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Abstract

We propose a one-dimensional array of superconducting quantum interference devices (SQUIDs) composed of three
asymmetrically positioned Josephson junctions to realize a discrete double sine-Gordon (DSG) model. Two fluxons
in this SQUID array attract each other and form bound states with internal oscillation modes. We conduct numerical
simulations of a discrete DSG equation, and show that the period of the internal oscillation of a moving fluxon pair
exhibits relativistic time dilation except near the speed of light. We also show that driving with a pure alternating
current causes progressive motion of the bound fluxon pair even in the presence of dissipation.
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1. Introduction

Fluxons in Josephson junction systems can be
considered topological excitations, which have ex-
cellent stability against various perturbations. This
atomic nature of fluxons makes it possible to utilize
them as building blocks for information technology
such as rapid single-flux-quantum (RSFQ) logic cir-
cuits [1]. If two fluxons are bound together and form
a kind of artificial molecule, the dynamics becomes
rich due to the internal degrees of freedom as regards
the relative position of the fluxons.
In a recent paper [2], we showed that the phase

difference of a long Josephson junction with a fer-
romagnetic insulating layer obeys a double sine-
Gordon (DSG) equation involving bound half-
fluxon pairs. This fluxon pair could be a candidate
for use in testing the relativistic time dilation where
moving clocks run slowly, since it has an internal
oscillation acting as its own clock. Moreover, the
quantized levels of the nonlinear internal oscillation
of a fluxon pair can store quantum information,

which means that a fluxon pair could become a
mobile qubit [3].
Here, we propose a one-dimensional supercon-

ducting quantum interference device (SQUID) ar-
ray as another candidate for Josephson junction
systems that possess bound fluxon pairs. In our
proposed system, each SQUID is composed of three
asymmetrically positioned Josephson junctions.
The asymmetry in the SQUID yields a double sine
term in the current-phase relation for each SQUID.
Thus, the phase differences of the SQUIDs obey a
DSG equation in a dense array limit, which involves
bound fluxon pairs.
We numerically analyze the dynamics of a fluxon

pair in this system, and show that the pair actually
forms a bound state and possesses internal oscilla-
tion modes whose period has a velocity dependence
coincident with the relation of the relativistic time
dilation except near the speed of light. We also show
that driving with a pure alternating current (AC)
causes the progressive motion of the bound fluxon
pair even in the presence of dissipation.
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2. 1D SQUID array

Fig. 1. (a) Schematic diagram of an asymmetric SQUID with
three Josephson junctions. (b) Representation of the equiv-
alent circuit, where the cross denotes a Josephson junction

element that is described by the resistively shunted junction
model as shown in (c).

Figure 1(a) is a schematic diagram of an asym-
metric SQUID with three Josephson junctions. This
type of SQUID was previously discussed by Zap-
ata et al., regarding the realization of a rocking
ratchet mechanism [4]. Using a series of two iden-
tical Josephson junctions, a sin(φ/2) term appears
in the total current through the SQUID. Here, we
utilize this feature to realize a discrete double sine-
Gordon model.
As in Ref. [4], we assume that the SQUID is

formed of conventional junctions whose gauge in-
variant phase differences φj (j = l1, l2, r) can be
adequately described by the resistively and capaci-
tively shunted junction (RCSJ) model [5] as shown
in Fig. 1(c). We also assume that the two junctions
in the left arm are identical and take Cl1 = Cl2 ≡
2Cl, Rl1 = Rl2 ≡ Rl/2, and J l1 = J l2 ≡ J l, where
Rj , Cj , and Jj are the resistance, capacitance, and
critical current of junction j. In this case, φl1 = φl2

could be expected, and the current through the left
arm, I l, is expressed by the total phase difference
φl = φl1 + φl2 of the left arm as

I l = J l sin

(
φl

2

)
+

~
2eRl

φ̇l +
~Cl

2e
φ̈l. (1)

On the other hand, the current through the right
arm is expressed as

Ir = Jr sin (φr) +
~

2eRr
φ̇r +

~Cr

2e
φ̈r. (2)

Here, the dot denotes the time differentiation.
Figure 1(b) shows the equivalent circuit of the

SQUID. In the limit where the contributions Ll and
Lr to the total loop inductance Ls = Ll + Lr are
such that |LsIs| ≪ Φ0 with Φ0 = h/2e being the
flux quantum, the total flux Φs is approximately the
external flux Φs

ext. Then, the fluxoid quantization
condition for the loop within a SQUID is

φl − φr = −φs
ext − 2πns, (3)

where φs
ext = 2πΦs

ext/Φ0 and ns denotes the vortic-
ity of the SQUID. In the following, we restrict our-
selves to the limit of a small loop size and neglect
φs
ext and ns for simplicity. Then, the SQUID can be

described by a single phase difference φ = φl = φr.

Fig. 2. Equivalent circuit of a SQUID array.

Figure 2 shows the equivalent circuit of our pro-
posed SQUID array. The fluxoid quantization con-
dition for the ith mesh between SQUIDs is

φi − φi+1 = −2π
Φi

Φ0
= −φext − 2π

L

Φ0
Imi , (4)

where Φi is the magnetic flux through the mesh, L is
the loop inductance of the mesh, Imi is the mesh cur-
rent circulating in each loop, and φext = 2πΦext/Φ0

with Φext being the external flux through the mesh.
The vorticity of the mesh is absorbed in the defini-
tion of φi, which can be considered in the boundary
condition. The current conservation reads

Ie + Imi = Isi + Imi−1, Isi = I li + Iri , (5)

where Ie is the external current. Substituting Eqs.
(1), (2), and (4) into Eq. (5), and after appropriate
normalization we obtain

∂2φi

∂t2
+ α

∂φi

∂t
+

2

1 + 2ζ

{
sin

(φi

2

)
+ ζ sin(φi)

}
− (φi+1 + φi−1 − 2φi) /d

2 = γ(t), (6)

where α = t0/RC, ζ = Jr/J l, γ(t) = Ie/I0, and d =√
2πLI0/Φ0 with t0 =

√
Φ0C/2πI0 being the unit

of time t, I0 = Jr + J l/2 being the unit of current,
R = (1/2Rl + 1/Rr)−1, and C = Cl/2 + Cr. Thus,
the SQUID array obeys a discrete DSG equation
with friction and external driving.
The parameter d can be considered the effective

mesh size of the SQUID array normalized by the
typical width of a single fluxon. In the limit of a small
d, i.e., the dense array limit, and when α = γ = 0,
Eq. (6) becomes a continuous DSG equation:

∂2φ

∂t2
−∂2φ

∂x2
+

2

1 + 2ζ
{sin(φ/2) + ζ sin(φ)} = 0. (7)
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Here, the normalization unit of velocity is the speed
of light in this system c = d0/dt0 = d0/

√
LC with

d0 being the actual width of the mesh. The DSG
equation is known to have a static kink-pair solution:

φkp(x) = σSG(x+ r0/2) + σSG(x− r0/2), (8)

σSG(x) = 4 arctan(exp(x)),

where r0 = 2arcsinh(
√
2ζ) and σSG(x) is the kink-

soliton solution of the sine-Gordon equation [6].
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Fig. 3. (a) Phase profile for a fluxon pair when d = 0.8,
ζ = 4, and N = 32. (b) Magnetic flux through the mesh.

Figure 3(a) shows the plot of the lowest energy
configurations of φi for d = 0.8, ζ = 4, and N =
32 (N is the number of SQUIDS) as a function of
xi = d · i under the boundary condition; φN = φ0+
4π. The solid curve denotes the kink-pair solution
[Eq. 8]. Figure 3(b) shows the normalized magnetic
flux through the mesh, Φi/Φ0 = (φi+1 − φi)/2π,
together with the curve of φ′

kp(x) · d/2π where the
prime denotes the differentiation with respect to x.
These figures show that the kink-pair solution well
describes the phase differences of the SQUID array
system even when the discreteness is not weak.
Therefore, we expect that the SQUID array sys-

tem also has a bound fluxon pair with internal oscil-
lation modes [6]. In the following section, we show
the results of numerical simulations of the internal
oscillations of the bound fluxon pair. In these sim-
ulations, we adopt the velocity Verlet integration
scheme [7] and estimate the separation between the
two fluxons r(t) by numerically searching for the po-
sitions where φ = π and 3π as shown in Fig. 3(b).
The center of mass position of the pair xc(t) is de-
termined in the same way, and the average velocity
v is estimated from xc(t).

3. Relativistic time dilation

Since the continuous DSG equation [Eq. 7] is
Lorentz invariant, the period of the kink-pair oscil-
lation T should increase with v as T = T0/

√
1− v2,

where T0 is the period at v = 0 [2]. Also in a SQUID
array system that obeys a discrete DSG equation,
it would be possible to observe the relativistic time
dilation by using the resonance effect [2], if the
discreteness is not strong. We performed numerical
simulations based on Eq. (6) with

γ(t) = γdc + γac sin(2πνet). (9)

The balance between α and γdc determines the ter-
minal velocity of the fluxon pair. Resonance occurs
when the frequency νe of the external AC current
matches the frequency of the internal oscillation,
and the amplitude of the oscillation becomes large.
Thus, we can measure the frequency of the inter-
nal oscillation by detecting the variance of the total
width of a fluxon pair as a function of the frequency
of the applied alternating current.
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Fig. 4. (Color online). Amplitude of the internal oscillation
as a function of the period of external alternating current
and the velocity of the bound fluxon pair. The (white) dotted
line denotes the relation of the relativistic time dilation.

Figure 4 shows the amplitude of the oscillation
of r as a function of the period of the external al-
ternating current, 1/νe, and the average velocity v
of a pair after convergence to the terminal veloc-
ity. Here, we choose parameters of d = 0.25, N =
100, ζ = 4, α = 0.05, and γac = 0.02. The ampli-
tude is estimated from the Fourier spectra of r(t).
We can easily find the resonance peaks of the in-
ternal oscillation, which coincide with the (white)
dotted curve, namely, the relation of the relativistic
time dilation for T0 = 14.18 except near the speed
of light. When the velocity of the fluxon pair ap-
proaches to the speed of light, the width of the fluxon
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becomes comparable to the mesh size d due to the
Lorentz contraction, and the discreteness becomes
effectively strong, which results in this discrepancy.

4. Progressive motion under AC drive

Although discreteness is an obstacle to exploring
the relativistic effect near the speed of light, there
are interesting phenomena that only occur in dis-
crete systems. One such phenomenon is the stable
progressive motion of kinks with homogeneous pure
AC driving [8–11]. In a discrete system, kinks ex-
perience a periodic potential, namely the Peierls-
Nabarro (PN) potential, whose period is the lattice
constant of the system, which here is d. Therefore,
stable propagation can be maintained only when a
kind of mode locking occurs between the external
driving and the oscillation of the propagating kinks
in the PN potential. Thus, the mean velocity is pre-
dicted to be v = νed ·m/M , where m andM are the
super- and subharmonic resonance orders [11].
Figure 5 shows the d dependence of the average

velocity v of the fluxon pair calculated by the nu-
merical simulation of Eq. (6) for N = 32, ζ = 4,
α = 0.01, γdc = 0, γac = 0.03, and νe = 0.04. We
find that the velocity v of the stable progressive mo-
tion coincides with the dotted line denoting the pre-
dicted velocity for the harmonic resonance, v = νed.
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Fig. 5. Mesh size dependence of the average velocity of the
fluxon pair.

From results obtained under various conditions,
we see that both propagation directions are equally
possible and are sensitive to small variations in the
conditions. However, if the effect of the external
magnetic flux through the SQUID, namely, φs

ext in
Eq. (3) is considered, the fluxon pair would experi-
ence asymmetric PN potential, and the direction of
progress would be fixed. We will discuss this effect
in a future study.

5. Conclusions

We have proposed a 1D array of asymmetrical
SQUIDs to realize a discrete DSG model, which has
bound fluxon states with internal oscillation modes.
We have numerically shown that the internal oscil-
lation of a moving fluxon pair exhibits a relativistic
time dilation and that pure AC driving results in
stable propagation of the fluxon pair.
It will be possible to create our proposed system

using current technology [12]. The parameter d for
the mesh loop should be no larger than 1, and yet it
should be sufficiently larger than that for the SQUID
component. In particular, in order to observe rela-
tivistic effects, it is necessary to create smaller un-
derdamped SQUID components, e.g., a quarter of
the length of that used in [12]. It will also be pos-
sible to observe these phenomena using, e.g., low-
temperature scanning electron microscopy [13].
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