assume that the conditions of Lemma 1 hold. Then, there exists asmalich that for ally €

(0, o*), the fixed point algorithm (25) converges to the exact solutiof?dfat a linear convergence rate. In other words,

the following relations are satisfied.
|PO — P = O(u?), i=0, 1, ... (26)

March 2, 2010 DRAFT



Proof: The proof of Theorem 2 can be obtained by mathematical induction. It is easy to verify that the first order

approximationP corresponding to the small parameteis P. It follows from this equation that
[P — P| = |P - P| = O(u). 27
Wheni = h, h > 1, it is assumed that
|P™) — P = O(u*"*Y). (28)
Subtracting (21) from (25) and settirig= &, the following equation holds under the above assumption.
(P"+Y — PY(A - BR'BTP — i2BR™'DTPC) + (A — BR™'BTP — ;2BR™' DT PC)T (P"+Y) — p)
—(P"*Y — pYBR™IBT(PHY — P) 4 12T (PM — P)C + O(p*"+2)) = 0. (29)
Therefore, under the stabilizable and detectable conditions, the following relations hold.
[PU+D — P = O(u*"+2), (30)

Consequently, the error equations (26) hold foriadl N. This completes the proof of Theorem 2. ]

C. Numerical Algorithms for Solving Reduced-order SARE (6)

For computing the maximal and stabilizing solution of (8) in the case of weight matrices with sign indefinite, we propose
two iterative procedures.

1) An Algorithm on Basis of Stochastic Lyapunov lIterations:
Step 1.ChooseK}. as a stabilizing feedback gain for the subsystem)nThis can be obtained b}, = WiiXigl,

where for each, the pair (X;;, W;;) is a solution of the following LMI:

Li(Xii, Wii) CiiXii + DisWi; <0 (31)
X CL+wIDL —Xi;
wherel; (X, Wi;) = AuXyi + Xu AL + WIBL + B W,

ConstructPi(f) as a solution of the following LMI

(Asi + By KO)TPWY + P (A5 + ByK) + (Cii + Dy KO)TPY(Chi + DiKY)

+Qii + KSRy K9 +1,, <0, 1 <i <N, (32a)
K'Y = —(Ry; + DEPY D) (B PV + DI PV Cy). (32b)

Stepk, k > 2.ConstructPi(f), Ki(f) from

(i + Bkl )PP + P (Aii + BuK D) + (Coi + DK~ TP (Cii + DiK(EY)

1 v

_ 1
Qi + KF VTR, K1 4 I, =0, (33a)
K = ~(Ri; + DEPY D) (BEPY + DEPY Cy). (33b)
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It can be seen (see for example [14]) that under Assumptions 1 and 2, the se@ﬁé@c}eczl is convergent and its
limit is the maximal and stabilizing solution of (7), which verifi&; + DL P°D,; > 0.

(X242

2) An Algorithm on Basis of Standard Lyapunov lterations:
Step 1.The same as in the previous algorithm.
Step k, k > 2.ConstructP¥) K by

1 )

(Aii + B KL )T PP + P (A + Bk V) + (Cia + Du K ) PY D (Cii + DK V)

_ _ 1
+Qui + KT RaK Y + 7 =0, (34a)
K = —(Ry + DEPR VD) H(BEPY + DERI V). (34b)

In [15], one shows that under Assumptions 1 anch’f) converges taP; whenk — oo.

Remark 3: The Newton-type algorithm is converges faster than the one based on Lyapunov iterations. However, it
requires the solution of a more complicated linear equation as given in (34a). The algorithm based on Lyapunov iterations

requires solutions of standard Lyapunov equations for déach2.

IV. EXTENSION TO STATIC OUTPUT FEEDBACK

The static output feedback problem is one of the most important problems. The implementation of LQ control using
the static output feedback was investigated by several researchers [10], [12]. Despite the reliable result obtained in [10],
there still remains an important problem that should be solved analytically-the static output feedback case; this case has
not been investigated. Moreover, in [12], the control-dependent noise has not been considered. Another difficulty that is
faced when solving the LQ control using the static output feedback is the nonconvexity of the solution set. In order to
obtain a feasible solution set, the Lagrange multiplier method is considered for the optimization of the cost.

In this section, the contral(t) is restricted to the static output feedback.

u(t) == Foy(t), y(t) = E.x(t), (35)
where

Fy el - elfin By eByp -+ eEiN (0
U1

eFfy;  Foy - eloy eby  Ey .-+ ekopy

F. = . . . . ; Be = . . . . ;y(t) =

yn (1)

eFy1 eFny -+ Fnn eEnt €En2 -+ Enn

andy;(t) e R ,i=1, ..., N represents the-th output.

Using the static output feedback control of (35) and the assumptionRhe0)z”(0)] = I, i := Zf;l ng, it is
immediately determined that the closed-loop stochastic system is exponentially mean square stable (EMSS) [4]; further,
the integral portion of/(u, x(0)) satisfies the relation in

J(u, x(0)) = Tr[Xc], (36)
March 2, 2010 DRAFT



10

if there exists a unique solution for the following stochastic algebraic Lyapunov equality (SALE).of
Gi(X., F.):= X A. + ATX. + CTX.C. + E'FIRyF.E. + Q. = 0, (37)

where A, := A. + B.F.E., C. := C. + D.F.E..

The solution of SALE (37) is assumed to have the following structure [11].

X11 5X12 R EXlN
€X1T2 X22 s €X2N

X, = _ . ) . . (38)
eXly eXdy - Xnn

Substituting these matrices into SALE (37), setting= 0, and partitioning SALE (37), the following reduced-order in
SALE (39) is obtained, wheré&(;; and F;, i = 1, ... , N are the zeroth-order solutions of SALE (37).

XnAn + AZ;XZ’L + égXllél’L + El'j;FgRiiFiiCii + Qi =0, (39)

where A;; := A;; + By Fy; By and Cy; == Cyi + Dy Fyi By
In order to develop the necessary conditions for this problEm,: = 1, ... , N must be restricted to the following set
F, = {F,; € Rmxb
The asymptotic expansion of SALE (37) fer= 0 is described by the following lemma.

there exists a uniqgue symmetric mattk; that satisfies SALE (39).

Lemma 4:Let us suppose thak;; € F;. There exists a small constant such that for alls € (0, o), SALE (37)

admits a unique solutiolX* that can be expressed as given in
X=X +0(e), (40)

where X = block diag( X o Xuw )
Proof: This can be proved by applying the implicit function theorem to SALE (37). In order to do so, it is sufficient

to show that the corresponding Jacobian is nonsingular at 0. It should be noted thafj, € F; if and only if
I, @ AL + AT @ I,,, + CE ® CT is non-singular. Since the abovementioned relation is similar to that mentioned in [11],
it is omitted. [ |

The necessary conditions for the optimality will be obtained.

Theorem 3:Let us assume thak;; € F; solves the static output feedback control problem. Then, it is necessary that
there exist symmetric solution¥, and S. that satisfy SALE (41a) and SALE (41b), respectively; is obtained using
(41c).

Gi(X., F.)=0 (41a)
GZ(Ssa Fa) = SeAg + Aase + éasaég + Iﬁ = 07 (41b)
Gs(X., S., F.)=R_F.E.S.E! + (BTX. + D' X.C.)S.ET =0, (41c)

whereR_ := Ry + DI X.D. > 0.
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11

Proof: The result can be proved by using the Lagrange multiplier method. First, the closed-loop cost with the static
output feedback controlles(t) = F.y(t) = F.E.xz(t) is obtained by using the relatiofh = Tr[X.], where X_ is the
solution of SALE (37). Let us consider the Lagrange functibn

L(Xe, Se, Fo) =Tr [ X))+ Tr [G1(X., F)Se], (42)

where S is a symmetric matrix of Lagrange multipliers.

Using the Lagrange multiplier method, the necessary conditiong’foito be optimal can be determined by setting
0L/ X. anddL/F;. to zero and solving the resulting equations given in (41c) simultaneously;for [ |

It should be noted that Theorem 3 only provides the necessary conditions for a controller to be optimal.

If E.S.ET is nonsingular, then (41c) may be solved 6t to obtain
F.=-R:YBYX.+DIXx.C.)S.ET(E.S.ET)~1. (43)

In the remaining part of this section, we shall discuss the asymptotic structuffe arfd F.
Lemma 5:1f F;; € F;, there exists a small constas} such that for alk € (0, ¢3), SALEs (41a) and (41b), and the

linear equation (41c) admit the positive definite solutitsinand feedback gai* that can be expressed as

S* =S +0(), Fr =F+0(e), (44)

whereS = block diag ( §, --- Sy ), F =block diag ( Fyy - Fyy ), By = Ri+ DXy,
Si AL + AiiSii + CiiSiiCl + I, = 0, (452)
R, FyE;SiuEL + (BL X, + DEX,,C)SuEL. (45b)

Without loss of generality, as an additional technical assumption, we supposE;thistconfined to the following set.
L, :={F; €F;| E;S;EL >0, whereS;,; satisfies (45a)}.

The positive definiteness condition holds, for example, whgris positive definite, and whe@;; has a full row rank.
In this case,F;; can be written as given in

Fy = —R;"(BEX;; + DEXiCii)Si BE (Fi Sy EL) 7L (46)

Let us consider the following new iterative algorithm.

XA 4 APTXTHD 4 CTX TV Gy + BEFT Ry FYY By + Qi = 0, (47a)
St AT A gt ) L G gt DT 4 1 =0, (47b)
FOY = B — o[RNBEXSTY + DT XV 0 STV EL (B STV ED) T+ FY), (47¢)

where whered"” := A;; + B, F\VEy;, C

a € (0, 1] is chosen so as to ensure the minimum is not overshot, that(ig;) = Tr[X ™) < 7 = Tr[x).

n) = Cy + D”Fl(ln)E” andﬂgf) = Ry + Dz;XZ(;L)D”, n=20,1, .. and

i

Moreover,F.(.O) i=1, ..., N is chosen as the initial condition such that the reduced-order closed-loop syst&mn=

[Aii + B”Fi(iO)Eii]Ii (t) + [Oii + D”Fi(iO)E”}.Iq; (t)dw(t) iS EMSS
March 2, 2010 DRAFT
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Kimi

—1.0179 —2.0191e — 1 —1.0508 —2.0382 —4.2781le — 2 —1.5471le — 1 —1.1503e —5 —6.9335e —2 —6.5577e —2
—9.1683e —2 —1.0177e —1 5.8259e —2 —1.6340e —1 —1.053le —1 1.4590e —2 —4.8600e —3 3.1346e —2 —4.9614e —1

Theorem 4:The sequencé«“i(i"), n =0, 1, ... in (47c) converges to a stationary pointHh.
Before proving the theorem, we define the following set.
G, := {F; e Rmi*7 | Ay is Hurwitz. }.

Proof: From (45b), the gradient of the Lagrangian with respedtiois given byL := R, F;;E;;Si; EL + (BE X, +
DLX;;C;;))S;;EL. The inner product of the search directid;; with the gradientL is 3(F};) := Tr[LAFZL], where
AFy; = —R;Y(BLEXy + DEX;:Ci)SuEL (EySiy EL)~" — Fy. We haveS(Fy;) := —Tr[ATA;] < 0, where A; :=
(B8 ED)V2(Ey S ETFTRY? + Ey3Si;(BE Xy + DT X;Ci)TRV? it Fyy € Gy i =1, ... ,N and L # 0. The
continuity of the gradient implies that for each iteration, there exists sefiat is sufficiently small such that (47c) is
satisfied for0 < a < o*. Under these conditions, the sequent®), n = 0, 1, ... with Fi(i") is convergent because it is
monotonic and bounded. Finally, the continuity bimplies that the sequendéi(i"), n =20, 1, ... is also convergent. This

completes the proof of Theorem 4. [ ]

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed algorithm, a numerical example is provided. The system matrices

are given as follows.

0 0.315 0 —0.315 0000O0

Ay = 0 0 1 0 A = 000O0O ,
0 —1.888 —0.0498 1.888 06 000
_1 0 0 1 10000
_0 1.888 0 —1.888_ [ —0.0498 0 0 0 6 ]
0 0 0 0 0 -3.333 0 3333 0
Aoar=10 0 0 0 , Az = 0 0 -3.333 0 3333 |,
0 0 0.41666 0 0 0 0 -1 0
_O 0 0 0 —0.41666 0 0 0 -1

BIT1=:0 01 1},B§2=[0.5 000 0.5],

- 0.249 0 0 0 0
00 0 0
0 0000
00 0 0
Ci = , Cog = 0 00O0O0f¢{,
00 0.249 0
0 0000
00 0 0
L 0 0000
DIi=100 —06 0],D§2:[—0.60000],E11:[00 1 1],E22:[1 1000/,
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B12:O7 BQl :03 ClQZOa 021:()’ D12:O7 D21 :03 E12:03 E21:O?

@ = block diag ( I, 0.25I5 ) , R = block diag ( 12 ) .

A. State Feedback Case
Referring to the design procedure on the basis of SDP (13), the parameter-independent control (15d) is given in
Kimint 0

K= -RVY(BTP+ DTPC) = ,

_ (48)
0 Kimioo

where
Kimin = { —1.0385 —2.1923e¢ —1 —1.0525 —2.0446} ;
Kimizo = { —9.5168¢ —2 0 —4.9027¢ —3 0 —4.5492¢ — 1 ] .

Now, settinge = 0.1, the optimal feedback control (3)*(¢) := Kimiz(t) is given at the top of the previous page. It should
be noted that the optimal one can be computed via the fixed point algorithm (25).

We evaluate the costs using the near-optimal controller (48). We assume that the initial conditions are zero mean
independent random vector with covariance maffij(0)z(0)7] = Io. The average values of the performance index are
ElJapp) = 2.5965e+1, E[Jope] = 2.5609¢ 4 1. Hence, the loss of performandg,,, is less tharl.3919% when compared

with Jop. The values of the cost functional for varioasare listed in Table 1, wheré = (E[Japp) — E[Jopt)/€2.

Table 1. Degradation of cost.

€ E[Japp) E[Jopt] ¢
1.0e —1 | 2.5965e+1 | 2.5609¢ +1 | 3.5646e + 1
1.0e —2 | 2.5577e+1 | 2.5573e+1 | 3.6560e + 1
1.0e —3 | 2.5573e+1 | 2.5573e+1 | 3.6570e + 1
1.0e —4 | 2.5573e+1 | 2.5573e+1 | 3.6570e + 1
1.0e —5 | 2.5573e+1 | 2.5573e+1 | 3.6570e + 1

It is easy to verify that/,,, = Jopt + O(e?) because ofp < co. Thus, formula (14) has been verified.

B. Static Output Feedback Case
The small parameter is chosenas- 0.001. It should be noted that we cannot apply the technique proposed in [3] to
this system since the static output feedback case is considered. By using the proposed algorithm (47), an exact solution of

SALE (41) and the parameter independent static output feedback gains (46) are given below.

—2.2302 —1.6537¢ — 4

F. = (49a)
—2.6681e —3 —8.8309¢e — 2

Fiq = —2.2302, Fyy = —8.8310e — 2. (49b)

We find that the algorithm (47) under = 0.5 converges to the exact solution with an accuracy®f( o F)| +
1G2(SE, F)| + |Gs(xE, S, F.)| < 10712 after 103 iterations. Therefore, it can be seen that the algorithm (47)

works well and it is reliable.
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VI. CONCLUSION

In this paper, the indefinite linear quadratic control involving state- and control-dependent noise in weakly coupled
large-scale stochastic systems has been investigated. Since the sign indefinite of the control and state weighting matrices
in the cost function is allowed, we can apply the proposed method to solve a wider class of problems as compared with
the existing methods. Moreover, by solving the reduced-order LMI, the proposed controller can be obtained without using
any numerical algorithms. As a result, although the positive weak coupling parameter is very small or unknown, it is
possible to design the controller effectively. As another important implication, the static output feedback case has also been

investigated. Finally, the numerical example demonstrates the reliability of the proposed method.
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