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Chapter 1

Introduction

The theme of this dissertation is the problem of pattern classification, especially hi-
erarchical classification approach for biological signals. Inspired by combining models
such as boosting, tree-based models, and conditional mixture models, novel probabilis-
tic neural ﬁetworks (PNNs) were developed, not only to improve the accuracy of the

classification, but also for better estimation of the structure of the classification model.

1.1 Background

In the field of pattern classification, various methods have been applied for image clas-
sification, speech recognition, and data mining. This dissertation focuses primarily
on neural networks (NNs), first proposed by McCulloch [1]. The field of NNs has
its origins in attempts to find mathematical representations of processing in biologi-
cal systems [1]-[7], however, from the perspective of practical applications of pattern
recognition, it is considered that biological realism can impose unnecessary constraints.
Therefore, various NNs without biological properties have been proposed. For exam-
ple, the multilayer network, a type of NN, has proven to be of great practical value [8].
Although single perceptrons can only express a linear decision surface, multilayer net-

works trained from given data are capable of expressing a variety of nonlinear decision
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surfaces. NNs have proven to be a promising classification tool because their learning
ability allows them to find optimum non-linear relationships between classes, and fea-
ture patterns from training data sets. For example, the back propagation algorithm
has proven to be surprisingly successful for practical problems [9], such as learning to
recognize handwritten characters and spoken words [10], [11]. Although the approxi-
mation properties of feed forward networks have been widely studied and found to be
applicable, to effectively use NNs as the classifiers for applications, several problems,

such as the choice of network structure, learning convergence, and local minima, should

be solved [12]-[14].

The PNNs, which estimate the probability density function (pdf) of patterns, have
proven to be an efficient and important method of pattern classification [15]-[21]. For
realization of the PNNs, the semi parametric estimation approximates the underlying
distribution with mixture models that consist of a number of component functions,
usually a Gaussian model, since mixture models have a flexible structure that can
represent various distributions, and include a set of parameters to specify particular

distributions.

In particular, Tsuji et al. [21] proposed a feed forward PNN, a log-linearized Gaus-
sian mixture network (LLGMN) based on the Gaussian mixture model (GMM) and a
log-linear model (see Appendix A for details). Although the weights of the LLGMN
correspond to a nonlinear combination of GMM parameters, such as mixture coeffi-
cients, mean vectors, and covariance matrices, constraints on the parameters in the
statistical model are relieved in the LLGMN. Therefore, a simple back propagation
learning algorithm can be derived, and the LLGMN parameters are trained according
to a criterion of maximum likelihood (ML) [22]. The LLGMN has been successfully ap-

plied to pattern classification of bioelectric signals, e.g., electromyograms (EMG) [23]
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and electrocardiograms (EEG) [21], [24], and has been used to develop human-interface
applications, such as in prosthetic devices and EMG-based pointing devices and so on
[25]-[32]. Similarly, other classification methods with high classification performance
(over 95%) were proposed, and various human-interface using these proposed methods
were developed|33]-[35].

Although the LLGMN has higher classification performance than other NNs, LL-
GMN and LLGMN-based classification methods [36]-[38] suffer from some inherent

limitations when they deal with practical signals, such as bioelectric signals.

e To estimate LLGMN parameters, a Gaussian model number of each class must
be fixed beforehand. When the Gaussian model number is fixed at an unsuitable
value, the LLGMN training cannot avoid convergence at a local minimum for
some initial weights and training data. Therefore, better classification perfor-

mance requires estimation of an optimum LLGMN structure.

e In a training procedure, it is assumed that all data belong to one of the classes

corresponding to PNN outputs (see the following equation).

P(cz) > o, (1.1)

> P(cz) = 1, (1.2)

c=1
where c is a class that categorizes the data. Therefore, to classify data correctly,
training data must consist of data generated from all classes. However, in clas-
sification for some practical applications it could be impossible to measure the
complete data used as training-data, because the number of predefined classes
for classification is usually smaller than C and there are some data which belong

to hidden classes and cannot be prepared beforehand.
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e In general, performing pattern classification requires an understanding of rela-
tionships between feature vectors (e.g., biological signals) and corresponding class
labels (e.g., motions of a measured subject). However, it is difficult to measure
signals in the real world without various noises. In addition, in the case of biologi-
cal signals, the difference between classes can be ambiguous, such as in biological
signals of elderly (or handicapped) people, and reliability of available class la-
bels could be questionable. Consequently, classification accuracy may decrease

significantly.

1.2 Purpose

This dissertation aims to improve the performance of the PNNs by combining several
PNNs, rather than using a PNN in isolation. This dissertation proposes novel PNNs,
the core of which is based on the idea of combining models, such as the boosting
approach and tree-based models. Moreover, learning algorithms for some proposed
PNNs are proposed, in which ambiguous or unlabeled training data can be successfully
discriminated by unsupervised learning. The proposed algorithms can eliminate unex-
pected input signals, those not belonging to a predefined class corresponding to a PNN
output, from the classification process. Some methods are also discussed for apply-
ing PNNs to human-machine interfaces, using biological signals for improved system

performance.

1.3 Related Works
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1.3.1 Tree-Based Models

There are various simple, but widely used models that work by partitioning the input
space into cuboid regions, whose edges are aligned with the axes, and then assigning
a simple model (e.g., a constant, linear classification) to each region [39]. These can
be viewed as a model combination method in which only one model is responsible for
making predictions at any given point in the input space. The process of selecting a
specific model, given the input data, can be described by a sequential decision making
process, corresponding to traversal of a binary tree (one that splits into two branches
at each node). Classification and regression trees (CART) [39], ID3 [40] and C4.5 [41]
are well-developed techniques, which are the major framework of tree-based models.
However, there are some problems ‘With tree-based methods using a simple model at
each non-terminal node [42]. One problem is that splits are aligned with the axes or
linear splits of the feature space. If the dimension of data is large, separating some
classes requires a large number of splits of feature spaces, compared to other splitting
methods. Sirat et al. proposed a neural tree (NT) using simple NNs (the perceptron of
Rosenblatt) as classification models at each non-terminal node of the tree structure [43].
Although a NT can consist of a few classifiers compared to a simple model, classification
performance using perceptrons is not high for the classification of complex data, such

as biological data.

1.3.2 Boosting Approach

There has also been a growing interest in a boosting approach for the construction of
classification systems with simple classifiers [44]-[47]. The performance of a combined
classifier is significantly better than that of any of the base classifiers. Adaptive boost-

ing (AdaBoost) is the most widely used form of boosting algorithm. Boosting can yield
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good results, even if the base classifiers have a performance that is only slightly better
than random([48]. Such base classifiers are called weak classifiers. In addition, this
approach eliminates the need for evaluating unnecessary models because the algorithm

of addition classifiers determines whether to add a classifier or not.

1.3.3 TUnsupervised Learning and Estimating the Number of
Classes

Some clustering methods have been proposed to identify groups or clusters of data in
input space. The K-means algorithm [49] identifies a partition of the input space that
optimizes (usually locally) a given clustering error, such as the sum of the squared
distance. The self organizing map (SOM) [50], which is one of the major cluster-
ing methods, is a high performance clustering method, and can project data from a
high-dimensional input space down to two or three dimensions for visualization. Var-
ious examples of clustering signals measured in the real world, using an SOM have
been reported to show the practicality of SOM. Some of the hierarchical clustering is
also a type of clustering method. There are two types of methods for constructing a
hierarchical tree: divisive (top down) and agglomerative (bottom up) clustering. How-
ever, a problem accompanying the use of a clustering algorithm is the choice of the
number of desired output clusters. For clustering data generated from complicated
distributions, many of the aforementioned methods fail to make an interpretable and
reasonable partition. These methods either partition data from different classes into
one class, or classify data from one class into several different classes adversely, even
if the true number of classes is known beforehand. To avoid such limitations, and to
perform clustering with a sufficient number of classes for complicated data, a variety of
clustering algorithms have been proposed. In these methods, in particular, statistical

models (e.g., GMM) are assumed to model clusters, and the parameters of the statis-
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tical model for each class are estimated correspondingly [51], [53]. A method proposed
in literature [51], prepares more models than necessary beforehand, and modifies them
until the number of statistical models is identical with the number of desired classes.
On the other hand, a method proposed in literature [53] continues increasing the num-
ber of models, and stops when the desired (or suitable) number of classes is reached.
However, the more complicated the models are, the more parameters are required to be
estimated during the clustering process. Thus, much more training data is required. In
addition, other methods using SOM have been proposed by Terashima et al. Balanced
interactive reducing and clustering using hierarchies (BIRCH) [54], which is a hierar-
chical clustering method that constructs a hierarchical classification tree using a linear
classification model at each non-terminal node. The number of terminal nodes of the
constructed tree corresponds to the number of estimated classes. In these methods, this
problem is solved by setting some parameters constant, and the learning concentrates
on the remaining parameters. Although these methods succeed with problems where
the assumption fits the data characteristics well, clustering results cannot always be
satisfying for complicated data when a significant difference exists between the true

and assumed distributions.

1.3.4 Elimination of Unexpected Data

When classifying using the posterior probabilities of each class, it is assumed that all
data belong to predefined classes in order to calculate the posterior probabilities from
Bayes’ theorem. However, the data not in those predefined classes may exist in the data
from the real world. To deal with this problem, one class classification method using
a Support Vector Machine (SVM) [55] to eliminate outlier data, has been proposed
[56]. In this method, the radial basis function serves as the SVM kernel. Although this

method removes outlying data that are different from the given training data, there is
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no report on multi-class classification using this approach, and it takes a long time to

determine a model’s fixed parameters through trial and error.

1.4 Outline of Thesis

This dissertation consists of two parts. The first part focuses on a network archi-
tecture based on the hierarchical neural tree, and an automatic construction algorithm
for the network structure and the PNN learning algorithm used as a classifier for the
network. The second part discusses applications of PNNs in the context of a human-
machine interface, using biological signals.

The first part comprises Chapters 2 to 5. Chapter 2 introduces a novel hierarchical
classification method, called H-LLGMN, which uses a PNN as a classifier at each non-
terminal network node. The proposed method automatically constructs a hierarchical
tree by combining PNNs from given data, and can achieve a suitable network struc-
ture for network validation to improve the generalization ability. Experiments with
biological signals prove the feasibility of the proposed method.

In Chapter 3, a pattern classification method with a boosting approach is proposed
to achieve high classification performance using a combined weak classifier based on
LLGMNs. The network structure and its decision rules are discussed as well. Then,
the learning algorithm of the hierarchical classifier simplified H-LLGMN is proposed in
Chapter 3. This method can automatically construct a suitable classification network
and each hierarchical classifier is based on a boosting approach from given training
data. Simulation experiments are performed to compare the proposed method with
other classification methods. Finally, pattern classification experiments for biological

signals are conducted. These experiments indicate that the proposed method can
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successfully construct a suitable network for classification based on artificial data and

real biological signals.

Chapter 4 shows an improved learning algorithm for pattern hierarchical classifica-
tion, based on an unsupervised learning algorithm for clustering. First, an unsupervised
learning law for the LLGMN is proposed. The construction algorithm using the unsu-
pervised learning law can estimate the number of terminal nodes corresponding to the
number of classes according to statistical information obtained only from the training
data. Furthermore, unnecessary splits in the classification tree can be avoided with a
pruning rule based on a threshold of the ambiguity of the LLGMN outputs and the
amount of training data at each non-terminal node. In this method, the classifica-
tion tree makes binary splits at each non-terminal node. In numerical simulations,
the proposed method proves superior to conventional methods in its estimation of the
number of classes. Pattern classification experiments for EMG signals are conducted,
and indicate that the proposed method is more effective in claSsifying data with similar

features, compared to a traditional supervised learning algorithm.

Chapter 5 proposes a novel pattern classification method using the prior distribution
of training data and PNNs, such as the LLGMN. Prior distribution based on the
GMM allows the proposed method to remove unnecessary data, not assumed from
the training procedure. In addition, the structure of the prior distribution can be
automatically estimated from the training data. This chapter adopts the LLGMN
for classification. After elimination, the LLGMN classifies input data into predefined
classes. This procedure enables the proposed method to avoid classifying unexpected
data. The validity of the proposed method is shown with the classification results of

artificial data and EMG signals.

Chapter 6 constitutes the second part of this dissertation. It mainly focuses on
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the development of a new human-machine interface for text input. It also focuses on
improving the selection performance of a control system for electric home appliances
called a Bio-Remote.

Finally, Chapter 7 concludes this dissertation and gives some challenges and future

works.



Chapter 2

A Tree-based Hierarchical
Probabilistic Neural Network

2.1 Introduction

In this chapter, a novel hierarchical probabilistic neural network with a tree structure
(Hierarchical Log-Linearized Gaussian Mixture Network, H-LLGMN) is proposed. By
using LLGMNs as PNNs in partitions at each non-terminal node, the H-LLGMN is
expected to discriminate with consideration to individual user variation and repro-
ducibility uncertainty, signals measured from the human body. The generalization
ability of the H-LLGMN can be considered for cross-validation when constructing the
metaclasses of the hierarchical tree.

This chapter is organized as follows: Section 2.2 introduces the H-LLGMN. Section
2.3 presents the experiments on shape signals (one of the biological signals) of the

proposed method. Finally, the last section summarizes the chapter.

2.2 H-LLGMN

In this section, details on the construction algorithm of a hierarchical tree for classi-
fication based upon LLGMNs are explained. The structure of the proposed network

is shown in Fig. 2.1. During the construction procedure of the classification tree,

11
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metaclasses are created from predefined classes that cannot be accurately classified
by single LLGMN. Then, by adding LLGMNs for classification of each metaclasse,

accurate classification can be performed.

2.2.1 Construction Hierarchical Tree

The classification network starts from a single LLGMN i.e., the root node and a LL-
GMN is added at non-terminal nodes corresponding to metaclasses when not satisfying
the termination criterion. Finally, the training data is accurately classified by perform-
ing hierarchical classification. At each level of the classification tree, LLGMNs are used
to achieve classification of metaclasses corresponding to non-terminal nodes. Even for
data with complicated distributions, a suitable network structure for classification can
be estimated after this procedure. The construction algorithm for the hierarchical tree

is summarized as follows.

1. A LLGMN is trained using all data.

2. If the classifcation accuracy for the training and validation data is lower than the

threshold, metaclasses are created to integrate similar classes.

3. in order to classify data corresponding to metaclasses, LLGMNs are added and

traind by the corresponding data.

4. Steps 2 and 3 are repeated until the termination criterion is satisfied for all classes.

By performing these procedures, a suitable network structure for classification of com-

plicated data can be constructed. Next, the determination algorithm for constructing

metaclasses based upon the classification results is proposed.
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Fig. 2.1: Example of tree structure constructed by the proposed method.

2.2.2 Construction of Metaclass

In order to merge some classes into a metaclass, two criteria using the classification
accuracy of the training and validation data are utilized in the proposed method.

First, a set G is defined as
g={01)027"'aCK}) (21)

where K is the number of classes and C;(z = 1,2,--- , K) is the set of data belonging
to the ith class. A LLGMN is trained using G as the training data. To evaluate the

classification accuracy of the training data, the evaluation function is defined as

K
Z ,D(CJaCz)l

. i#j,j=1
B0 == peEer (2.2
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where D(C;) is the set of data belonging to class C; and D(C;, C;) is the set of data
that belongs to class C; and is classified into C; by the LLGMN. |D(C;,Cj)| is the
number of data points for D(C;,C;). If Fi(i) is greater than the threshold Th;, the
data classified into C; is set as the metaclass MC; = UJKZID(Cj, C;). This metaclass is
added into G and C; is removed from G. By merging some classes, which cannnot be
accurately classified, into metaclass, a new LLGMN for classifying the metaclass can
be added into classification tree.

Although necssary LLGMNSs are added to the classification tree based upon inad-
equate classification of the training data, when the hierarchy of tree grouws too large,
there is possibility of learning convergence and local minima because of the decrease in
the number of training data at each node. After the classification tree is constructed,
the addition of LLGMNs for classification accuracy generalization is conducted by us-
ing validation data. An evaluation function that considers the classification accuracy

of the validation data is defined as

D(C;, C;
Ri,j) = B (2:3)
If F,(4, ) is greater than threshold Th,, C; and C; are merged into a metaclass. This
metaclass is then added to G and C; and C; are removed from G. If all F, (4, j) are
smaller than Th,, this process meets the termination criterion and is stopped.

Through the above criteria, the model construction is performed based on complex-

ity of data and generalization of classification accuracy.

2.3 Hand Shape Classification Experiment

Motion classification experiments using finger-shaped signals were conducted to exam-
ine the performance of the proposed method. Three subjects (A, B and C) participated

in the experiments.



2.3. HAND SHAPE CLASSIFICATION EXPERIMENT 15

Motion number

%%
Ly

o £
Hand shape §
1

2 | 13 15
81 19 [ 20 25
5T 2% 57 29

Fig. 2.2: The 31 pattern of hand shape.

The subjects were asked to perform 31 types of motions (K = 31) shown in Fig.
2.2.

Five shape signal channels (L = 5) were rectified and digitized using an A/D
converter (sampling frequency: 167 Hz). Five shape sensors (Measurand Corp.) were
attached to each finger of the right hand. These sensors are 1-DOF measuring devices.

One ends of each sensors was fixed to the wrist of the subject, and while the other
ends were fixed to the tips of the five fingers. In addition, the sensors were passed
through tubes fitted to the fingers for measuring the angles of the fingers. In order
to fix the sensors to easy-to-use positions for each subject the exact positions of the

sensors were not specified. The measured signals S;(n) were normalized as follows to
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obtain a maximum value of 1:

_ Sn)—S*

Ny(n) = Sz — g5t

(2.4)

where S;* is the mean value of Syl(n) measured when the hand is relaxed, and S™%*
is the mean for the maximum value of each channel. The normalized signals were
compared with a prefixed threshold M, to determine whether the subject changed the
motion of the hand. In addition, the signals Ni(n)(I = 1,---,5) are normalized to

make the sum of all 5 channels equal to 1 as follows:

Ni(n)

zi(n) = (2.5)

T L
> N(n)
1=1
The values of the parameters thresholds for the metaclasses were Th, = 1.0 and Th, =
0.5; each class had 20 training data points and verification data. For each subject,
the proposed network is trained by using training data measured from corresponding
subject.

The mean values and standard deviations of the classification rates for three inde-
pendent trials are shown in Fig. 2.3. The number of validation data was 300 samples
per class. The number of constructed metaclasses for Subject A, B and C were 0, 2
and 7 respectively.

For the verification of the classification performance of the proposed method, single
LLGMN, single MLPs and NT using MLPs based on approach of proposed method
were used for the comparison. MLPs had four layers (two hidden layers), the units of
which were set as 5, 10, 10 and 31. Table 2.1 shows the classification results by the
proposed method and conventional methods. As shown in table, the proposed method
(H-LLGMN) can successfully estimate the suitable structure of network and achieves

higher discrimination rates than the conventional methods.
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Fig. 2.3: Discrimination results for three subjects.

Table 2.1: Discrimination accuracies of LLGMN, H-LLGMN, and MLPs.

Subjects A B C

LLGMN |95.6+£2.48 92.7+4.46 78.6£12.0
MLP  [82.1£2.90 52.14+8.36 56.0+9.12
H-LLGMN |95.6+2.48 95.0+2.36 86.0+6.69
MLP  |88.9+£3.22 78.6+8.53 73.2+8.17
[%]

Single NN

NT

Fig. 2.4 illustrates an example of the constructed classification tree for Subject C.
Each non-terminal node is labeled according to classes corresponding to metaclasses. In
this example, the number of estimated metaclasses is 7 ({C1, Cs1}, {C4, Cs}, {Cs, Co},
{C10,C11}, {Ci2,Cis}, {C1s,Cro} and {Cas,C2r}), where C; is the ith motion. Only
the metaclass {C}, C3;} is estimated based on the classification results of the training
data. The effectiveness of using validation data to construct the classification tree is

confirmed from the other metaclasses.
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The 1st layer

ééﬁb

The 2nd layer

ILLGMNI ILLGMN FGMNI ILLGMNI ILLGMNI |LLGMN| ILLGMNI

é&&é&éé@é@ééé@

O : Class
@ : Subclass made by learning data

D : Subclass made by verification data

Fig. 2.4: Constructed tree structure for subject C.

Fig. 2.5 shows the mean values and standard deviations of the signal patterns for
Motions 1 and 31. This figure shows that the patterns of Motion 1 are similar to those
of Motion 31. As a result, a single LLGMN cannot accurately identify the difference
between these patterns. However, the proposed method can estimate the distribution
of each type of motion accurately. Similarly, the patterns of Motions 8 and 9 overlap
(see Fig. 2.6); a more suitable structure can be constructed by the proposed method.
Since the distribution of signals belonging to Motion 9 are included to those belonging
to Motion 8, a metaclass is constructed due to decreases of classification accuracy
of validation data. Fig. 2.7 shows the mean values and standard deviations of the
classification rates of each type of motion for Subject C. From this figure, it can be
clarified that the classification rate is improved in particular for Motion 5, 13, 19 and

27 by the proposed method.

From these results, it is clear that by adding LLGMNSs to a network to estimate
the distribution, the proposed method can achieve more accurate classification than a

single LLGMN.
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Ch. 4 Ch. 3 Ch. 4 Ch.3

Motion 1 Motion 31

Fig. 2.5: Rader charts of hand gesture patterns of gesture 1 and gesture 31 for subject C.
The line indicates the mean value of each channel, and the regions of shade imply =1 S.D.

Motion 9

Fig. 2.6: Rader charts of hand gesture patterns of gesture 8 and gesture 9 for subject C.
The line indicates the mean value of each channel, and the regions of shade imply =1 S.D.
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Fig. 2.7: Discrimination results of finger motions for subject C.

In this chapter, a novel hierarchical probabilistic neural network with a tree structure

(H-LLGMN) was proposed in order to enable the discrimination for multiple classes of

biological signals. In the proposed method, the structure of the classification network

is constructed by adding LLGMNs as classifiers to estimate the distribution of training
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data. The structure is evaluated based on the classification accuracy of the validation
data. Comparison experiments of the proposed medhot and other methods were carried
out, and confirmed both the construction of suitable structure and a high classification

performance by the proposed method.



Chapter 3

Pattern Discrimination using
Probabilistic Neural Networks
based on Boosting Algorithms

3.1 Introduction

This chapter proposes a novel hierarchical classification method that can automatically
construct classification models through a learning network. In this method, the LL-
GMN is utiliszed in order to create a simple and weak classifier. The proposed method
can estimate the number of LLGMNSs corresponding to the pattern complexity, accord-

ing to statistical information obtained from the training data.

The next section shows the proposed method for constructing a suitable model using
the boosting approach. The results of computer simulation and pattern classification
experiments of biological signals are presented in Section 3.3. Finally, the last section

concludes this paper.

23
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3.2 Proposed Pattern Classificatin with the Boost-
ing Approach

In the proposed method, the LLGMNs are used in order to create simple classifiers for
the classification of input vectors to produce binary splits. Structure of each classifier
is a hierarchical tree using LLGMN as each non-terminal node. By combining classi-
fiers based on a boosting approach, thebnetwork can discriminate complex data, and
calculate a posteriori probability for the training data. The structure of the network

and the constructing algorithm are explained below.

3.2.1 Structure of the Network

Initially, the network consists of C classifiers, corresponding to the number of classified
classes. C is the number of classes of training data. Each classifier achieves a binary
classification to calculate the posteriori probability of the cth class (¢ = 1,2,---,C).
For binary classification, the parameter of LLGMN K is set as 2. L? (x)(c=1,---,C,q
1,---,Q.) is the posteriori probability calculated by classifier, where @, is the num-
ber of classifiers used for the classification of the cth class added based on boosting
approach. Then, the posteriori probability O.(x) is given as

O(x) = max (L9(x)). (3.1)

q:l,"' 7QC

The structure of proposed method is shown in Figure 3.1. The entropy of outputs is

also calculated to present the risk of misclassification. The entropy is defined as

c
H(z) = - Z O.(x)log O (x). (3.2)

If the entropy H(zx) is less than the discrimination threshold T, the class with the

largest probability is determined according to Bayes’ decision rule (shown in equation
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class 1 class C
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1 1
O,(X) OC(X)

Fig. 3.1: The structure of the proposed method.

3.3). Otherwise, the determination is suspended.

Y(x) = arg max O.(z). (3.3)

3.2.2 Learning of Hierarchical Classifier

Structure of classifier is hierarchical tree using LLGMN. When the learning of the cth
class is performed, the training data is divided into two groups, G, and G¢, where G, is
a set obtained from the training data belonging to class ¢, and Gz is the complementary
set of G.. An example of constructed classifier is shown in Fig. 3.2.

Consider a training set {z™,T™} (n = 1,---,N), where T®™ = (T™ T{™). 1t
the input vector =™ belongs to class c, Tl(") =1, and Tz(") = 0. An energy function

according to the minimum log-likelihood training criterion can be derived as:

I
:MZ
EL

N 2
Z Z T 10g® 0. (3.4)
n=1 k=1
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Fig. 3.2: The structure of classifier.

In the training process, modification of the LLGMN'’s weight Aw,(lk’m) is defined as:

N
8Jm
AwP™ = _p§ 2 (3.5)
T
k.m = k,m - k k
dwp™  aw™
@0
= (0pm — 5221 X7, (3.6)

@0, ¥
where 17 > 0 is the learning rate.
LLGMNs are added to avoid the misclassification of training data belonging to
Ge. To evaluate the misclassification accuracy of training data belonging to Gz, an

evaluation function is defined as

1D, o)l

F' =
|Gl

(3.7)

If F' is greater than the threshold Th', more LLGMNs are added hierarchically, and

are trained using a two class set D(c,c) and D(c,c). Then, the posteriori probability
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L‘(:q)(m), which is calculated by the qth classifier, is defined as,

Jq j—1
LO(z)=1-3 (( I1 <3>0§“’”(m)) <3>0§"’”(w>) : (3.8)

j=1 §'=0

where J, is the number of LLGMNSs added to the gth classifier, 0%7)(z) is the posteriori
probability calculated by the jth LLGMN in the gth classifier and qu’o)(w) is set to 1.
By combining the LLGMN hierarchically to construct a network, the misclassification

of data belonging to class ¢’ can be avoided.

3.2.3 Construction Network

In the proposed method, the addition and learning of the classifier is repeated for each
class. A classifier is initially trained to classify the training data into G, and G¢. If
O1(x) > Oo(x), it is considered that x is classified into class ¢. Then, D(c, @) is the data
set belonging to G, and is classified into Gz. An evaluation function that considers
the training accuracy is defined as

Gel = 1D(e, )|

F =
|G|

(3.9)

If F is greater than the threshold Th, a classifier is added for accurate discrimination.
To train newly added classifier, training data D(c,¢) and G are used. Repeating the
addition of classifiers until the evaluation function is less than the threshold Th allows
model construction and classifier learning to take place simultaneously.

Through the above training, the model construction and training of the classifier

are performed based on a boosting approach.

3.3 Experiments
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Fig. 3.3: Artificial data used for discrimination experiments.
3.3.1 Simulation Experiments

First, pattern classification experiments on artificial data were conducted for evaluating
the performance of the proposed method. A two-dimensional input space consisted of
six classes (C = 6) ; each class consisted of five Gaussian sources. Examples of the
data are shown in Fig. 3.3. For each class, we generated 200 samples to train each
LLGMN (M, =1, K = 2), and then validated the trained network using test data (500

samples/class). The values of the parameters Te, Th and Th' were set as 0.8.
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Fig. 3.4: Classification results.

For the verification of the classification performance of the proposed method, single
LLGMN, SVM and BPNN classifiers were used for the comparison. BPNN had four
layers (two hidden layers), the units of which were set as 2, 10, 10 and 4. Also, a SVM
having second-order polynomial kernel was used to perform a two-class classification.

By combining two-class classifiers, multi-class classification using SVMs was achieved.

Fig. 3.4 shows the classification results by the proposed method and conventional
methods for ten independent trials (the initial weights and training data were chosen at
random). The results clearly indicate that the proposed method achieved the best clas-
sification rate among all the four methods. The mean values and standard deviations
of the number of added LLGMNs for each class are shown in Fig. 3.5. For estimating a
simple distribution such as a class six, a single LLGMN was used. On the other hand,
many LLGMNs were added to the network for the estimation of complex distributions.
These results indicate that the proposed method can estimate successfully the suitable
class number of each class, and has the advantage that no unnecessary LLGMNs need
to be added while evaluating the discrimination accuracy for determining the network

structure.
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The number of added LLGMN

Class

Fig. 3.5: The number of added LLGMN.
3.3.2 Pattern Classification of Finger Signal Shapes

Next, motion classification experiments using finger-shaped signals were conducted for

examining the performance of the proposed method. Three subjects (A, B and C)

participated in the experiments.

Experimental Conditions

The subjects were asked to perform 31 types of motions (C = 31). The motions are
shown in Fig. 3.6. Five shape signal channels (D = 5) were rectified and digitised using
an A/D converter (sampling frequency: 167 Hz). Five shape sensors (Measurand Corp.)
were attached to each finger of the right hand. These sensors are 1-DOF measuring
devices. The attached sensors are shown in Fig. 3.7. One ends of the sensors were fixed
to the wrist of the subject, and the other ends were fixed to the corresponding tips of
fingeré. Also, for measuring the angle of the finger, the sensors were passed through
the tubes that were fitted to the fingers (see Fig. 3.7). In order to fix the sensors to

easy-to-use positions for each subject the exact positions of sensors were not specified.
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Fig. 3.6: The 31 pattern of hand shape.

Shape Sensor

Fig. 3.7: Shape sensors attached to fingers.

The measured signals Sy(n) were normalized as follows for obtaining a maximum value

of 1:

Sa(n) - 5&

Ny(n) = 2L “d
4 d(n) S(rinaz _ S;t ?

(3.10)
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Fig. 3.8: Discrimination results for three subjects.

where S3 is the mean value of Sy(n) measured when the hand is relaxed, and ST***

is the mean of the maximum value of each channel. The normalized signals were

compared with a prefixed threshold My to determine whether the subject changed the

motion of the hand. In addition, signals Ny(n)(d = 1,---,5) are normalized to make
the sum of all D channels equal to 1 as follows:

sqn) = —2a®)__

2 4=1Na(n)

The values of the parameters Th and Th' were set as 0.8 and My was set as 0.5.

(3.11)

In this experiment, the shape signals measured beforehand were selected using our
proposed method. For each subject, the proposed network is trained by using training

data measured from corresponding subject.

Pattern Classification Results

The mean values and standard deviations of the classification rates are shown in Fig.

3.8. BPNN had four layers (two hidden layers), the units which were set as 5, 10, 10
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Fig. 3.9: Discrimination results of finger motion for subject C.

and 32. Moreover, 32 SVMs were used for the classification. As shown in the figure,
the classification results of the proposed method are similar to those of SVM and
single LLGMN for the case of Subjects A and B. In the case of Subject C, however, the
classification results of other methods degrade more than that of the proposed method.

Table 3.1 shows an example of the number of added classifiers and LLGMNs in the
network of Subject C. Here, we infer that a better classification is achieved by adding
the classifiers and LLGMNs.

Fig. 3.9 shows the mean values and standard deviations of the classification rates
of each type of motion for Subject C. From this figure, it can be clarified that the
classification rate has improved overall by the proposed method. For example, Fig.

3.10 shows the mean values and standard deviations of the signal patterns of Motions
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Table 3.1: The number of added classifiers and LLGMNSs.

class | classifiers | LLGMNs
1 2

p—t
(@

DO bt b=t b= QO DO =] =t =t ] | e | DO b= b i | = = DO DN D] QO DO | = = DO QO ] =

=J = = s s = = e e ] =] O | = = = ] QO DO ] QO O | e b | D] QO] b | bt | T

1 and 31. This figure shows that the patterns of Motion 1 are similar to those of
Motion 31. As a result, a single LLGMN cannot accurately identify the difference

between these patterns. However, the proposed method can estimate the distribution
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Fig. 3.10: Rader charts of hand gesture pattern of gesture 1 and gesture 31 for subject C.
The line indicates the mean value of each channel. -

Ch. 4 Ch.3 Ch. 4 Ch.3
Motion 8 Motion 9

Fig. 3.11: Rader charts of hand gesture pattern of gesture 8 and gesture 9 for subject C.
The line indicates the mean value of each channel.

of each type of motion accurately using more than one LLGMN. For example, the
patterns of Motions 8 and 9 overlap (see Fig. 3.11); a more suitable structure can be
constructed by the proposed method by combining the LLGMNs. From these results,
it is clear that by adding LLGMNs to a network for the estimation of the distribution,

the proposed method can achieve a more accurate classification than a single LLGMN.
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3.4 Concluding Remarks

In this chapter, a novel hierarchical probabilistic neural network based on a boosting
approach is proposed.

In the proposed method, the structure of the classification network is constructed
by adding LLGMNs as classifiers to estimate the distribution of training data. By
evaluating the structure based on classification accuracy, the addition of unnecessary
LLGMNs can be avoided.

Experimental results on the artificial dataset and hand shape signals prove the fea-
sibility of the proposed method. Comparison experiments of the proposed method and
single LLGMN were conducted, and the high classification performance of the proposed
method was confirmed. It has been shown that the proposed method is suitable for
classification of complex data, since the required classifiers will automatically be added

in the network in order to perform an accurate classification.



Chapter 4

Pattern Discrimination considering
Unknown Classes

4.1 Introduction

This chapter proposes a new pattern classification method using prior probability of
EMG signals. In this method, estimated prior probability based on GMM is utilized
for elimination of unexpected data. Moreover, the structure of prior distribution for
data can be automatically estimated through a training procedure. After elimination,
LLGMN can classify data into predefined classes. This procedure enables the proposed

method to avoid the classification of unexpected data.

The rest of this chapter is organized as follows. Section 4.2 proposed the details
of the method of elimination of unexpected data and learning algorithm of the pro-
posed structure. In Section 4.3, the EMG pattern classification method using LLGMN
is provided. The results of computer simulation and phoneme pattern classification
experiments of EMG signals are presented in Section 4.4. Finally, the last section

concludes this chapter.

37
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4.2 Elimination of Unexpected Data

In the proposed method, the GMM are used in order to remove unnecessary data not
belonging to predefined classes. The structure of GMM consists of some Gaussian
distribution component. By estimating the number of components automatically, suit-
able structure for elimination can be constructed. The structure of the network and

the constructing algorithm are explained below.

4.2.1 Structure

The prior probability F'(x) is given as

M .
F(z) = omg(, p,, 6% E), (4.1)
m=1

where @ is inputted data and M denotes the number of components, a, is the mixture
coefficient for component m, and g(x, p,,,, 62 E) is a Gaussian distribution with mean
vector p,,and covariance matrix 62, E. E is the identity matrix. If F'(z) is greater than
the threshold T'p, the data is classified into predefined classes by LLGMN. Otherwise,

the classification is suspended.

4.2.2 Learning Algorithm

The proposed method can automatically estimate the suitable number of components
corresponding to the complexity of training data. In the training procedure, a set of
vectors (x,---,y) are utilized. The details of the proposed training scheme is as
follows:

Step 1 Initialization:

1. Set the number of components M as 1 and the termination threshold 6 as any

given real number.
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2. Initialize the mean vector u, with randomized values, and then set §? as the
maximum value of the ii element of ¥ calculated from the following equation and

ap as 1.

N
1
L= N Z("’n — ) (@n — py)" (4.2)
n=1
Step 2 Update the mean vector:
1. Set the training iteration t as 1.

2. Update the mean vectors according to the following equations for all training

data [50].
t
Aptr (T0) = (1 = T)(wn — Bor) (4.3)
' = arg max g(Tn, f, 04 E) (4.4)
where T is the predefined maximum iteration number and m =1,---, M.

3. Classify training data into M groups decided from equation 4.4.

4. Compute 62, and the mixture coefficient a,, according to equations 4.5 and 4.6

[57].
62, = maxd", (4.5)
|Gl
Qi N (4.6)

where 6,(]"‘ ) is the ij element of ,, (see equation 4.7), G, is the set of data

clasified into group m and ||Gp,|| is the number of data belonging to group G,.

_ Lwacn (@ = H) (@0 — )"

Lm
Gl

(4.7)

5. This step of training repeats, until ¢ reaches a predefined number 7.
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Step 3 Addition of component:

1. Stop the training procedure, if 6%, > 8® — ¢ and M > 1, where ¢ is a small

positive number.

2. Otherwise, a component is added. ¢® is set as the maxmum variance 62, for
next validation. Then, the mean vectors of the added component is initialized
randomly and ¢Z and «,, of all components are calculated according to Equations

(5) and (6). Then, go to Step 2.

4.3 EMG Pattern Classification Method

The proposed EMG pattern classification consists of three parts: (1) EMG feature
extraction, (2) elimination of unexpected EMG signals and (3) classification network
(LLGMN).

L channels of EMG signals are recorded using surface electrodes attached to mus-
cles. The EMG signals are measured with a sampling frequency f = 1000Hz, then
rectified and filtered by a Butterworth filter (cutoff frequency: 1Hz). Each sampled
EMG pattern, defined as EMG(t) was normalized to make the sum of L channels
equal to 1 using the following equation,

CL‘(t) _ EMGl(t) — EMGft
"k (BEMGy(t) — EMGY)

(4.8)

where EM G} is the mean value of EMG(t) measured while relaxing the muscles. The
feature vectors ®(t) = [z1(t), z2(t),- - - , 21 (t)] are inputted into classification network.

A power level is estimated from the EMG signals as

L
1 < BMGi(t) - EMGYt
t)=— 4.
power(t) = T 2 Garcpe — BMCY (4.9)
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where EMGJ*® is the mean value of EMG|(t) measured under the maximum voluntary
contraction. The power level is compared with a prefixed threshold My to determine
whether the motion actually happened.

For elimination of unexpected EMG signals, a prior probability calculated from
GMM described in Section 4.2 is employed. EMG signals corresponding to predefined
classes are classified by LLGMN. The output of the LLGMN corresponds to the pos-
terior probability P(k|z(t)) of class k given the input vector x(t). The entropy of

outputs is also calculated to prevent risk of misclassification. The entropy is defined as

K

H(z(t)) = = > _ P Ok(t) log® Ox(2). (4.10)

k=1
If the entropy H(x(t)) is less than the classification threshold Te, the specific mo-
tion with the largest probability is determined according to the Bayes ’ decision rule.

Otherwise, the determination is suspended.

Y(z(t)) = arg max G OL(t). (4.11)

4.4 Experiments

4.4.1 Numerical Experiments

First, pattern classification experiments on artificial data were conducted for evaluating
the performance of the proposed method. A two-dimensional input space consisted of
three classes (K = 3) and predefined class, each class and predefined class consisting
of three components. Examples of the data are shown in Fig. 4.1. For each class, 200

samples were generated to train, and then the trained network was validated using test
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Fig. 4.1: Artificial data used for classification experiments
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Fig. 4.2: Classification results

data (500 samples/class). The values of the parameters were Tp = 0.01,¢ = 0.01 and
te = 0.8.

Fig. 4.2 shows the classification results by the proposed method for 10 independent
trials (the initial mean vectors and weights of LLGMN were chosen at random). The
results indicate that the proposed method achieved the elimination of unexpected data
and high classification performance.

In order to confirm the effectiveness of automatic addition of components, GMMs
that fixed the number of components were used for comparison. In this experiments,
test data for validation were divided into the data belonging to predefined classes and
the unexpected data by the proposed method and the traditional GMMs (the number
of components are 5, 10, 15). Fig. 4.3 shows the elimination results by the proposed
method and the other methods using fixed GMMs. The mean value of the number
of components for GMM was 17.6 £+ 3.0. These results indicate that the proposed

method can estimate successfully the number of components even for unexpected data
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Fig. 4.3: Comparison of elimination results

not belonging to the predefined classes.

4.4.2 EMG pattern classifications

Phoneme classification based on EMG signals was conducted to examine performance
of the proposed method. In the experiments, EMG signals measured from mimetic and
cervical muscle were used to classify six Japanese phonemes (/a/, /i/, /u/, [e/, /o/,
/n/). In this experiment, classes corresponding to five phonemes (/a/, /i/, /u/, /o/,
/n/) were used as predefined classes and EMG signals belonging to utterance /e/ were
set as unexpected EMG signals. Five subjects (A, B, C, D and E) participated in the
experiments.

Five pairs of Ag/AgCl electrodes (NT-511G: NIHON KOHDEN Corp.) were at-
tached to the subject’ s face (Depressor Anguli Oris, Zygomaticus Major, Masseter,
Digastric, Depressor Labii Inferioris; a pair of electrodes on each muscle) with con-
ductive paste. The EMG signals from five muscles were recorded (sampling frequency:
1kHz). The values of the parameters were Tp = 0.01,¢ = 0.01, te = 0.8 and M, = 0.25.

Five sets of randomly chosen initial mean vectors and weights were used to train
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Fig. 4.4: EMG classification results for five subjects

each sample data. For each subject, the proposed network is trained by using training
data measured from corresponding subject. The mean values and standard deviations
of the classification rates are shown in Fig. 4.4. From this figure, it can be seen that
the elimination of unexpected EMG signals and the classification accuracy of EMG
signals belonging to predefined classes are achieved by using the prior probability of

EMG signals and LLGMN for classification.

4.5 Concluding Remarks

In this Chapter, in order to deal with the classification problem with ambiguous teacher
signals, a hierarchical clustering has been proposed. In this method, a LLGMN which
a probabilistic NN derived from the GMM, is used as non-terminal node in the classi-
fication tree.

Entropy of the LLGMN ’ s outputs and the data number at each node are used as
stopping and pruning indices in the proposed method, and unnecessary splits in the

structure of classification tree can be avoided, so that the proposed method can make
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a interpretable and reasonable partition of the training data according solely to its
statistical characteristics.

In the numerical simulations, the proposed method shows superior to the conven-
tional method in the estimation of the number of classes. And from the results of EMG
pattern classification experiments, it is considered that the proposed method is more
effective in classification data with the similar features, comparing with a traditional

method where the LLGMN is trained using a supervised training algorithm.



Chapter 5

Pattern Discrimination using
Unsupervised Hierarchical Neural
Network

5.1 Introduction

In this chapter, a novel hierarchical clustering method is proposed. In this method,
the GMM is used to model the statistical characteristics of feature vectors with no
restriction assumed on its parameters, and a probabilistic NN derived from the GMM,
called log-linearized Gaussian mixture network (LLGMN), is utilized for partition at
each non-terminal node. In addition, this paper proposes an unsupervised learning law
for the LLGMN. The proposed method can estimate the number of terminal nodes
corresponding to the number of classes according to statistical information obtained
solely from the training data. Furthermore, unnecessary splits in the classification
tree can be avoided with a pruning rule based on a threshold of the ambiguity of the
LLGMN s outputs and the number of data at each non-terminal node. In this paper,

the classification tree makes binary splits at each non-terminal node.

In the following section, we propose an unsupervised learning law for the LLGMN.

In Section 6.3, the algorithm for constructing the classification tree is introduced.

47
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Section 6.4 presents experiments on artificial data and the EMG signals to examine
the validity of the proposed method. Finally, Section 6.5 gives a summary of the

chapter.

5.2 Unsupervised Leaning Algorithm of LLGMN

Although the LLGMN can be trained with a supervised learning algorithm as men-
tioned, its classiﬁcatién performance degrades significantly, when the teacher signals
are not reliable. However, there have been no unsupervised learning algorithms devel-
oped for LLGMN so far. In this chapter, an unsupervised learning algorithm based

on the entropy criterion is introduced. Given the number of classes C, the entropy is

defined as:

n C

Jso==3_> ©0Miog®0M. (5.1)

) n=1 c=1
The proposed unsupervised learning algorithm seeks to find proper parameters of LL-

(e;m)

GMN by minimizing Equation (9). The weight s modification Aw,"™ is defined as:

em aJ(") _
Aw,(l’) = -7 (f’%), : (5.2)
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After the LLGMN is well trained, a reasonable C-class partition can be performed
on the training data. However, for some ill-posed initial weights, the LLGMN may be

trained to cluster all training data into one class and the energy function Jso, converge
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to some local minimum. Some methods, such as the k-means clustering, can avoid this
problem by setting mean vectors derived from the training data as initial weights. But
this method can not be applied to the LLGMN, since parameters such as the mean
vectors and variances of each cluster (Gaussian distribution) are not directly used as
the weights of LLGMN. Since the proposed learning algorithm needs prior information
about the number of classes C, the unsupervised learning law based on equation 5.1-5.3
is not practical.

To deal with these problems, we propose a hierarchical clustering method using
LLGMN at each non-terminal node of a classification tree. In this method, the LLGMN
classifies data into two—‘subclasses at each non-terminal node; after a sequence of binary
splits, the training data would be eventually partitioned into classes of any desired
number, corresponding to the number of terminal nodes. In the next section, a tree
construction algorithm and an unsupervised learning law to train the LLGMN are

explained.

5.3 Hierarchical Clustering

In this section, details of the construction strategy for a binary classification tree based
on LLGMNs are explained. During the construction process, split or pruning is deter-
mined according to the statistical properties of the training data. Adopting a LLGMN
at a non-terminal nodes of the classification tree complements the unsupervised learn-

ing algorithm of the LLGMN introduced in Section 5.2.

5.3.1 Classification

The divisive clustering starts from a single cluster i.e., the root node and terminates
when satisfving the termination criterion. The training data is then divided into the

objective number of clusters. At each level of the classification tree, LLGMNSs are used
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to achieve binary splits, and each non-terminal node is divided into two sub-clusters
if significant statistical differences exist between the two parts. Even for data with
complicated distributions, interpretable clustering can be perform after a nested series

of binary splits.

5.3.2 Division Validation

By using the proposed method, a classification tree can be constructed. However,
excessive splitting may occur when the hierarchy of the tree becomes too deep. To
counteract this issue, cross-validation is adopted and the posterior probabilities of the
validation data are utilized to determine whether or not to split a node. First, the
validation data is prepared and the entropy H(x) is defined as:

C
H(z)=-Y_®0Miog®0m. (5.4)

c=1

Then, the assembled average value Hg of H(x) is utilized as the termination criterion

of splitting.

[
Ct
N—

Hp=-— S H@®), (5.

[Nel T(™eN,

where IV, is the set of validation data belonging to the node in consideration, and | N,| is
the number of validation data in N,.. If Hg is higher than a threshold Hy, the splitting
of the corresponding node is terminated. As a result, excessive splits can be avoided.
On the other hand, if all validation data for the node in consideration is clustered into
one class, outliers may exist in the training data and the division of this node must be
terminated. Also, for occasions when there is only one training data in a node, further
splits of this node must be terminated, as division is impossible.

With this method, the classification tree can be constructed based on the statistical
properties of the training data, and can cluster complicated data into an interpretable

number of classes.
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5.3.3 Pruning Law

In the proposed method, outliers are always classified into some terminal nodes (clus-
ters) separated from other major clusters. In particular, when the hierarchy of the tree
grows too large, the influence of outliers becomes prominent because of the decrease of
the number of training data at each node. After the classification tree is constructed,
pruning is conducted to improve the clustering efficiency. The number of training data
left in each terminal node is utilized as a decision index for pruning. If the ratio of the
number of training data in a terminal node to the total training data number is lower
than a threshold ar, this node and its counter are merged into their father node. With
this pruning law, excessive splits may be prevented, and the number of clusters may

not increase corresponding to the number of outlier data.

5.3.4 Unsupervised Learning Algorithm

As mentioned in Section 5.2, correct clustering is not available if ill-posed initial weights
of LLGMN are used. Here, we design the unsupervised learning rule used in the
proposed method, where the number of clusters is restricted to two. In this rule, the
initialization of the weights is made with two data selected from the total training data
set, noted as A. During the training process, the rest data is gradually added into
the data set B used for training to proceed clustering. In this way, clustering starts
with a data set of simple distribution, with the increment of the data number used for
training, clustering result turns to be complicated.

Let us consider that LLGMN clusters data into two classes: C; and C,. First, x;
and z, are chosen for the initialization of weights from the set A according to the

following equation,

(x1,3) = arg maxm(,-)’w(j)eA(Ha:(i) - w(j)”)- (5.6)
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Assuming that @, and x, are labeled with C; and Cs, respectively. The training of
the LLGMN is performed using the supervised learning algotithm. Here, T(®V) and
T(®2) gre given as virtual teacher vectors to @; and @x,. The initialization of weights
1s carried out to prevent the LLGMN to convergence to a local minimum. With the
initialized weights, unsupervised learning of the LLGMN is then performed. The mean
values of x; and x, are calculated using the training data clustered into C; and Cs,
respectively. One data @ € A — B is selected, and it is added into the set B labeled
with either of C; and C5, from whose central the Euclid distance of x is minimum.
Training of the LLGMN according to Equation 5.1 is performed using data in the set
B. After training with a pre-defined number of times, another training data is selected
from the set A — B and added into the set B. This training step repeats, until all of

the training data is added into the B, i.e. B = A.

5.3.5 Summary of Algorithm
The construction algorithm for the classification tree is summarized as follows:
1. The training data is presented to the root node.

2. Training data in a terminal node is divided into two subclasses using the LLGMN

until the termination criterion is satisfied.

3. Whether or not to split a node is determined using the posterior probabilities of

the validation data.

4. Steps 2 and 3 are repeated until the termination criterion is satisfied at all ter-

minal nodes.

5. The terminal nodes corresponding to outliers are merged according to the pruning

law.
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Table 5.1: Parameters of each class used in experiments of artificial data
class [ uz py 0z 0y Oy
Cl [[04 0.2 0.08 0.04 -0.8
C2 |02 0.7 0.0 0.05 O.
C3 |07 0.6 0.03 0.03
C4 106 0.8 0.03 0.03
C5 ||0.8 0.8 0.03 0.03

SIS

By performing the construction of the classification tree and the training of the LL-
GMN, clustering with the desired number of classes based on the statistical information

can be attained.

5.4 Experiments

Numerical simulations were carried out in order to verify the effectiveness ot the pro-
posed method compared to conventional methods. In addition, pattern clustering and

classification experiments of the EMG signals were carried out.

5.4.1 Numerical Simulation

The feature data is illustrated in Fig. 5.1: There are two features « = (z,y), and five
classes, C;(i = 1,2, 3,4,5). Each class consists of one normal distribution, parameters
of which are shown in Table 5.1. The number of training data for each class is 100 ,
and the number of validation data for each class is 200. The LLGMN includes seven
units in the first layer, two units in the second layer corresponding to the total number
of components, and two units in the third layer. To construct the classification tree,
the threshold of entropy Hr was set as 0.2, the threshold of pruning o; as 0.01, the
learning rate 7 as 0.01, and the training times for each addition of training data as
100. An example of the constructed classification tree is illustrated in Fig. 5.2, where

the circles and squares indicate non-terminal and terminal nodes respectively. The



54 CHAPTER 5. PATTERN DISCRIMINATION USING UNSUPERVISED HIERARCHICAL NEURAL NETWORK

1.0
2. Py 5 O
0.8 r .‘;3' "‘o ::}:"%v'o .&,5};:.
":',,'::f ‘::..; . »’ ; .
‘:'.0: '.t ¢ p :'
06} N . O
y *y C3
04}
':. "o"
0.2 3 :‘-‘v.;“ff,ﬁ:il::.’o
Cl1 T
0.0 02 04 06 08 1.0
X

Fig. 5.1: Example of artificial data, the parameters of which are shown in Table 5.1

Fig. 5.2: The constructed tree for five classes data.

number of terminal nodes corresponds to the number of classes. Each terminal is a

node labeled according to the class that the data belongs to. The classification tree
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Fig. 5.3: Effect of the number of learning data on estimate accuracy.

starts from the root node, where the training data is divided into two nodes: one for C'1
and the other for all other classes. Data clustered into the latter node is then further
split into node C2 and the rest. Finally, the constructed classification tree partitions
feature data into five classes. To validate the generalization ability, 300 samples for
each class not used during the training process were clustered, and the mean value and

S.D. of classification rate for 20 independent trials is 98.5 & 0.64.

Next, comparison experiments were carried out with conventional method proposed

in [52] (Terashima’s method) and BIRCH.

The numbers of training data for each class was changed from 20 to 100. For each
condition of training data number, we constructed classification tree 20 times. The
number of validation data is twice as much as the number of training data. The ratio
of times that five classes were correctly estimated is indicated in Fig. 5.3. As shown

in this figure, even if the number of training data decreases, the estimation accuracy
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Table 5.2: The number of classes estimated by the proposed method, the Terashima's
method and BIRCH

The number of classes 4 5 6 7

The proposed method 0 910

The Terashima’s method (Ny =30) |2 7 1 0
The Terashima’s method (Ny =40) |5 5 0 0
The Terashima’s method (Ny =30) |7 3 0 0
BIRCH 0 0 3 7

Table 5.3: Parameters of each class used in experiments of artificial data
class [ u py 9y 0y Oy
Cl |04 0.2 008 01 -0.8
C2 ||0.2 0.7 0.08 0.08
C3 |10.7 0.6 0.05 0.05
C4 [10.6 0.8 0.05 0.05
C5 ||0.8 0.8 0.05 0.05

ool oo

rate of the proposed method keeps in a high level compared to the other methods.

Table 5.2 indicates the number of trials that training data was classified into each
number of classes. As shown in this table, the proposed method can estimate the
numver of classes more accurately compared with other methods. When data for several
classes are gathered in the input space, BIRCH classifies the data into one class. Such a
problem is frequently found in traditional clustering medhods. The proposed methods
avoids this problem by constructing a hierarchical tree for classification. Consequently,
the proposed method achieves higher classification performance than the conventional

method.

Next, pattern classification of synthetic data different from those in Table 5.1 was
conducted. An example of the feature data is indicated in Fig. 5.4, and the parameters
| for each class are shown in Table 5.3. The number of training and validation data
was 100 and 200 respectively. Ten different sets of initial weights, training data and

validation data were used to construct the classification tree. Table 5.4 depicts the
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Fig. 5.4: Example of artificial data, the parameters of which are shown in Table 5.3

Table 5.4: The number of classes estimated by the proposed method, the Terashima's

method and BIRCH

.0

The number of classes 3 45 6 7

The proposed method 1 0910

The Terashima’s method (Ny =50) | 9 1 0 0 0
The Terashima’s method (Vg =40) | 9 1 0 0 0
The Terashima’s method (Ny =30) |10 0 0 0 0
BIRCH 0 02 2 6

number of trials that the training data was split with each number of classes.

The proposed method can cluster data successfully in the overlapped region accord-
ing to its posterior probability. The mean value and S.D. of the classification rate for
ten trials are 89.5 & 3.271. Although the classification rate decreases compared to the

data shown in Fig. 3.1, it is shown that the proposed method can cluster data with

overlaps between the clusters.
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Fig. 5.5: Measured muscles of cervical and expression

As described above, the proposed method can carry out better estimations of the

number of classes than conventional methods even when the cluster data overlaps.

5.4.2 EMG Pattern Classifications

Experiments for the pattern classification of EMG signals were carried out. The EMG
signals used were five-channel data; they were measured from five mimetic and cervical
muscles of a patient with a cervical spine injury (see Fig. 5.5) for six phonemes, i.e. /a/,
/i/, /u/, [e/, Jo/ and /n/. In the experiments, the patient produced the six phonemes
in the order. However, since no acutual voice was uttered, the patient contrasts the
muscles relevant to utterance. A reliable label of teacher signals is not available.
First, the EMG signals are digitized by an A/D converter (sampling frequency:
1.0kHz) after being amplified, rectified and filtered through a digital second order
Butterworth filter (cut-off frequency: 1.0Hz). These sampled signals are represented
as E;(t). To recognize the beginning and ending of utterance, the force i(nformation

Frye(t) is calculated from EMG signals as

L
1 E\(t) - E¢ _
FEMG(t) = i —‘Eli,gal — Elst, (0~7)
=1 l
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Table 5.5: Clustering results

Node number | /a/ /i/ /u/ Je/ [o/ /n/
1 34 1 0 0 0 0
2 0 23 4 0 0 0
3 2 2 2 0 0 0
4 2 12 8 0 0 0
5 0 0 21 O 0 0
6 0 0 0 0 0 34
7 0 0 0 9 0 0
8 0 0 0 26 O 1
9 2 2 ) 5 4 3
10 0 0 0 0 36 3

where E}* is the mean value of E;(t) measured while .relaxing the muscles, and E[*** is
the mean value of Ej(t) measured under the maximum voluntary contraction. For the
phoneme classification z(¢) is normalized to make the sum of five channels equal 1:
E|(t) - Eft
x (t) — - ( ) { —.
2L (Bi(t) — EYY)

Fig. 5.6 shows an example of the raw EMG signals, filtered EMG signals used for

(5.8)

classification and the force information. Fig. 5.7 depicts the average value and S.D. of
normalized patterns belonging to /i/ and /u/. The patterns of /i/ and /u/ are quite
similar to each other. To construct the classification tree, the threshold of entropy Hr
is set as 0.2, the threshold of pruning ar as 0.01, the learning rate n as 0.01 and the
training times for each addition of training data is set as 500. The number of learning
data for each phoneme was 40, and the number of verification data for each vowel
soud was 80. The LLGMN includes 21 units in the first layer, six in the second layer
that corresponds to the total component number, and six in the third layer. Fig. 5.8
illustrates an example of the constructed classification tree. Table 5.5 indicates the
distribution of data of each phoneme among the terminal nodes.

Most data for /a/ were classified into one terminal node, as well as the data for /o/
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Fig. 5.6: An example of cervical spine injury patient’s raw EMG signals, filtered signals used
for clustering and the force information.

and /n/. These patterns can be correctly classified. The data of /e/ were classified
into two terminal nodes. Since the pattern for /e/ varies when uttered, the data can
be classified into two clusters. Some data belonging to /i/ and /u/ were classified into

one class because they are similar.
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Ch.1 Ch.1
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Fig. 5.7: Rader chart of EMG patterns of /i/ and /u/. The line indicates the mean values
of each channel, and the regions of shade imply £ 1 S.D.

Fig. 5.8: The constructed tree for the EMG data

On the other hand the data classified into node 9 includes all phonemes. The
shaded parts in Fig. 5.6 indicate data classified into node 9. The data classified into
class 9 were uttered just before the end of the utterance. Such data is ambiguous
data and classified into one cluster. As described above, considering the features of
data the proposed method can classify EMG signals successfully. In order to examine

the validity of the proposed method, classification experiments were carried out. The
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Fig. 5.9: Classification accuracy

classification ability of the proposed method was compared to a supervised trained
single LLGMN and a neural tree [58] using the LLGMN as a non-terminal node. To
evaluate the discrimination accuracy, labeling for the node was performed. It assumes
that each node was corresponded to utterance that most of data classified into the
correct node. Although utterance /e/ corresponds to terminal node 7 and 8, it is
assumed that all data classified into these terminal nodes are classified into utterance
/e/ by constructed tree. After construction of the classification tree, 600 data for each
class were prepared for classification. Fig. 5.9 shows the classification rate in case of
considering data classified into class 9 as no utterance and suspending classification.
The mean values and S.D. of classification rate of all utterance using the proposed
method for 20 times is 92.610.86, using the LLGMN traditional recognition is 85+2.12
and using Neural tree is 61.4 4 4.3. The proposed method suspending classification

achieved high classification rate. As described above, it is considered that this method
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is more effective in discrimination of data with the ambiguous feature between each

class than other methods.

5.5 Concluding Remarks

In this chapter, in order to deal with the classification problem of ambiguous teacher
signals, a hierarchical clustering is proposed. In this method, LLGMNs is used as
classifier at non-terminal nodes in. the classification tree.

Entropy of the LLGMN outputs and the number of data at each node are used
as stopping and pruning indices in the proposed method to avoid unnecessary splits
in the structure of classification tree; this allows the proposed method to make inter-
pretable and reasonable partitions of the training data according solely to the statistical
characteristics.

In numerical simulations, the proposed method shows superior results to the con-
ventional methods when estimatiing of the number of classes. From the results of the
EMG pattern classification experiments, it is considered that the proposed method is
more effective in classification data with the similar features compared to traditional
methods where the LLGMN is trained using a supervised training algorithm and neural

tree.



Chapter 6

Human Interface Applications using
Biological Signals

6.1 Introduction

In this chapter, two humanmachine interfaces using biological signals are proposed. By
improving traditional interfaces with the proposed classification methods, it is expected
that people with disabilities, who cannot utilize traditional systems, can be assisted by
these systems.

The chapter is organized as follows: Section 6.2 describes the proposed text input
system using EMG signals. Section 6.3 introduces human-machine interface to control

electrical appliances. Finally, the last section summarize the chapter.

6.2 Text input system using EMG signals

6.2.1 System Description

The structure of the Japanese text input system is shown in Fig. 6.1. This system
can be divided into four parts: (1) EMG signal acquisition and feature extraction, (2)

phoneme classification, (3) character selection and (4) word estimation.

65
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Fig. 6.1: Overview of the text input system

EMG Signal Acquisition and Feature Extraction

EMG signals from the L channels are recorded using surface electrodes attached to
muscles. The signals are measured with a sampling frequency of f, Hz and then
rectified and filtered by a Butterworth filter (cutoff frequency: f.Hz). Each sampled
EMG pattern, defined as E;(t)(Il = 1,2,---, L), was normalized to make the sum of
five channels equal to 1 using the following equation;

20 _ E(t) - E*
[ sty
S (Ee(t) — Ejt

(6.1)

where Ej is the mean value of E;(t) measured while rthe muscles are relaxed. The
feature vectors (t) = [z1(t), z2(t), - - - , zL(t)] are input into the classification network.
The power level is estimated from the EMG signals as

L
Est
a(t) = Z e~ B (6.2)

where E["*® is the mean value of Fj(t) measured under the maximum voluntary con-
traction. The power level is compared with a predetermined threshold to determine

whether motion actually occurred.
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Pattern Classification

Although LLGMN is generally employed for pattern classification, other methods such
as classification methods described in Chapters 2, 3 and 4 can be used. Using sam-
ples labeled with their corresponding motions, the network structure is built, and the
network learns the non-linear mapping between the EMG patterns and motions simul-
taneously.

The entropy of the output is also calculated to prevent the risk of misclassification.

The entropy is defined as Equation 15.
c

H(2(t)) = — Y Oc(x(1)) log Oc(x(?)), (6.3)

c=1

where O.(x(t)) corresponds to the posterior probability of motion number c. If the
entropy H(x(t)) is less than the discrimination threshold Te, the specific motion with
the largest probability is determined according to Bayes’ decision rule. Otherwise,

determination is suspended.
Y(x) = argmax O (x) (6.4)
Character Selection

In this part, character selection is performed continuously to produce a sequence of
characters using classified motions.

Fig. 6.2 shows an example of the character selection screen. The shaded area
indicates a cursor, which can translate automatically; the character at the cursor is
selected by a classified specific motion corresponding to the determination command.
In this system, not only Japanese characters but also other keys (delete key, space key
and so on) are arranged on the screen (as shown in Fig. 6.2).

In this system, three control modes are available because the number of motions

that can be classified correctly is different for different people. In the first control
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Direction of cursor movement
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Fig. 6.2: An example of the character selection screen

mode, the cursor moves from the left grid to the right grid in the first column. If
the cursor moves to the far right side of the grids, it moves to the far left in the next
movement. By classified motion corresponding to the determination command, the
cursor movement is shifted to the vertical direction, and cursor moves along the grid
continuously. When the corresponding motion is classified again, the character at the

cursor is selected.

If the phoneme classification part can classify the corresponding EMG signals into
two motions, using the second control mode, motion can be matched to the command
for movement between column. Another motion also corresponds to the determination
command. Using more than three classified motions, various commands (e.g, delete,

enter and so on) can be added arbitraily for the user * s convenience.

Furthermore, an input algorithm using six phonemes (/a/, /i/, /u/, /e/, /o/ and
/n/) for classification is as follows: Calculate the duration of the classified specific
motion t' (see Fig. 6.3). If ' > T’, classified character is selected. If not, the cursor
moves to the column, corresponding to the classified phoneme, from the left edge to the

right edge. By the classified phoneme same as one previously classified, the character
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Power level
Feuo(t)

Time [sec]

Fig. 6.3: Definition of the motion time ¢/

at the cursor is selected. If other phonemes are classified, the column for movement is
changed to the corresponding column. Thus, the system’s method of operation can be

changed according to the user’s ability.

Also, using the force information estimated from the EMG signals, the transition
time of the cursor is changed arbitrarily. Table 1 shows the relationships between force
information and transition time. To coordinate the cursor’s transition time, user can

arbitrarily set the threshold of the force classifying phoneme.

‘Word Estimation

In this part, the sequence of characters generated by the character selection part is
converted into the corresponding kanji, and the complete word is predicted by matching
the input character sequence with possible words. For kanji translation, this system

uses a database of relationships between kanji and different character sequences.

HMM, which has been developed successfully, especially in the field of speech recog-

nition, is applied for word recognition. One HMM is prepared for each word. The
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posterior probabilities of each word are normalized as

P(i|51S2---Sn)

= M ] (6'5)
> iz P(iS1S2 - - Sw)

i

where 515;---Sy is the input character sequence, P(i|S1S2---Sx) is the posterior
probabilities estimated by the ith HMM, and M is the number of HMMs.

For HMM training, data consisting of words and corresponding character strings,
is prepared. In this system, character strings consisting of vowels are included in the
training data because users can input vowels directly. Since HMMs approximate the
probabilistic characteristics of time series through learning, robust recognition can be
achieved for words with varying temporal characteristics. Candidate words estimated
in this part are displayed in the grid on the screen (see Fig. 6.2). Since the user can
also select these words from the screen, words based on the same character string can
be entered easily.

Finally, the generated text is input into various application on the PC.

6.2.2 Experiments

To examine the performance of the proposed system, control experiments were per-
formed. The EMG signals were measured from five electrodes attached to the opera-
tor " s face (L = 5: Depressor Anguli Oris, Zygomaticus Major, Masseter, Digastric,

Depressor Labii Inferioris; a pair of electrodes was placed on each muscle).

EMG Pattern Classification

Five sets of randomly chosen initial weights were used to train each set of sample data.
Experiments of the EMG classification using LLGMN and the classification method
proposed in Chapter 3 were performed. To verify the performance of the proposed

method, a single LLGMN, a support vector machine (SVM) and back-propagation
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Fig. 6.4: Discrimination results for four subjects.

neural network (BPNN) classifiers were used for the comparison. BPNN had four
layers (including two hidden layers), the units of which were set as 2, 10, 10 and 4.
Also, an SVM having a second-order polynomial kernel was used to perform a two-class
classification. By combining two-class classifiers, multiclass classification was achieved
using SVMs. The experiments were performed for four subjects (A, B, C: healthy; D: a
patient with a cervical spine injury). For each subject, the proposed network is trained
by using training data measured from corresponding subject. The mean values and
standard deviations of the classification rates using the LLGMN, the method proposed
in Chapter 3 and other methods are shown in Fig. 6.4. The classification results of
the proposed method are similar to those of a single LLGMN and SVM in the case
of subjects A and B. Comparing the classification rates of subject C, it can be seen
that the method using the proposed EMG pattern classification method outperformed
the use of a single LLGMN and BPNN. In addition, in the case of subject D, the
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Fig. 6.5: Discrimination results for Subject D.

classification results of other methods degraded significantly more than that using the

method proposed in Chapter 3.

Fig. 6.5 shows the mean values and standard deviations of the classification rates

of each type of utterance for subject D.

From this figure, it can be seen that the classification accuracies of utterance /o/ and
/n/ were improved by the proposed method. On the other hand, in the classification
of utterance /a/, similar misclassifications occurred when using the proposed method
and other methods. It considered that these results were caused by the ambiguous

EMG pattern found with the utterance /a/.

Table 6.1 shows an example of the number of added classifiers and LLGMNs in the
network of subject D. In contrast, the number of classifiers and LLGMNs for subjects
A and B were set as 1. Here, we infer that classification is improved by adding the

classifiers and LLGMNSs for the estimating the distribution of EMG patterns. It is
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Table 6.1: The number of added classifiers and LLGMNSs for subject D.

phoneme | classifiers | LLGMNs
/a/ 13 33
Ji/ 4 7
Ju/ 2 3
/e/ 4 9
Jo/ 16 24
/n/ 5 11

clear that by adding LLGMNs to a network for the estimating the distribution of
EMG signals, the proposed method can achieve the most accurate classification of all

the methods considered.

6.2.3 System Control Experiments

The experiments were performed for four subjects (A, B, C: healthy; D: a patient with
a cervical spine injury). For each subject, the proposed network is trained by using
training data measured from corresponding subject. The results in Fig. 6.4 show that
single LLGMN can be used as a classifier, and when subjects A, B or C use this system,
six phonemes can be utilized for input signals. On the other hand, in the case of subject
D, only three phonemes (/i/, /u/ and /e/) can be used as input signals, because the
classification rates of /o/ and /n/ were too low for use as input signals.

In this system, the number of selected character strings is set as 22, corresponding
to the number of HMMs. In these experiments, the Baum-Welth algorithm was used
for HMM learning.

The experimental view and display of the proposed system are shown in Fig. 6.6
and 6.7, respectively. Figure 6.7, shows that the number symbols are arranged in the
column corresponding to /n/. By selecting these number symbols, the user can chose

the kanji and the recognized word estimated by HMMs (see Fig. 6.7 (A) and (B)).
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Fig. 6.7: Display of the text input system.

Also, categories (A) and (B) are changed by selecting the corresponding character on

the screen.
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Fig. 6.8: An example of the operation with subject A.

The detailed time history of subject A is shown in Fig. 6.8. In this experiment,
the character string "Kantan de Tanosii” is input in Japanese. In this figure, the
EMG signals, force level, horizontal position, longitudinal position and recognition
results are plotted. Gray areas indicate the threshold T ’ . It can be seen that with
character selection using classified phonemes and word recognition, subject A can input
text successfully. Furthermore, misguided selection (corresponding to /za/) is modified
(from /kanza/ to /kantan/) by word recognition using HMMs (see Fig. 6.8 (I)). In time
(IT), the input sequence /aoii/ is changed to /tanosiii/ by HMM recognition. Finally,
the character string is input to a text editor (see Fig. 6.8 (III)).

Part of the time history corresponding to Fig. 6.8 is shown in Fig. 6.9. In this
figure, each gray area indicates the length of transition time, which is determined by
the power level. It is confirmed that the transition time is adjusted based on the

power level of the EMG signals. These results shows that the user can select a suitable
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Fig. 6.9: An example of the operation with subject A (from 0 sec to 20 sec).

transition time successfully.

Next, a detailed time history (from 90s to 115s) of subject D is shown in Fig. 6.10.
Subject D input /tanosii/ using three utterances (/i/, /u/ and /e/). To input arbitrary
characters using only three utterances, the utterances correspond to ”determination
command”, "movement of column” and "invert the direction of cursor movement”
respectively. This figure shows that subject D used word recognition to estimate the
character string ”tanosii”from the input string "tano”. Using word recognition, input
took 136.46 s. To input the same string, subjects A, B and C took 70.37, 79.70 and
96.13s respectively. In these experiments, since only subject D had no experience
operating the proposed system, it took longer for that subject than for others. The
operating time is expected decrease gradually with training in using the system.

To validate the effectiveness of word estimation, input times were compared. In
these experiments, subjects A, B and C used six utterances to control this system.

o

The input words are ”watasi”, ”tanosii”, ”ohayou” and ”hijouni” and these wordS are
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Fig. 6.10: An example of the operation with subject D.

transferred into Chinese kanji. The transition time of the cursor is set as 0.67 s.

The comparison results for five independent trials are shown in Fig. 5.11. In these
experiments, three transfer methods were used: (1) kanji conversion from all characters,

(2) kanji conversion from parts of characters (e.g, ”wata”, "tano”, "oha” and ”hijo”)
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Fig. 6.11: Input time of words.

and (3) kanji conversion from characters consisting of only vowels. These results show
that text input using method (3) is the fastest of all methods tested. However, in
the case of inputting a word not expected by the HMMs, it is impossible to perform
input using methods (2) and (3). Also increasing the words for recognition interrupts
effective recognition of words using HMMs. In such cases, input using method (1) is

needed.
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(a) Experimental devices. (b) A hand with Shape sensors.

(c) An operation scene for home electric appliances.

Fig. 6.12: Opetation of home electrical appliances using discrimination results of hand
shape.

6.3 Application of Hand Shape Classification for
Human Interface

In this section, improved Bio-Remote system to control electrical appliances using
classification method proposed in Chapter 2 and 3 is dveloped. This system was ma-

nipulated according to the user’s intention determined from the biological signals.

In general, it is difficult to discriminate user’s intentions from biological signals.
Therefore, if necessary, the user can manipulate various applications with residual
functions that combine input channels using this system. The method proposed in
Chapter 2 and 3 can discriminate various hand shapes from biological signals. The
function of the control system for electrical home appliances using hand shapes is

shown in Fig. 6.12. [61]. In this system, the discrimination results are sent to the
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main unit and the infrared signals corresponding to the electric home appliances are
transmitted directly from the infrared LED of the main unit to the appliances.
Examples of the operations corresponding to discriminated motion are shown in

Table 6.2. [61]. In a typical Bio-Remote, various operations can be performed by

Table 6.2: Example of command allocation for home electric appliances.

Motion number Object Command

On
Off
Switch
™ [ CHwp
CH down
Power on/off
Play
CD player Stop

—

Light

clo(wd|a|n|h|lw

Volume up

—
(=]

Volume down

repeating a command selection. However, from this figure, it can be inferred that each
operation corresponds to a single hand shape motion.

An experiment was conducted, using a healthy person as the subject, to verify the
validity of the proposed method. In this experiment, operations corresponding to the
user’s motions were executed until the same discrimination occured 150 times. An
example of the subject’s operation is shown in Fig. 6.13. In this figure, five channels of
the normalised signals, discrimination results and control commands are plotted. Gray
areas indicate that the Bio-Remote is not operated.

From these experimental results, it can be inferred that the subject could operate
electrical home appliances by changing the position of his/her fingers. It should be
noted that there was no malfunction, and that the appliances could be operated ac-

cording to the subject’s intent, which confirms that by the use of the proposed system,
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Fig. 6.13: An example of the experimental results during the hand shapes of the electric
appliances by the subject.

the subject can control various electric appliances simply by moving his or her fingers.

6.4 Concluding Remarks

In this chapter, two devices using biological signals are proposed. First, a novel text
input system using EMG signals are descrived. In this system, motions estimated
from EMG signals with PNNs are used as control commands. Based on the number
of estimated motions corresponding to commands, the proposed system can apply
the control method that is suitable for the number of motions. In addition, using
HMMs corresponding to words, pre-defined words (character strings) are recognized
from a partial character string. This recognition method enables users to perform

effective input in less time. To validate the availability of EMG signals as control
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commands, EMG classification experiments were performed. These results show that
EMG classification was achieved with a high success rate using a single LLGMN or the
classification method proposed in Chapter 3. To further examine the realization of the
proposed system, text input experiments were performed. These experiments showed
that the proposed system can help not only healthy peple but also handicapped people
to perform text input using only their utterances.

The second device is a human interface for controlling electrical home appliances
using hand shapes. From experimental results, it can be inferred that the operator
could control the home electric appliances using hand shapes according to his or her
intentions. Furthermore, assignment of the hand shapes directly to the operation
command of a electrical home appliances confirmed the feasibility of direct operation

of electrical home appliances using the Bio-Remote.



Chapter 7

Conclusion

7.1 Results and Contributions

Chapters 2 and 3 discussed the hierarchical pattern classification method. In Chapter
2, a construction algorithm for a hierarchical classification network based on validation
was proposed. Using validation data to evaluate the constructed network, it is expected
that the network can achieve generalization accuracy higher than other classification
methods trained only training data. On the other hand, in Chapter 3, a hierarchical
probabilistic neural network based on a boosting approach was proposed. By connect-
ing weak classifiers consisting of LLGMNs Wiﬂl a boosting approach, proposed method
can outperform any of the classifiers. In the learning procedure proposed in Chapters
2 and 3, since network construction and learning of the LLGMNs (network classifiers)
are performed simultaneously, there is no need to set the network structure beforehand.

In Chapter 4, a classification method was proposed using the prior probability
of data estimated from GMM to eliminate data not belonging to predefined classes.
Although the case dealt with in Chapter 4 was not emphasized in previous research

in probabilistic pattern classification, this case is a potential problem in classifying

83
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patterns in real-world data.

On the other hand, with the unsupervised learning algorithm for the LLGMNs,
a hierarchical pattern classification method that can estimate the suitable number of
classes was proposed in Chapter 5. In general, there is a possibility that the network
cannot be trained to classify data into specified classes because of overlapping data or
complex distributions of data. In this case, using the method proposed in Chapter 5,
the trained network presents the appropriate splits of training data and the number
of classes estimated through learning. Based on numerical simulation and EMG pat-
tern classification experiments, the proposed method is more effective than traditional
methods in classifying data that overlap each other. It is expected that the presented
information, such as the number of estimated classes and the differeces between prede-
fined classes and estimated classes, can be used not only for pattern classification but

also to improve signals measurement and class definition.

Although the proposed methods in Chapters 2, 3, 4 and 5 were developed in order
to overcome problems that are actually confronted in pattern classification of data
measured from the real world, such as biological signals, it is expected that they can
also be used as classifiers for other types of complicated data. Using these methods,
users need not decide the parameters and the structure of a network by trial and error.
Also, this advantage helps researchers develop effective human-machine interfaces with

better classification accuracy and automatic learning function.

In Chapter 6, two human-machine interfaces using biological signals were proposed.
Our research group previously proposed the EMG-based Japanese speech synthesizer
system using LLGMN and HMMs [60]. This system can recognize words and text based
on six Japanese phonemes classified from the user’s EMG signals. Although a user who

cannot speak, performs vocalization using this system, the user’'s EMG signals must be
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correctly classified into six Japanese phonemes in order to use the system. However, in
the proposed text input system, the number of control commands corresponding to the
given classes can be changed in accordance with user’s classification ability. Therefore,
many users, including those with greater disability, can input text into a text editor on
PC and express their intentions whenever using this system. Also, the Bio-Remote [61],
an environmental control system for handicapped persons using biological signals, was
proposed by our research group. In this system, a user can select various operations
by repeating a command selection. The feasibility of convenient direct operation by
the mildly handicapped using hand shapes to directly indicate operation commands
to the Bio-Remote is confirmed. As stated above, by developing the various operating
methods, it is expected that all persons with disabilities can be assisted by these

systems in their daily activities.

7.2 Future Works

In this dissertation, the problems of pattern classification methods, in particular PNNs,
are introduced. However each proposed method can overcome only one problem. For
practical application, these proposed networks should be integrated into isolated pat-

tern classification methods having PNNs as classifiers.

In future research on the proposed methods, many more theoretical aspects should
be studied. The proposed methods should also be used for pattern classification of other
data, such as image recognition. In this dissertation, although the LLGMN was used
as the classifier, some of the proposed methods (such as those proposed in Chapters 2,
3 and 4) can apply other PNNs as network classifier. To confirm the generalization of

the proposed methods, other PNNs should be applied using these methods.

Finally, some problems for future researches are discussed. The pattern classifica-
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tion methods proposed in this dissertation extended the traditional PNNs by construct-
ing the hierarchical tree for classification. The proposed methods have been shown to
have high performance for classification of complex data. However, the pattern classi-
fication using PNNs should be further improved with studies which are not included
in the present researches of this dissertation. Here, two of important issues related to

this dissertation will be discussed.

In Chapter 2, 3 and 5, the pattern classification methods using hierarchical tree
have been proposed. Although these methods can construct hierarchical tree for pat-
tern classification and adjust parameters of LLGMNs at each non-terminal node, it is
impossible to reconstruct structure of hierarchical tree through online learning. The
structure of classification networks need to be update regularly. In general it is difficult
to train parameters or structure of a network using new data without destroying the old
patterns and forgetting previously learned information. In recent years, incremental
learning algorithms using unsupervised learning are proposed [62], [63]. Although these
algorithms are applied for specific networks such as SOM and k-means which are based
on linear classification, it is difficult to use these algorithms as learning algorithms for
other NNs based on nonlinear classification. On the other hand, in proposed meth-
ods, it is expected that change of subtree doesn’t influence classification by other tree
structure. Therefore, there is possibility that by performing reconstruction of subtree

during long-term daily use, the network can adapt to the changes in patterns.

Pattern classification is frequently confronted with high-dimensional feature data
in practical applications [64]. In order to realize the generalization ability, suitable I-
dimensional feature should be selected from original features (d-dimension). Although
such feature extraction methods based on principal component analysis (PCA) and

linear discriminant analysis (LDA) were proposed [22], there is possibility that suitable
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subspaces for classification of each class are different. Also in proposed methods, suit-
able projected compact features for classification at root node may be different that
for classification of subclasses at non-terminal nodes. In order to deal with these prob-
lems, we would like to improve the construction method for network structure which
can estimate not only the structure but also suitable dimension of feature data.

Publications concerning this dissertation are listed in the bibliography [65]-[70].



Appendix A

Log-Linearized Gaussian Mixture
Network [21]

LLGMN is based on a log-linear model and a Gaussian mixture model (GMM). It
calculates posteriori probability for the training data. In this dissertation, LLGMN is

utilized for partition at the non-terminal node of the hierarchical tree in Chapter 2, 3

and 5.

The structure of LLGMN is shown in Fig. A.1. In order to represent a normalized
distribution corresponding to each component of GMM as weight coefficients of NN,

the input vector (€ R”) is converted into the modified input vector X as follows:
X ={1,27, 2}, myz9,+ -+ , 52, 9z, ,2H)T (A.1)

The first layer of LLGMN consists H = 1+ D(D +3)/2 units, which correspond to the
dimension of the input vector X, and the identity function is used for the activation

function of each unit. The outputs of the first layer multiplied by weight w,(zk’m) ar

e
transmitted to the second layer. Where w,(lK’MK ) = 0, K and My denote the number
of classes (patterns) and components belonging to class M, respectively. In this layer,

LLGMN calculates the posteriori probability of each Gaussian component {k,m}. The
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e
l Non-linear transformation ]

Fig. A.1: The structure of LLGMN.

unit £ in the third layer integrates the outputs of M} units in the second layer.

o
O L= 3" WOuf™ (A.2)
k=1
@
@04 = P (B lem) (A-3)

M,
ZkK"zl Zm'kzl exp((2)Ik/,ml)
The relationship between the input ®)I, and the output O in the third layer is
My

On = > O0ym, (A.4)
m=1

®o, = O (A.5)

The output of the third layer ®)Oy, corresponds to the posterior probability P(k|z) of
class k given the input vector z, énd the former can be used to evaluate the ambiguity
of a classification result.

This network has the ability of adaptive learning for statistical properties of data.
It can discriminate data with complex distributed structure, and in comparison to the

conventional method [59] using normal distribution restricted the parameter.
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