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Abstract

Background: Multiple lines of evidence suggest innate immune response pathways to be involved in the development of
obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations
suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR) 4, which is thought to mediate obesity-
associated insulin resistance. Myeloid differentiation factor 88 (MyD88) is an adapter protein for TLR/IL-1 receptor signaling,
which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated
diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD)-induced obesity.

Methodology/Principal Findings: In the present study, we found MyD88-deficient mice fed a HFD had increased circulating
levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of
JNK and cleavage of PARP), which were linked to the onset of severe diabetes. On the other hand, TNF-a would not be involved
in HFD-induced diabetes in MyD88-deficient mice, because TNF-a level was attenuated in MyD88-deficient mice fed with HFD.

Conclusions/Significance: The present finding of an unexpected role for MyD88 in preventing diabetes may provide a
potential novel target/strategy for treating metabolic syndrome.
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Introduction

Multiple lines of evidence suggest innate immune response

pathways to be involved in the development of obesity-associated

diabetes. However, the molecular mechanism underling the

disease is unknown [1].

Excess accumulation of fatty acids is a characteristic of

metabolic disease. Toll-like receptor 4 (TLR4) is known to play

a critical role in the activation of innate immune responses by

recognizing lipopolysaccharide. Interestingly, recent observations

suggest that saturated fatty acids can act as a ligand for TLR4

[2,3]. TLR4 deficient/mutated mice have been shown to protect

from obesity-associated insulin resistance [3-7]. Collectively, these

findings indicate TLR4-mediated signaling would exacerbate

metabolic syndrome by enhancing inflammation. However, the

intracellular mechanisms of TLR4-mediated metabolic disease are

unknown. Thus, in the present study, we focused on by possible

functional role of myeloid differentiation factor 88 (MyD88), an

essential adapter protein for TLR/interleukin (IL)-1 receptor

signaling [8,9], in metabolic disease. MyD88 is originally isolated

as myeloid differentiation primary response gene, which is induced

in M1 myeloleukemic cells in response to interleukin-6 [10].

Subsequently, MyD88 was found to be related to the interleukin-1

receptor (IL-1R) family including Toll/TLR protein, which is

homologous to that of IL-1R [11]. Finally, it has been

demonstrated that signaling via TLR4 employs MyD88 as an

adaptor protein, that induces activation of NFkB through

interleukin 1 receptor-associated kinase (IRAK) kinase and TNF

receptor-associated factor 6 (TRAF6) [12]. Such activation is

essential for the induction of innate immune responses.

The purpose of this study was to test the physiological role of

MyD88 in the state of metabolic disease using MyD88-deficient

mice. As saturated fatty acids-induced activation of TLR4 is

involved in enhancing metabolic disease, MyD88-deficient mice

would be expected to attenuate obesity-associated diabetes.

However, contrary to expectations, we found that these mice

exhibit severe diabetic phenotype.

Results

MyD88-deficiency exacerbates diabetes without
affecting body weight or adiposity

To assess whether MyD88 is involved in glucose metabolism, we

performed the glucose tolerance test (GTT) using age-matched

systemic MyD88-deficient and control mice. First, we measured

fasted blood glucose levels and found them to be increased in

MyD88-deficient mice on either a normal chow diet (NCD) or a

high-fat diet (HFD) (Figure 1A–D). In addition, GTT markedly

raised blood glucose levels in MyD88-deficient mice compared to

the controls (Figure 1A–D). The increase in blood glucose differed
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more between the MyD88-deficient and control mice fed the HFD

(Figure 1A–D). However, no genotype-dependent differences in

body weight gain (Figure 2AB) or visceral fat content (Figure 2CD)

were observed in the NCD or HFD-fed state, suggesting that the

difference in circulating glucose levels was not dependent on obesity.

In addition, no differences in food intake (Figure 2EF) or locomotor

activity (Figure 2G) were observed in either genotypes. These results

are unexpected because impaired function/expression of TLR4 has

been reported to protect against obesity-associated diabetes [3–5].

Consequently, we measured circulating levels of insulin and leptin

by ELISA, and found them to be elevated in MyD88-deficient mice

(Figure 3AB), suggesting type 2 diabetes.

Increased circulating level of cholesterol and JNK
activation in MyD88-deficient mice fed with HFD

As the activation of c-Jun amino-terminal kinase (JNK) in the

liver plays a critical role in the development of diabetes [13,14], we

next examined whether levels of phosphorylated JNK are altered

in MyD88-deficient mice. Consistent with a previous report [14],

we observed an increase in the phosphorylation of JNK in normal

mice fed a HFD (Figure 4A). To our surprise, the increase was

drastically enhanced in MyD88-deficient mice on the HFD

(Figure 4A). The result was unexpected because MyD88-deficient

mice are resistant to the LPS-induced activation of JNK [8].

To identify the mechanisms linking JNK’s activation in MyD88-

deficient mice fed the HFD, we examined the level of tumor

necrosis factor-a (TNF-a) in the liver, as TNF-ais involved in the

activation [15]. The level of mRNA encoding TNF-awas elevated

in HFD-fed control mice (Figure 4B). However, this increase was

markedly inhibited in MyD88-deficient mice on the HFD

(Figure 4B). Thus, TNF-aexpression is induced via a MyD88-

dependent pathway in mice fed a HFD. Moreover, TNF-amay not

be involved in activating JNK in such mice. To identify the factor

responsible for activating JNK in MyD88-deficient mice, we next

Figure 1. MyD88-deficiency increases the risk of diabetic mellitus. Both genotypes were fed a NCD until 6 weeks of age and then fed a NCD
or HFD for 10 weeks. Mice were fasted for 16 h (from 18:00 to 10:00) and subjected to a glucose tolerance test (GTT). We measured circulating levels
of glucose at the time indicated (0.5-4 h). (A) NCD-fed mice. (B) HFD-fed mice. (C) NCD- and HFD-fed mice, which were fasted for 16 h. (D) Glucose
levels after GTT (2 h time point) of each genotype of mice fed the NCD or HFD. n = 6,12/group. *p,0.05, **p,0.01, ***p,0.001 v.s. control mice.
doi:10.1371/journal.pone.0012537.g001
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analyzed serum cholesterol levels because cholesterol can induce

JNK’s activation [16]. We observed an increase in cholesterol

(total, free and esterified cholesterol) levels in HFD-fed normal

mice and a marked increase in MyD88-deficient mice fed the

HFD (Figure 5A–C). We also found that low density lipoprotein

receptor (LDLR) was drastically up-regulated in the liver sample of

MyD88-deficient mice fed the HFD (Figure 5D), suggesting

positive feedback regulation against the increased circulating levels

of cholesterols to remove them [17,18]. Interestingly, transcrip-

tional level of HMG-CoA reductase, the rate-limiting enzyme of

cholesterol biosynthesis [19], was up-regulated in the liver sample

of MyD88-deficient mice fed the HFD (Figure 5E). Thus, the

increased level of cholesterol observed in theses mice would be due

to the induction of HMG-CoA reductase. Moreover, these results

suggest that the increased levels of cholesterol in MyD88-deficient

mice to be responsible for the activation of JNK.

Liver dysfunction in MyD88-deficient mice fed with HFD
JNK’s activation results in apoptosis [20]. Thus, to assess

whether these differences would result in liver dysfunction, we next

measured cleavage of poly (ADP-ribose) polymerase (PARP), an

indicator of the apoptotic state, in liver samples of both genotypes

of NCD and HFD-fed mice. As shown in Figure 6A, we found an

increase in PARP cleavage in MyD88-deficient mice fed the HFD.

Figure 2. MyD88-deficiency did not affect body weight, adiposity, food intake or locomotor activities. (A) Body weight gain was
measured in control and MyD88-deficient mice. Both genotypes were fed a NCD until 6 weeks of age and then fed a NCD or HFD for 10 weeks. NCD
(n = 21–29) and HFD (n = 20–26)-fed mice were examined at the age of 16 weeks. (B) Control and MyD88-deficient mice were fed the HFD from the
age of 6 weeks and body weight gain was measured every week (10 weeks). (n = 16–23) (C) Visceral fat was measured at the age of 18 weeks. NCD
(n = 8) HFD (n = 6–8) (D) Typical photograph of each genotype of mice fed the NCD or HFD. (EF) Fifteen hours (From19:00 to 10:00) of food intake
was measured in each genotype of mice fed the NCD or HFD at the age of 16 weeks. n = 11–13/group (G) Locomotor activities (5 min) were
measured in each genotype of mice fed the NCD or HFD at the age of 16 weeks. n = 11–14/group.
doi:10.1371/journal.pone.0012537.g002
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Furthermore, the serum concentration of alanine aminotransferase

(ALT), a marker of hepatic injury, was significantly elevated in

MyD88-deficient mice fed the HFD compared with normal mice

(Figure 6B). Together, these findings indicate that the diabetic

phenotype observed in Myd88-deficient mice was due at least in

part to increased apoptosis in the liver possibly mediated via

hypercholesterolemia.

Discussion

Increasing evidence indicate the link among obesity, diabetes

and inflammatory pathways in developing metabolic diseases. As

saturated fatty acids-induced activation of TLR4 is involved in

enhancing metabolic disease, we expected that MyD88 would

exacerbate metabolic disease. However, to our surprise, we found

that MyD88 is involved in protecting against diabetes mellitus. We

found that MyD88-deficient mice fed with high fat diet develop

severe diabetes. From these observations, we are next interested in

investigating mechanisms of diabetes observed in MyD88-

deficiency. As TNF-ais involved in the development of insulin

resistance [21–23] and that MyD88 is involved in activating

inflammatory signals [8,24], we measured liver TNF-alevels in

these mice. We found that HFD-induced induction of this cytokine

was impaired in MyD88-deficient mice. Collectively these results

indicate that TNF-ais not involved in diabetes observed in

MyD88-deficient mice. Then, what is the responsible factor

exacerbating diabetes in MyD88 deficiency? In the present study,

we investigated possible involvement of cholesterol in the

development of such phenotype and found that circulating

cholesterol levels as well as liver LDLR and HMG-CoA levels

were drastically increased in MyD88-deficient mice fed a HFD.

Elevated levels of cholesterol will increase apoptosis [25]. We

observed JNK activation and liver dysfunction (PARP cleavage

and increase in ALT levels) in MyD88-deficient mice fed a HFD.

Figure 3. Increased circulating levels of insulin and leptin in MyD88-deficient mice. (A) Plasma insulin was measured in each genotype fed
the NCD (n = 9–10) or HFD (n = 10–15) at the age of 16 weeks. *p,0.05 (B) Plasma leptin was measured in each genotype fed the NCD (n = 9–16) or
HFD (n = 11–12) at the age of 16 weeks. **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0012537.g003

Figure 4. JNK activation without affecting TNF-a levels in MyD88-deficient mice fed the HFD. (A) Western blot analysis of p-JNK in liver
samples at the age of 18 weeks. Each genotype of mice was fed the NCD (n = 7) or HFD (n = 6–8). ***p,0.001 (B) mRNA level of TNF-a was measured
in liver samples at the age of 18 weeks. (n = 6–8) **p,0.01.
doi:10.1371/journal.pone.0012537.g004
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Figure 5. MyD88-deficient mice fed the HFD increases circulating level of cholesterol. (A–C) Serum cholesterol concentrations were
measured at the age of 18 weeks. (A) Free cholesterol, (B) esterified cholesterol and (C) total cholesterol levels. Each genotype of mice was fed the
NCD (n = 8) or HFD (n = 6–7). **p,0.01, ***p,0.001 (DE) mRNA levels of LDLR and HMG-CoA reductase (HMG-CoA R) were measured in liver samples
at the age of 18 weeks. (n = 6–8) *p,0.05, ***p,0.001.
doi:10.1371/journal.pone.0012537.g005

Figure 6. MyD88-deficient mice fed the HFD developed liver dysfunction. (A) Western blot analysis of cleaved PARP in liver samples at the
age of 18 weeks. Each genotype of mice was fed the NCD (n = 7) or HFD (n = 6–8). **p,0.01 (B) Serum ALT levels were measured at the age of 18
weeks. Each genotype of mice was fed the NCD (n = 8) or HFD (n = 6–7). **p,0.01.
doi:10.1371/journal.pone.0012537.g006
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Thus, these results suggest that cholesterol may be involved in

diabetes observed in MyD88-deficient mice. It would be useful to

analyze the double knockout mice for MyD88 and cholesterol

related gene such as HMG-CoA reductase to conform the results

more directly.

Intriguingly, the deletion of MyD88 restricted to the central

nervous system had been reported to protect against HFD-induced

impairment of glucose tolerance [26]. Taking into account the

present contrasting finding that a systemic deficiency of MyD88 in

mice exacerbated the HFD-induced impairment of glucose

tolerance, we speculate that the physiological role of MyD88 differs

among tissues expressed. Considering the role of liver on glucose

homeostasis, the important role of liver JNK or IkB kinase-b in the

development of diabetes has been reported [27–29]. On the other

hand, the important role of central nervous system (CNS) on

regulation of glucose homeostasis has been suggested [30].

Interestingly, although insulin action at CNS and peripherally can

both reduce glucose levels, peripheral action of insulin is an anabolic

(stimulates nutrient storage), which contrast with its catabolic

function at CNS (inhibits food intake and stimulates energy

expenditure)[31]. Thus, the metabolic action of CNS and peripheral

organs would be different. It is therefore interesting subject to further

analyze the pathophysiological role of MyD88 in the brain v.s.

periphery. In addition, it will be needed to investigate what type of

cell is responsible for diabetes observed in MyD88-deficiency. The

use of conditional knockout mouse (such as liver-specific knockout

mouse) would be useful to answer these questions. Importantly,

MyD88-deficiency in human subjects has been reported [32]. At

present, it is unknown whether MyD88-deficient human subjects are

prone to diabetes and it will be an open questions.

The present results indicate an unanticipated important link

between MyD88 and the development of diabetes mellitus. Our

findings would provide a molecular basis for understanding

diabetes and developing a novel pharmacological treatment

targeting MyD88.

Materials and Methods

Animals
Adult male C57BL/6CrSlc mice (wild type, WT) and MyD88-

deficient mice (MyD88 2/2) mice were used in the present study.

The MyD88-deficient mice (C57BL/6 Cr Slc back ground) were

kindly provided by Dr. Shizuo Akira (Department of Host defense,

Research Institute for Microbial Disease, Osaka University). The

C57BL/6 Cr Slc control mice were obtained from SLC

(Hamamatsu, Japan). Mice were maintained in a room at 22–

24uC under a constant day-night rhythm and given food and

water, ad libitum. They were fed either a normal chow diet (NCD:

MF diet; Oriental Yeast, Tokyo, Japan) or a high-fat diet (HFD:

D12492; Research diets, NJ). The NCD and HFD contained 5.3%

and 35% fat, respectively. All animal experiments were carried out

in accordance with the NIH Guide for Care and Use of

Laboratory Animals and approved by the animal care and use

committee at Hiroshima University (Permit number: A10-41).

Glucose Tolerance Test
The Glucose Tolerance Test was performed with mice fasted

16 h (18:00–10:00). After measuring the fasted blood glucose level,

we injected glucose (2 g/kg, 15 ml/kg) through the intraperitoneal

route. Blood glucose levels were measured after 0.5, 1, 2 and 4 h

using NIPRO Freestyle Freedom (Osaka, Japan).

Body Weight
Body weight was measured once a week at 16:00–17:00.

Food intake
Both genotypes of mice were housed individually prior to the

experiment. Food intake was measured at the end of the study

period of 16 weeks.

Locomotor activities
An open field locomotor test was performed to monitor

locomotor activities. Mice were placed at the centre of a cubic

chamber (48648648 cm). The animal’s horizontal movements

(5 min) were measured by automatic actography (SCANET MV-

10; Melquest, Toyama, Japan). The test room was dimly

illuminated with indirect white lighting.

Measurement of insulin and leptin levels
Blood samples (including EDTA) were taken by decapitation and

centrifuged (4uC, 3,000 rpm, 15 min) to obtain plasma samples.

Plasma insulin (Morinaga; Tokyo, Japan) and leptin (R & D systems;

MN) levels were measured by ELISA according to the manufac-

turer’s guidelines.

Measurement of cholesterol and ALT levels
Blood samples were taken by decapitation and stood for 2 hours

at room temperature. The samples were then centrifuged (4uC,

3,000 rpm, 15 min) to obtain serum. Serum cholesterol and ALT

levels were measured at SRL, Inc. (Tokyo, Japan). Cholesterol levels

were measured by HDAOS and DAOS methods. ALT levels were

measured by the UV method.

Preparation of liver samples
Mice were sacrificed by decapitation and the liver was quickly

removed and rapidly dissected on an ice-cold plate. The samples

were snap-frozen in liquid nitrogen and stored at 280uC prior to

use.

Western blot analysis
Western blotting was performed as described previously [33].

Liver samples were homogenized with 100 revolutions in a glass

homogenizer containing 10 mM HEPES–NaOH (pH 7.5),

150 mM NaCl, 1 mM EDTA, 1 mM Na3VO4, 10 mM NaF,

10 mg/ml aprotinin, 10 mg/ml leupeptin, 1 mM PMSF and 1%

NP-40. The samples were then centrifuged at 20,630 g for 45 min

at 4uC and the supernatants were collected. Laemmli buffer was

added to the samples and boiled for 3 min. The samples were

fractionated by SDS-PAGE (100–200 mg/lane) and transferred at

4uC to nitrocellulose membranes. The membranes were blocked

and incubated with an anti-phospho (Thr183/Tyr185)-JNK (Cell

signaling; 1:1,000), anti-PARP (Santa Cruz Biotechnology;

1:1,000) or anti-GAPDH (Chemicon; 1:1,000) antibody at 4uC.

The membranes were washed and then incubated with an anti-

horseradish peroxidase-linked antibody (GE Healthcare). Peroxi-

dase was detected using an ECL system (GE Healthcare). The

density of bands was measured using Image J 1.37v (Wayne

Rasband, NIH) software.

Gene expression analysis
Tissue samples were homogenized at 10,000 rpm using a

polytron homogenizer in TriPure Isolation Reagent (Roche

Diagnostics) and total RNA was isolated according to the

manufacturer’s protocol. cDNA was synthesized from 2 mg of

total RNA by reverse transcription using 25 U of Superscript

Reverse Transcriptase III(Invitrogen) and 0.25 mg of Oligo(dt)12–

18 primer (Invitrogen) in a 20-ml reaction mixture containing First-

Strand Buffer (Invitrogen), 1 mM dNTP mix, 10 mM DTT, and

MyD88 and Diabetes
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20 U of RNaseOUT Recombinant Ribonuclease Inhibitor

(Invitrogen). Total RNA and the Oligo (dt) 12–18 primer were

pre incubated at 70uC for 10 min prior to the reverse

transcription. After incubation for 1.5 h at 46uC, the reaction

was terminated by incubating samples for 15 min at 70uC.

For PCR amplification, 1.2 ml of cDNA was added to 10.8 ml of

a reaction mix containing 0.2 mM of each primer, 0.2 mM of

dNTP mix, 0.6 U of Taq polymerase (Roche Diagnostics), and

reaction buffer. PCR was performed in a DNA Thermal Cycler

(MJ Research, PTC-220). The following primer sequences were

used: TNF-a; upstream, 59–cac gtc gta gca aac cac caa-39, and

downstream, 59-ccc att ccc ttc aca gag caa-39, LDLR; upstream,

59–tcc aat caa ttc agc tgt gg-39, and downstream, 59-gag cca tct agg

caa tct cg-39, HMG-CoA reductase; upstream, 59–agc ttg ccc gaa

ttg tat gtg-39, and downstream, 59-tct gtt gtg aac cat gtg act tc-39,

GAPDH; upstream, 59-aaa ccc atc acc atc ttc cag-39 and

downstream, 59-agg ggc cat cca cag tct tct-39. The PCR products

(10 ml) were resolved by electrophoresis in an 8% polyacrylamide

gel in TBE buffer. The gel was stained with ethidium bromide and

photographed under ultraviolet light. The density of bands was

measured using Image J 1.37v (Wayne Rasband, NIH) software.

Statistics
Results are expressed as the mean 6 S.E.. Statistical analyses

were performed using Student’s t-test.

Acknowledgments

We thank Dr Kiyoshi Takeda (Laboratory of Immune Regulation,

Department of Microbiology and Immunology, Osaka University, Japan)

for generously donating the MyD88-deficient mice. The authors thank Dr.

Yosuke Yamawaki for technical advice. Animal study was supported by the

Institute of Laboratory Animal Science (Hiroshima university).

Author Contributions

Conceived and designed the experiments: TH KO. Performed the

experiments: TH SY SM. Analyzed the data: TH SY KO. Contributed

reagents/materials/analysis tools: SA. Wrote the paper: TH.

References

1. Hotamisligil GS, Erbay E (2008) Nutrient sensing and inflammation in
metabolic diseases. Nat Rev Immunol 8: 923–934.

2. Lee JY, Sohn KH, Rhee SH, Hwang D (2001) Saturated fatty acids, but not

unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated
through Toll-like receptor 4. J Biol Chem 276: 16683–16689.

3. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, et al. (2006) TLR4 links
innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:

3015–3025.

4. Poggi M, Bastelica D, Gual P, Iglesias MA, Gremeaux T, et al. (2007) C3H/HeJ
mice carrying a toll-like receptor 4 mutation are protected against the

development of insulin resistance in white adipose tissue in response to a high-
fat diet. Diabetologia 50: 1267–1276.

5. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM,
et al. (2007) Loss-of-function mutation in Toll-like receptor 4 prevents diet-

induced obesity and insulin resistance. Diabetes 56: 1986–1998.

6. Suganami T, Mieda T, Itoh M, Shimoda Y, Kamei Y, et al. (2007) Attenuation
of obesity-induced adipose tissue inflammation in C3H/HeJ mice carrying a

Toll-like receptor 4 mutation. Biochem Biophys Res Commun 354: 45–49.
7. Schulthess FT, Paroni F, Sauter NS, Shu L, Ribaux P, et al. (2009) CXCL10

impairs b cell function and viability in diabetes through TLR4 signaling. Cell

Metab 9: 125–139.
8. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of

MyD88-deficient mice to endotoxin. Immunity 11: 115–22.
9. Muzio M, Ni J, Feng P, Dixit VM (1997) IRAK (Pelle) family member IRAK-2

and MyD88 as proximal mediators of IL-1 signaling. Science 278: 1612–1615.
10. Lord KA, Hoffman-Liebermann B, Liebermann DA (1990) Complexity of the

immediate early response of myeloid cells to terminal differentiation and growth

arrest includes ICAM-1, Jun-B and histone variants. Oncogene 5: 387–396.
11. Hultmark D (1994) Macrophage differentiation marker MyD88 is a member of

the Toll/IL-1 receptor family. Biochem Biophys Res Commun 199: 144–146.
12. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, et al. (1998)

MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling

pathways. Mol Cell 2: 253–258.
13. Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, et al. (2004)

Modulation of the JNK pathway in liver affects insulin resistance status. J Biol
Chem 279: 45803–45809.

14. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, et al. (2002) A

central role for JNK in obesity and insulin resistance. Nature 420: 333–336.
15. Westwick JK, Weitzel C, Minden A, Karin M, Brenner DA (1994) Tumor

necrosis factor a stimulates AP-1 activity through prolonged activation of the c-
Jun kinase. J Biol Chem 269: 26396–26401.

16. Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC, et al.
(2005) Free cholesterol-loaded macrophages are an abundant source of tumor

necrosis factor-a and interleukin-6: model of NF-kB- and map kinase-dependent

inflammation in advanced atherosclerosis. J Biol Chem 280: 21763–21772.

17. Brown MS, Kovanen PT, Goldstein JL (1981) Regulation of plasma cholesterol

by lipoprotein receptors. Science 212: 628–635.

18. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, et al. (1993)

Hypercholesterolemia in low density lipoprotein receptor knockout mice and its

reversal by adenovirus-mediated gene delivery. J Clin Invest 92: 883–893.

19. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature

343: 425–430.

20. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell

103: 239–252.

21. Lang CH, Dobrescu C, Bagby GJ (1992) Tumor necrosis factor impairs insulin

action on peripheral glucose disposal and hepatic glucose output. Endocrinology

130: 43–52.

22. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of

tumor necrosis factor-a: direct role in obesity-linked insulin resistance. Science

259: 87–91.

23. Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A (1993) Tumor

necrosis factor-a suppresses insulin-induced tyrosine phosphorylation of insulin

receptor and its substrates. J Biol Chem 268: 26055–26058.

24. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, et al. (1998)

Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-

mediated function. Immunity 9: 143–50.

25. Tabas I (2002) Consequences of cellular cholesterol accumulation: basic

concepts and physiological implications. J Clin Invest 110: 905–911.

26. Kleinridders A, Schenten D, Könner AC, Belgardt BF, Mauer J, et al. (2009)

MyD88 signaling in the CNS is required for development of fatty acid-induced

leptin resistance and diet-induced obesity. Cell Metab 10: 249–259.

27. Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, et al. (2004)

Modulation of the JNK pathway in liver affects insulin resistance status. J Biol

Chem 279: 45803–45809.

28. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, et al. (2005) IKK-b links

inflammation to obesity-induced insulin resistance. Nat Med. 11: 191–198.

29. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, et al. (2005) Local and

systemic insulin resistance resulting from hepatic activation of IKK-b and NF-k
B. Nat Med. 11: 183–190.

30. Sandoval DA, Obici S, Seeley RJ (2009) Targeting the CNS to treat type 2

diabetes. Nat Rev Drug Discov. 8: 386–398.

31. Woods SC, Lotter EC, McKay LD, Porte D, Jr (1979) Chronic intracerebro-

ventricular infusion of insulin reduces food intake and body weight of baboons.

Nature 282: 503–505.

32. von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, et al. (2008) Pyogenic

bacterial infections in humans with MyD88 deficiency. Science 321: 691–696.

33. Hosoi T, Sasaki M, Miyahara T, Hashimoto C, Matsuo S, et al. (2008)

Endoplasmic reticulum stress induces leptin resistance. Mol Pharmacol 74:

1610–1619.

MyD88 and Diabetes

PLoS ONE | www.plosone.org 7 September 2010 | Volume 5 | Issue 9 | e12537


