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. This essentially consists in a collection of four papers by Satoru Kadowaki
and Sanpei Kageyama (2003, 2008a, 2008b, 2009) to make a contribution for
" the advancement on combinatorics in affine a-resolvable balanced incomplete
block or 2-associate partially balanced incomplete block designs and to have
a Ph.D. Thesis by Satoru Kadowaki. In fact, Sections 3, 4 and 5 of the thesis
are based on Kadowaki and Kageyama (2003, 2008a, 2008b) respectively,
which have been already published, while Sections 2, 6 and 7 are based on
Kadowaki and Kageyama (2009), which has been accepted for publication.
I would like to thank all the referees of these papers for their valuable
suggestions and comments which have been incorporated in this thesis.
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1. Introduction

One of the earliest examples of a resolvable balanced incomplete block
(BIB) design is the Kirkman (1850a) school girl problem formulated in 1850
and pursued further in another paper (Kirkman, 1850b). The problem was
to find different row arrangements such that any two girls would be assigned
to the same row exactly on one day. This can be seen as equivalent to
finding a resolvable solution of a BIB design with parameters v = 6t +3,b =
(2t+1)(3t+1),r = 3t+1,k = 3, A = 1. In fact, we want to arrange 6¢+3 girls
in 2t+1 rows of 3 each for 3t+ 1 successive days. Kirkman himself gave some
solutions and many mathematicians worked on this problem in the late 19th
and early 20th century. A relevant bibliography can be found in Eckenstein
(1912). However, no complete solution was known until Ray-Chaudhuri and
Wilson (1971) completely solved the problem. This was a celebrated open
problem throughout the period 1850-1970.

Though Yates (1939, 1940) has pointed out some statistical advantages of
resolvable designs and their original form had appeared earlier in the math-
ematical literature as described above, the interest in resolvable BIB designs
was greatly enhanced by a combinatorial paper by Bose (1942), who again
introduced the concept of resolvable and affine resolvable block designs (BD)
clearly and also derived a fundamental inequality now called Bose’s inequal-
ity. This bound plays a key role to characterize an affine resolvable BIB de-
sign. Further statistical usefulness of affine resolvable designs can be found
in Bailey, Monod and Morgan (1995), and Caliriski and Kageyama (2000,
2008). :

The concept was generalized to a-resolvability and affine a-resolvability
by Shrikhande and Raghavarao (1963). The constructions.of (affine) a-
resolvable BIB designs or partially balanced incomplete block (PBIB) designs
with their combinatorial properties have been discussed in literature (see, for
example, Bailey, Monod and Morgan, 1995, Banerjee and Kageyama, 1990,
Calinski and Kageyama, 2000, 2003, Clatworthy, 1973, Furino and Mullin,
1993, Furino, Miao and Yin, 1996, Ge, 2002, Ge and Ling, 2004, Ghosh,
Bhimani and Kageyama, 1989, Hanani, 1974, Jungnickel, Mullin and Van-
stone, 1991, Kageyama, 1973a, 1976, Kageyama and Miao, 1998, Kageyama
and Mohan, 1985, Mohan, 1980, Mohan and Kageyama, 1989, Qian, Meng
and Du, 2008, Rees, 2000, Shrikhande, 1976, Shrikhande and Raghavarao,
1963, Vasiga, Furino and Ling, 2001, Zhang and Du, 2005). Furthermore, as
necessary conditions for the existence of a-resolvable BIB designs, several in-
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teresting inequalities on parameters are available (see Bose, 1942, Kadowaki
and Kageyama, 2003, Kageyama, 1971, 1973b). The information obtained
from such bounds are useful to characterize such block designs.

A block design BD(v, b, 1, k) is said to be a-resolvable if the b blocks of
size k each can be grouped into ¢ sets (called a-resolution sets) of g blocks
each (b = ft) such that in each a-resolution set every treatment (or point)
is replicated « times (r = at). An a-resolvable BD is said to be affinc a-
resolvable if every two distinct blocks from the same a-resolution set intersect
in the same number, say, q;, of treatments, whereas every two blocks belong-
ing to different a-resolution sets intersect in the same number, say, g, of
treatments. It follows (see Kageyama, 1973a, Shrikhande and Raghavarao,
1964) that for an affine a-resolvable BD(v, b = gt,r = at, k) with block inter-
section numbers ¢, and g¢;, the following relations ¢; = k(e — 1)/(3 — 1) and
g2 = ka/B = k*/v hold. Note that both of ¢; and g, must be nonnegative
integers. An integral expression of ¢; without  and f in terms of design
parameters only is meaningful.

When a = 1, the definition of (affine) 1-resolvability coincides with that
by Bose (1942). Hence a 1-resolvable or an affine 1-resolvable design is simply
called a resolvable or an affine resolvable design, respectively. In this case
t = r. Since an affine resolvable BIB design has the same structure as an
affine geometry, by regarding treatments and blocks of a design as points and
flats of a geometry respectively, a name “affine” is introduced.

In this thesis, some characterization on affine a-resolvable block designs
are dealt with from a combinatorial point of view. Their topics are concerned
with bounds on parameters in designs, the characterization of parameters in
a closed form and existence problems with construction methods. The block
designs discussed here are BIB designs and PBIB designs. The basic proce-
dure is based on the number-theoretic and combinatorial approach. Compre-
hensive and useful results on combinatorics are presented. Several methods
of construction are also newly shown with practical affine resolvable block
designs.



2. Preliminaries

Several key definitions on technical terms used here are described in this
section.

Definition 2.1. A balanced incomplete block (BIB) design with parameters
v,b, 7, k, \ is defined as an arrangement of v treatments into b blocks of k(< v)
treatments each such that

(1) each treatment occurs at most once in a block,
(2) each treatment occurs in exactly r different blocks,
(3) every pair of treatments occurs together in exactly A blocks.

This is also denoted by BIB(v,b,r,k, X) or BIB(v, k,A). Though (2) can be
deriyed from other conditions, it is traditionally mentioned. The parameter
) is called a coincidence number of the design.

It is known that the five parameters of the BIB design satisfy vr = bk,
Mv—1) = r(k—1) and b > v (called Fisher’s inequality). In particular,
when b = v, the BIB design is said to be symmetric. It is also known that
in an a-resolvable BIB design with b= Gt and r = at, b > v+t — 1 (called
Bose’s inequality) holds, and b = v +{ — 1 is a necessary and sufficient
condition for an a-resolvable BIB design to be affine a-resolvable with the
block intersection number ¢, = k(e —1)/(8 —1) = k+ A —r (cf. Shrikhande
and Raghavarao, 1964, Kageyama, 1973a).

In defining a 2-associate PBIB design with two distinct coincidence num-
bers A; and )\, different from a BIB design, the concept of an association
scheme for a set of v treatments is needed.

Given v treatments 1, 2, ..., v, a relation satisfying the following conditions
is said to have an association scheme with two associate classes:

(1) Any two treatments are either lst or 2nd associates, the relation of
association being symmetric, that is, if the treatment x is ith associate
of the treatment y, then y is ith associate of z for i = 1,2.

(2) Each treatment x has n; ith associates, the number n; beihg independent
of x fori=1,2.



(3) If any two treatments x and y are ith associates, then the number of
treatments that are jth associates of £ and £th associates of y is p;-l
and is independent of the pair of ith associates z and y for 4, j, £ = 1, 2.

The numbers v, n;, p}, are called the parameters of an association scheme.

Definition 2.2. Given an association scheme with two associate classes for
a set of v treatments, a 2-associate PBIB design is defined as an arrangement
of v treatments into b blocks of size k(< v) each such that

(1) each treatment occurs at most once in a block,
(2) each treatment occurs in exactly r different blocks,

(3) if two treatments are ith associates, then they occur together in exactly
A; blocks, the number A; being independent of the particular pair of
ith associates for i =1, 2.

N

The numbers v, b, r, k, A; are called the parameters of a PBIB design. Like
a BIB design, when b = v, the PBIB design is said to be symmetric. It holds
that in a 2-associate PBIB design, vr = bk, n;j+ ng =v—1, mA; +nghp =
r(k—1). Conventionally let every treatment be the Oth associate of itself and
of no other treatment, and then it is seen that ng = 1 and Ag = r.

From Definitions 2.1 and 2.2, when A\; = );, a PBIB design becomes a
BIB design. In this sense, in a 2-associate PBIB design A; # Az in general.

Remark 2.1. Though, by a relation of Fisher’s inequality and Bose’s in-
equality, a symmetric BIB design cannot possess a property of affine a-
resolvability, it is remarkable that there exists an affine a-resolvable “sym-
metric” PBIB design. '

The known “2-associate” PBIB designs have been mainly classified into
the following types depending on association schemes, i.e., group divisible,
triangular, Latin-square (L), cyclic (see Bose and Shimamoto, 1952), all of
which will be discussed here. However, the parameters p}, are not described
in Definitions 2.3 to 2.6 (for them, see Raghavarao, 1988).

Definition 2.3. A 2-associate PBIB design is said to be group divisible
(GD) if there are v = mn treatments which can be divided into m groups
of n treatments each, such that any two treatments of the same group are



the 1st associates and any two treatments from different groups are the 2nd
associates. Here m,n > 2, n; = n —1 and ny = n(m - 1).

The GD designs are further classified into three subclasses: Singular (S)
if 7 — Ay = 0; Semi-Regular (SR) if r — A; > 0 and rk — vA; = 0; Regular if
r— A1 > 0 and rk — vA; > 0. By a relation nyA; + n2Ae = r(k — 1), it holds
that (rk — vA2) — (r — A1) = n(A; — A2). The last relation shows that for an
SGD design A; > Ag, while for an SRGD design A; > ;. Note that r — A
and rk — vy are eigenvalues of an information matrix of the design.

Definition 2.4. A 2-associate PBIB design is said to be triangular if there
are v = n{n — 1)/2 treatments which are arranged into an n X n array such
that

(1) the position in the principal diagonal are left blank,

(2) the n(n — 1)/2 positions above the principal diagonal are filled by the
numbers 1, 2, ..., n(n — 1) corresponding to the treatments,

(3) the n(n — 1)/2 positions below the principal diagonal are filled so that
the array is symmetric about the principal diagonal,

(4) for any treatment z the 1lst associates are exactly those that occur in .
the same row or in the same column as z, otherwise they are the 2nd

" associates.

Here n > 4, n; = 2(n — 2) and ny = (n — 2)(n — 3)/2.

Definition 2.5. A 2-associate PBIB design is said to be Ly (Latin-square)
if there are v = s? treatments which are arranged into an s x s array such
that any two treatments in the same row or in the same column of the
array are the 1st associates, otherwise they are the 2nd associates. Here

§>2,n=2(s—1)and ny = (s — 1)

Definition 2.6. A 2-associate PBIB design with v treatments is said to be
cyclic if the set of the 1st associates of ith treatment is (i+d,,i+dy, ..., i+dy,)
mod v, where the elements d; satisfy the following conditions:

(1) The elements d; are all different and 0 < d; < v for j = 1,2,...,n;.

(2) Among the ny(ny — 1) differences d; — d;» each of the dy, dy, ..., dn, occurs
p}; times and each of the ej, e, ..., ey, occurs p?, times, where d;, ej
are all nonzero distinct and {d;,d, ..., dn,, €1, €2, ..., €n,} C {1,2,...,v}.
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(3) For each d; in a set D = (d,dy, ..., d,, ), there exists di in D such that
dk = —d,'. J .

Here ny = ny = (v —1)/2.

The cyclic structure is very convenient to store the information on inci-
dence in block designs and to construct a block design effectively. However, it
is shown (Ma, 1984) that all cyclic association schemes have the parameters
v = 4t + 1 being a.prime and n; = ny = 2t for a positive integer ¢ Thus the
cyclic design may exist only for a prime v being the number of treatments.
Also it is shown that pl; =t — 1 and p?, = t.

" Definition 2.7. In a BD(v,b,r,k), the v x b incidence matrix N = (n;;)
is defined such that n;; is the number of times ith treatment occurs in jth
block. Hence r = ZL] ni; for all i and & = Y, ,ny; for all j. In this
thesis the usual case of n;; =0 or 1foralli=1,2,..,vand j =1,2,...,b

(called a binary design) is only considered, as seen, for example, from (1) of
Definitions 2.1 and 2.2.

In a block design the eigenvalues of information matrices NN’ and N'N
play a key role for the existence problem.
Two results will be needed for the present further argument.

Lemma 2.1 (cf. Shrikhande and Raghavarao, 1964, Kageyama, 2008a). In
an affine a-resolvable BD(v,b = St,r = at, k) with the incidence matrix
N, the matrix N'N has eigenvalues rk, k{1 — (a — 1)/(8 — 1)} and 0, with
multiplicities 1, b — ¢t and ¢ — 1, respectively.

Lemma 2.2 (cf. Lang, 1986). The matrices XY and Y X have the same
nonzero eigenvalues with the same multiplicities, where the matrices X and
Y are of appropriate sizes.

Finally, a known equivalence result on existence of an affine a-resolvable
BD is described. This can be seen from the complementation of a design.

Lemma 2.3. The existence of an affine a-resolvable BD(v,b = Gt,r = at, k)

with block intersection numbers ¢, and g, is equivalent to the existence of an
affine (3 — a)-resolvable BD(v* = v,b* = b,r* = (f — a)t,k* = v — k) with
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block intersection numbers g; = v — 2k + ¢; and ¢ = v — 2k + ¢,.

The subsequent Sections 3, 4 and 5 will be devoted to combinatorial
arguments about bounds on design parameters in (affine) a-resolvable BIB
designs and a special discussion on nonexistence of a 2-resolvable BIB design.
As for (affine) a-resolvable BIB designs, as was described in Introduction,
there are much literature. Recent combinatorial developments can be found
in Caliriski and Kageyama (2000; Chapter 5), Caliriski and Kageyama (2003;
Chapter 9), and Colbourn and Dinitz (2007). Hence in this thesis we do not
list up any series of affine a-resolvable BIB designs for o > 1. In Sections 6
and 7 some combinatorial investigation on affine a-resolvable PBIB designs
will be made comprehensively.



3. Inequality on a-resolvable BIB designs

As was described in Introduction, for a lower bound on the number of
blocks, it is known (see Bose, 1942, Kageyama, 1973a, Raghavarao, 1988,
Shrikhande and Raghavarao, 1964) that in an a-resolvable BIB design with
parameters v,b = Gt,r = at, k, ),

b>v+t—-1 (3.1)

holds for a > 1. In particular, the equality b = v 4+ ¢ — 1 is a necessary and
sufficient condition for an a-resolvable BIB design to be affine a-resolvable
fora > 1.

In this section, as an improvement of the known inequality b6 > v+t —1,
a new inequality b > 2(v — 1) 4+ ¢ on the parameters for a-resolvable BIB
designs with parameters v, b = §t, r = at, k, A that are not affine a-resolvable
is discussed under the condition (a,v — 1) = 1.
In general, it follows that in a BIB design with parameters v,b,7,k, A,
r—A

b= A _(v—1)+r, (3.2)

b-—(v+r—1)=(r_k—l;\)(v_1). (3.3)

Therefore, in a 1-resolvable BIB design with parameters v = gk, b = fr,r,k, A,
a relation (v — 1,k) = 1 holds, and hence, by (3.2), r — X is divisible by &,
i.e., (r — A)/k is a positive integer. Also, as it follows from (3.3) that the
Bose inequality b > v+ r — 1 holds if and only if » > k£ + A holds, (3.2)
shows that in a 1-resolvable BIB design which is not affine 1-resolvable, an
improved inequality

b>2(w—1)+r (3.4)

holds (see Kageyama, 1971). Furthermore, by (3.2), an expression of b in
terms of v — 1 is given by b = p(v — 1) + r for some positive integer p. Thus
the lower bound of b is improved by v — 1 in turn starting from the value
v — 1+ r. From now on, a discussion similar to the above one will be made
when a > 2.

At first, the following observation can be presented.

Lemma 3.1. In an a-resolvable BIB design with parameters v,b = Gt,r =
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at,k, A, when (a,v — 1) =1, (r — A\)/k is a positive integer for a > 1.
Proof. By (3.2), we have
b= M(U _
av

As (a,v—1) =1 and (v,v — 1) = 1, m(r — \) is divisible by av, and hence
by av = Bk, (r — \)/k is a positive integer. |

In general, the complement of an a-resolvable BIB design with parameters
v,b = fBt,r = at,k,\ is an (8 — a)-resolvable BIB design (see also Lemma
2.3). Hence the following characterization can be given.

Theorem 3.1. In an a-resolvable BIB design with parameters v,b = gt,r =
at, k, A\, that is not affine a-resolvable, when a = 1 or f—a = 1, an inequality

b>2(v—1)+t

holds. In particular, the lower bound of b is improved by v—1 in turn starting
from the value 2(v — 1) + ¢.

Proof. When o = 1, we have r = t and hence by (3.4), b > 2(v—1)+r =
2(v—1)+t¢. Furthermore, as (o,v—1) = 1, Lemma 3.1 with (3.2) shows that
the lower bound of b is improved by v — 1 in turn. On the other hand, when
B — a = 1, the complement of an a-resolvable BIB design is a 1-resolvable
BIB design with parameters v* = v,b* =b=ft,r* =b—-r=(f—-a)t =
t,k* =v—k,\*. Hence we have b=b* > 2(v* = 1) +r* =2(v—-1)+¢ =

When a > 2 and 8 — a > 2, a certain condition will be needed to show
our final target which will be described as follows.

Congecture: In an a-resolvable BIB design with parameters v,b = 8t,r =
at, k, A, that is not affine a-resolvable, when (o, v — 1) = 1, an inequality

b>2w—1)+t
holds.

Even if k£ does not divide v, the following can be given as an improvement
of (3.1).

Theorem 3.2. In an a-resolvable BIB design with parameters v,b = ft,r =
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at, k, A, that is not affine a-resolvable, when (a,v — 1) = 1, an inequality
b2v—14+r (Cv-1+1)

holds. In particular, the lower bound of b is improved by v—1 in turn starting
from the value v — 1 +r.

Proof. As (a,v —1) =1, Lemma 3.1 shows that (r — /\)/k is a positive
integer. Hence by (3.2) the required result is obtained. |

Corollary 3.1. In an a-resolvable BIB design with parameters v,b = gt,r =
at, k, A, that is not affine a-resolvable, when (a,v—1) =1 and (r—\)/k > 2,
an inequality -

: b>2(v—1+r (Z2(v-1)+1)

holds. In particular, the lower bound of b is improved by v—1 in turn starting
from the value 2(v — 1) +r.

By Theorem 3.2 and Corollary 3.1, in an a-resolvable BIB design that is
not affine a-resolvable, the conjecture is valid when (r — A)/k > 2. Thus, for
the general validity of the conjecture, a case of (r — A)/k = 1 has to be taken
under {(a,v—1) = 1,a > 2 and § — a > 2 as the remaining consideration.

Now, several necessary conditions for the existence of such designs are
b
given.

Theorem 3.3. In an a-resolvable BIB design with parameters v,b = Bt,r =
at, k, A, that is not affine a-resolvable, in which (o, v—1) = 1 and (r—M\)/k =
1, it holds that

() (,8—a)=1and (o,t) =1; (i) (k,y—1)=1and (Bv—1)=1;
(i#1) a]A (<= (B - @)|(k = 1)); (iv) alk;
(v) (v =Dtk = 1); (vi) (@, f) = L.
Proof. Recall that (r — A)/k = 1 if and only if
b=v—1+r. (3.5)
Let o* = f — . Hence b = At = (a + a*)t = r + a*t, which, from (3.5),

implies v — 1 = a*t. As 1 = (a,v — 1) = (a,a*t), we have the condition
(i). On the other hand, from (a,v — 1) = 1, we have (av,v — 1) = 1, i.e.,
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(Bk,v — 1) = 1, which shows the condition (ii). Next, A(v — 1) = r(k — 1)
implies A(v —1)/a = t(k — 1) which, from (a,v—1) = 1, shows that (iii) oA,
i.e., A\ = a); for a positive integer ;. [Also, (k—1)/(B—a) =t(k—-1)/(a*t)
= t(k—1)/(v—1) = A/ o shows that a|A <= (m — a)|(k —1).] Furthermore,
from the assumption, k = r — XA = a(t — A1), which shows (iv). The above
relation A = at(k — 1)/(v — 1) implies (v), because (o, v — 1) = 1. Finally,
let (o, ) = g > 1, then @ = a9 and § = f,g for some integers a; and ;.
Hence, by (i), 1 = (a,8 — a) = (a1 g, (61 — a1)g) = g, which shows (vi). =

Next, in such designs some sufficient conditions for the validity of an
inequality are described.

Theorem 3.4. In an a-resolvable BIB design with parameters v,b = gt,r =
at, k, A, that is not affine a-resolvable, when (a,v—1) =1 and (r—\)/k =1,
any one of the following conditions is sufficient for the validity of an inequality
b>20v—1)+t:

(Wa=>2pf-a, (@)a=k, (ii)kl, (w)(k-1Lv-1)=1

Proof. Case (i-1): a > f— a. Now b = gt = {a + (8 — a)}t, which, from
(3.5),yieldsv—1=(8—a)t. Hencer=at>(a—-1)t> (f—a)t=v— 1.
Therefore it follows that b=v—-1+r=v—-14+(a—-1)t+¢t > 2(v-1) + .

Case (i-2): a =0 —a. As (q,v—~1)=1and v— 1= (f — a)t, it holds
that (a, 8 — a) = 1. However, this is valid only whena =1, as a = § — a.
Hence by Theorem 3.1, b > 2(v — 1) + ¢.

Case (ii): @ = k. Now av = (k implies v = m. Then b = Gt = vt =
tlv—-1)+t>2(v—1)+t,ast > 2.

Case (iii): k|v. By va = fk, the condition implies a|8. Then (a,v—1) =
a, as v — 1 = (8 — a)t. By the assumption, o = 1. Hence by Theorem 3.1,
b>2(v—1)+t.

Case (iv): (k—1,v—1) = 1. Now, A = r(k — 1)/(v — 1) implics that
r = {(v — 1) for a positive integer £. When £ > 2, by (3.5),b=v—-1+7r=
lv—1)+v—1=4v—-1)+(f—a)t > 2(v—1)+t. When ¢ =1, we have the
parameters of the BIB design as v = 2k,b = 2(2k—1),r = 2k—-1,k, A =k-1.
This means that k|v. Hence as in the proof of the case (iii), the proof is
complete. : [ |

Some sufficient conditions in terms of design parameters for the validity
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of the conditions given in Theorem 3.4 can be stated.

Theorem 3.5. In an a-resolvable BIB design with parameters v,b = ft,r =
at, k, A, that is not affine a-resolvable, when (a,v—1) =1 and (r—\)/k =1,

(1) each of r > v — 1 and k|r shows (i) of Theorem 3.4;

(2) each of (v,k) = 1,(k,v — k) = 1,v being a prime, & > 2 and k being a
prime, k|a, and ¢ = 2 shows (ii) of Theorem 3.4;

(3) v — 1 being a prime shows (iv) of Theorem 3.4.

Proof. Case (1). From r = at and v—1 = (8 —a)t, it holds that r > v—1
implies a > @ — a. When k|r, i.e., v|b, as b=v —1+7, we get v|(r — 1), i.e.,
v<r—1. Hencer >v—1.

Case (2). When (v, k) = 1, a relation aw = Sk implies k|a. Hence, by the
condition (iv) of Theorem 3.3, we get @ = k. When (k,v — k) = 1, a relation
(8 — &)k = a(v — k) implies k|c. Hence, similarly we get @ = k. When v is
a prime, as v > k, we get (v,k) = 1. Hence, similarly & = k. When k is a
prime and @ > 2, by (iv) of Theorem 3.3, a|k and then o = k. When t = 2,
as alk, we have 1 < kf/a < r/a = 2, which implies that o = k.

Case (3) is trivial, because v > k. ]

We cannot yet prove the conjecture entirely. Its reason can be clarified
by the following Remark 3.1. This is, a number-theoretic approach may not
be enough to solve the problem completely.

Remark 3.1. The following three designs satisfy all the available necessary
conditions for the existence of a-resolvable BIB designs:

(i) BIB(v = 10,b = 15,7 = 6,k = 4,A = 2,t = 3, = 2, m = 5), here
b=15<2(v—1)+t =2l

(it) BIB(v = 21,b = 35,r = 15,k = 9,A = 6,t = 5, = 3, m = 7), here
b=235< 2(v—1)+1t = 45.

(iii) BIB(v = 56,b = 77,7 = 22,k = 16,A = 6,t = 11, o = 2,m = T), here
b=T77<2(v—1)+t=121.

This circumstance shows that the only information on integrality on param-
eters of designs is not enough to show the nonexistence of a-resolvable BIB
designs. However, the existence of the above a-resolvable BIB designs (i), (ii)
and (iii) has not been known. Kadowaki (2001) shows the nonexistence of the
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a-resolvable BIB design (i), by starting from three non-isomorphic solutions
(see Mathon and Rosa, 1996) of the original BIB design with parameters
v = 10,b = 15,r = 6,k = 4,A = 2 and then by showing the impossibility
of reforming three 2-resolution sets in a family of 15 blocks of 4 treatments
each.

13



4. Nonexistence of a 2-resolvable BIB design

In the present section, a 2-resolvable BIB(10, 15, 6, 4, 2) given in Remark
3.1(i) is discussed through a combinatorial approach.

4.1. Some results
For a symmetric BIB(v, b, 7k, A), the following result is well known.

Lemma 4.1. Any two blocks of a symmetric BIB(v = b,r = k, ) intersect
in exactly A points.

Let D be a symmetric BIB(v, b,r, k, ) and B be a block of D. Remove B
and all points appearing in B from the other blocks in D. Then the resulting
design is a BIB(v — k,b — 1,r,k — A\, ), which is called a residual design of
D. '

In the residual BIB(v, b, , k, ), a relation r = k + X holds. A BIB(v, b, r,.
k, ) with r = k+ A is said to be quasi-residual. The following Lemma 4.2 is
known (see Mathon and Rosa, 1996):

Lemma 4.2. When A =1 or 2, the existence of a quasi-residual BIB design
implies the existence of the corresponding symmetric BIB design.

Lemmas 4.1 and 4.2 show the following.

Theorem 4.1.. When A = 1 or 2, any two blocks of a BIB(v, b,r = k+\, k, A)
have at most A common points.

As an improvement of the Bose inequality b > v+t — 1 in Section 3, we
conjecture the validity of an inequality b > 2(v — 1) + ¢ under the condition
(e,v — 1) = 1 for an a-resolvable BIB(v, b = Bt, r = aot, k, \) that is
not affine a-resolvable. Note that when a = 1, the conjecture has been
proved (cf. Kageyama, 1971). In Section 3, we could prove the conjecture
for (r—\)/k > 2. Since (r—\)/k is a positive integer, the case of (r—\)/k =1
has to be considered to prove the conjecture entirely. However, as Example
4.1 shows, there are four BIB designs which may violate the conjecture. That
is, such designs satisfy b < 2(v —1) +¢ and all available necessary conditions
for the existence of the a-resolvable BIB designs.

Example 4.1. The following four designs satisfy all the available necessary

14



conditions for the existence of a-resolvable BIB designs:

(i) BIB(v = 10,b = 15,7 = 6,k = 4,A = 2;t = 3,a = 2, m = 5), here
b=15<2(v—1)+t =21

(ii)) BIB(v = 21,b = 35,r = 15,k = 9,A = 6;¢ = 5,a = 3, m = 7), here
b=35<2(v—1)+t=45.

(iii) BIB(v = 50,0 = 70,r = 21,k = 15,A = 6;t = 7, a = 3,m = 10), here
b=170< 2(v— 1)+t = 105.

(iv) BIB(v = 56,b = 77,r = 22,k = 16,A = 6;t = 11, o = 2,m = T), here
b=T77<2v—1)+t=121.

However, the existence of the above a-resolvable BIB designs with (i), (ii),
(iii) or (iv) has not been known. Kadowaki (2001) shows the nonexistence
of the a-resolvable BIB design (i) by use of a computer only. This is not
completely theoretical. ‘

We here show the nonexistence of the 2-resolvable BIB(10, 15, 6, 4, 2)
through a combinatorial approach. This approach may be useful to consider
another existence problem on designs.

4.2. Nonexistence

At first, the following can be presented.

Lemma 4.3. Let ¢* be the number of block intersection among blocks in a
BIB(10, 15, 6, 4, 2). Then it holds that ¢* < 2.

Proof. By Mathon and Rosa (1996), it is seen that the number of non-
isomorphic BIB(10, 15, 6, 4, 2) is only three and their designs are all residual
designs of a symmetric BIB(16, 16, 6, 6, 2). Therefore, it follows that ¢* < 2,
by Theorem 4.1. [

Now, let BJ(-i) be the jth column in the ith resolution set of an a-resolvable

BIB design and let qj(;), = |BJ(-i) N BJ(.f)| for1<:<tand1<jj <m.

Lemma 4.4. In a 2-resolvable BIB(10, 15, 6, 4, 2), ¢\ = 1 for all 4,7, ;'
(G#7)

Proof. Suppose that q](;), # 1 for some %,7,j'. Then by Lemma 4.3, for
such i, 7,j' there are the following two cases: (I) q](;), = 2 and (II) qj(;), =
Let N be the incidence matrix of the design.
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Case (I): qj(;), = 2 for such %, 4, j'. Now suppose that qg) = 2. Since A =2
and a = 2 for the 2-resolvable BIB design, the upper 4 x 15-submatrix of -
the original incidence matrix N of size 10 x 15 can be formed without loss
of generality as follows:
1100011000
00110j00110

(= Ny, say).

—
OO ==
[l = R e
oo O
OO O

Later only N; in N is discussed. For the 1st and 3rd rows, since A = 2 and
a = 2, N; can be set as follows:

Pt et et et
O =
| i o B en]
[==JR =T e}
OO O
— O =
OO
— O
-
oo
[om B en S
SR
_- O
= O
-0 O

0

For the 2nd and 3rd rows, since A = 2, there is only one ‘1’ in either cell(3,
13) or cell(3, 14). Furthermore, for the 3rd row in the 3rd resolution set,
since a = 2, ‘1’ is put in cell(3, 13) or cell(3, 14). Therefore, without loss of
generality, V; has

o O =
OO =
- O
S = O
i e R e

1
1
1
1

Finally, for the 1st and 3rd rows, and for the 2nd and 3rd rows, respectively,
since A = 2 and a = 2, N; becomes

[ G -y
OO R~
— oo
OO
o OO
— O
o O -
Q- O
o= o
-0 O
OO =
oo =
—_—- O
oo
| i e an]

Now for this pattern, the following two cases are further considered. (I-1)
cell(4, 3)=1 and (I-2) cell(4, 3)=0.

Case (I-1): cell(4, 3)= 1. For the 3rd and 4th rows, since A = 2, by
Lemma 2.1 we can get N; as follows:
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11000[(11000|11000
11000(00110j00110 (4.1)
101001 000100101 '
1010 0f0 0 0 0

And for the 2nd and 4th rows, since A\ = 2, there is only one ‘1’ in either

cell(4, 8) or cell(4, 9). Therefore N; has
110001 100011000
11000(00110{j00110
101001 0001{00101
10100{01100|/0O0O00O00

There are no ‘1’ at the 4th row in the 3rd resolution set. This is a contradic-
tion to a = 2. Note that in (4.1) if a cell (4, 14) has 1, then the 4th row in
the 2nd resolution set does not satisfy a = 2.

Case (I-2): cell(4, 3)= 0. By Lemma 2.1 it is enough to consider a case
of cell(4, 6)= 0. Now this case can be further divided into the following four
cases: (I-2-1) cell(4, 7)=1 and cell(4, 8)= 1, (I-2-2) cell(4, 7)=1 and cell(4,
8)=0, (I-2-3) cell(4, 7)= 0 and cell(4, 8)= 1, (I-2-4) cell(4, 7)= 0 and cell(4,
8)= 0. |

Case (I-2-1):cell(4, 7)=1 and cell(4, 8)= 1. rI“h_en N; has
11000110001 1000
1100000110001 10
10100|1 000100101
100 01100(000©O0°1

Hence a = 1 at the 4th row in the 3rd resolution set. This is a contradiction.
For Cases (I-2-2), (I-2-3) and (I-2-4), similarly, we get such contradiction.
Thus, when qg) = 2, we get a contradiction. By any permutation of

columns of N, we can suppose q(.i) = 2 for other 1, j, 7. However, similarly, a

i3’ ;
contradiction can be derived. Hence it follows that qj(;), # 2 for any 1, 7, j'.

Case (II): q](;), = 0 for such ¢, j, 5. Now suppose that qg) = 0. Then the
first four rows of the first 2-resolution set of IV can be formed as follows:

0100
010
0 0 1 (_ Sl’say) .

e e
(e R en B en]
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Since a = 2, there is only one ‘1’ in either cell(4, 3), cell(4, 4) or cell(4,
5) in S;. But since q](;), # 2 by Case(l), we get a contradiction. By any
permutation of columns of N, we can suppose qj(;), = 0 for other i,7,j in
N. However, similarly, a contradiction can be derived. Hence it follows that

‘IJ(;)' # 0 for any 1, 7, j'.

Thus Cases (I) and (II) show that q](;), =1 for all 4,7, (j # 7').- Hence
Lemma 4.4 is proved. , [ |

Theorem 4.2. A 2-resolvable BIB(10, 15, 6, 4, 2) does not exist.

Proof. By Lemma 4.4, without loss of generality N can be formed as
follows.

O OO OO - = = =
QDO == OO0 K
SCHrrHOOROO RO
—_ OO OOMOO
= R, OFR OO OO0
OO -

O =

- O

o O

o O

[

O -

i =]

- O

[l o}

o)
o)

Now consider the 3rd row in the 2nd resolution set. Then the row vector
of size 5 can be taken into the following six cases. (1-1) (0,1,1,0,0), (1-2)
(Oa 1’ 0’ 1, 0)’ (1'3) (01 ls Oa 01 1)7 (1'4) (Oa Oa ]-v 1, 0)7 (1'5) (O’ 0’ 17 07 1)7 (1'6)
(0,0,0,1,1).

Case (1-1): the 3rd row in the 2nd resolution set is (0,1,1,0,0). Since
A = 2, the 3rd row of N can be given by

(10010[/01100[0000 x).

Thus a <1 at the 3rd row in the 3rd resolution set. This is a contradiction.

Case (1-2): the 3rd row in the 2nd resolution set is (0, 1,0,1,0). Then by
Lemma 4.3, for the 1st and 7th columns of N, since ¢* < 2, it is seen that
cell(4,7)= 0. Therefore, for cell(4, 8), cell(4, 9) and cell(4,10), the following
three cases are possible: (1-2-1) cell(4, 8) = 1, cell(4, 9) = 1 and cell(4,10)=0,
(1-2-2) cell(4, 8) =1, cell(4, 9) = 0 and cell(4,10)=1, (1-2-3) cell(4, 8) = 0,
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cell(4, 9) = 1 and cell(4,10)=1. Here N = [ M ] ,say, where N, is of size

N,
4 x 15 and N is of size 6 x 15. Later only N, is discussed.

Case (1-2-1): cell(4, 8) = 1, cell(4, 9) = 1 and cell(4,10)=0. Then by
Lemma 4.3 with A = 2 and a = 2, N; has

N il e
OO -
OO = O
o= 0o 0o
[ = e R ]
OO =
O = O
-0 = O
OO
OO OO
—_0 O =
OO O
O == O
OO - O
o= OO

Hence o = 1 at the 4th row in the 3rd resolution set. This is a contradiction.
Case (1-2-2): cell(4, 8) = 1, cell(4, 9) = 0 and cell(4,10)=1. Similarly, N,

has
11 000{11000J1 1000
101001 0100/00110
1 0010(01010/00101
1 00011(00101|1 0001

Thus the 1st, 2nd, 3rd and 4th rows can be constructed.
Case (1-2-3): cell(4, 8) = 0, cell(4, 9) = 1 and cell(4,10)=1. Similarly, N,
has

11000110001 1000
101001 010000110
10010/01010/00101
10001000111 0010

Thus, the 1st, 2nd, 3rd and 4th rows can be formed. However, by some
permutation of rows and columns of N, the above matrix is isomorphic to
Case (1-2-2).

Similarly, for Cases (1-3), (1-4), (1-5) and (1-6), we can construct the 1st,
2nd, 3rd and 4th rows. By some permutation of rows and columns of NV,
their matrices are isomorphic to Case (1-2-2) for all of cases. By Lemma 4.4
and the above discussion, it is seen that N forms
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11000|11000|11000
10100(10100[/00T1T10
10010{01010[0010°1
10001001011 0001
01100
01010
01001
00110
00101
(00011 ]

Furthermore, for the 1st and 5th rows, and the 2nd and 5th rows, since A = 2,
some argument can show that cell(5, 6)= 0. Similarly, it can be seen that
cell(6, 7)= 0, cell(7, 11)= 0, cell(8, 13)= 0, cell(9, 8)= 0 and cell(10, 15)= 0.
Hence N has the following form:

o
OO O =
QO O
_ O - O
O = OO
-0 OO
—_ O O
SO O =
[l ™)
OO =0
D—*‘P—JOO

O P OO MR OO O
O R OO, OO0

OO OO O O kit bt st
OO MHMHFOOOM

= O ~O OO O

0

Next, we consider cell(i,7) for 5 < i < 10 and 9 < j < 10, namely,
elements of a 6 x 2-submatrix. Now there are six row vectors of size 2 in
the 6 x 2-submatrix. By Lemma 4.4, the submatrix composes one (1,1), one

(0,0), two (1, 0) and two (0, 1).

Now, the following two cases are taken: (I) cell(5, 9) = 1 and cell(5, 10)
= 1, and (II) other patterns than (I).

Case (I): cell(5, 9) = 1 and cell(5, 10) = 1. Furthermore, each of the
following five cases are considered: (I-1) cell(6, 9) = 0 and cell(6, 10) = 0,
(I-2) cell(7, 9) = 0 and cell(7, 10) = 0, (I-3) cell(8, 9) = 0 and cell(8, 10) =
0, (I-4) cell(9, 9) = 0 and cell(9, 10) = 0, (I-5) cell(10, 9) = 0 and cell(10,
10) = 0. -
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Case (I-1): cell(6, 9) = 0 and cell(6, 10) = 0. Since A = 2, N has the
following:

e O = OO0k OoO0o
=00 = OO MR OOoOO0o
—_O OO =
OO O O =
—_0 = O O
O = O = OO
O = -0 o0
o -0 O =
=] OO O =
o QO = = O
o o O = O
— r—ﬂo—A.OO

C OO OO O ==
OO PR~ OOO—
O R OO, OOFO

0

.

Hence o = 1 at the 6th row in the 3rd resolution set. This is a contradiction.

Similarly, each of the other Cases (I-2), (I-3), (I-4) and (I-5) can lead a
contradiction.

Case (II): not (I). As a position of (1, 1) in the 6 x 2-submatrix, the
following five cases are taken: (II-1) cell(6, 9) = 1 and cell(6, 10) = 1, (II-2)
cell(7, 9) = 1 and cell(7, 10) = 1, (II-3) cell(8, 9) = 1 and cell(8, 10) = 1,
(11-4) cell(9, 9) = 1 and cell(9, 10) = 1, (II-5) cell(10, 9) = 1 and cell(10, 10)
= 1. :

Case (II-1): cell(6, 9) = 1 and cell(6, 10) = 1. Since A =2, N has

~ -

11000[(11000|11000
10100[(10100/007110
10010{01010/{0010]1
10001{00101/10001
0110 0|0
01010{0001]1 11
01001 0
00110 0
00101 0

(00011 0 |

Then the 13th and 14th columns show a contradiction to q(.i) =

i = 1 in Lemma
44.
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Similarly, each of the other Cases (II-2), (II-3), (II-4) and (II-5) leads a
contradiction.
~ Hence we get a contradiction for all of the cases. Thus, it can be shown
that a 2-resolvable BIB(10, 15, 6, 4, 2) does not exist. (]

It Should be noted that the present combinatorial approach will take much
time to deal with other BIB designs (ii)-(iv) as in Example 4.1. This task
has not been completed.
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5. Bounds in a-resolvable BIB designs

Based on the argument made in Section 3, in an a-resolvable BIB design,
three lower bounds, b > v —14+¢,b> v —1+2t,b > 2(v — 1) + ¢, on the
number of blocks will be discussed under some conditions. An interesting
characteristic will be described with the possibility of having b < 2(v—1)+¢.

It is also known (Bose, 1942, Raghavarao, 1988) that in an a-resolvable
BIB design b > v+t — 1 holds and that b = v+ ¢ — 1 is a necessary and
sufficient condition for an a-resolvable BIB design to be affine a-resolvable.
In this sense, for a class of a-resolvable BIB designs that are not affine a-
resolvable, necessarily an inequality b > v + ¢ holds. But it seems that this
bound is further improved. _

Though there is another direction of the improvement (Kageyama, 1973b),
" the present problem on an improvement of a bound will be considered for
a-resolvable BIB designs that are not affine a-resolvable under (v—1,a) =1
which always holds when a = 1. This assumption may be reasonable. Since
(v—1,a) = 1 implies that (r — A)/k is a positive integer (see Section 5.1),
in this section the present problem will be dealt with by separating into two
cases of (r — A\)/k > 2 and (r — \)/k =1.

Under this set-up, it is well-known (cf. Kageyama, 1971) that b > 2(v —
1) + 7 in general for « = 1. When a > 2, it is clear that b > v+t in
general. However, when (r — A)/k > 2, it is known (see Theorem 5.1.2) that
b > 2(v—1)+t holds under (v —1,a) = 1. The remaining case is now when
(r—=MA)/k=1and a>2.

In this case, unfortunately there are parameters’ combinations of such
BIB designs for each of b < 2(v—1)+¢,b=2(v—1)+tand b > 2(v—1)+¢.
Some cases are shown to be existent. In fact, it can be seen that there exist a-
resolvable BIB designs having b > 2(v—1)+t. So far the existence of designs
for the case b < 2(v — 1) + ¢ is not known, even if the admissible parameters
are available. There remains some possibility of showing the nonexistence
of all BIB designs with b < 2(v — 1) 4+ t. However, it seems (cf. Kadowaki
and Kageyama, 2008a) that it is a tough problem. Thus, a different status
on a bound (in terms of v and r) of b may be seen between two cases of
(r=MXN/k>2and (r=MA)/k=1.

5.1. Basic results

In an a-resolvable BIB(v,b = §t,r = at, k, /\), it follows that
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r—A

b= 2 (Uf‘l)-i"l“ (511)
_B(r—N)
= T(v ~1)+r

which implies that when (v — 1,a) = 1, av divides B(r — A), ie., (r — A)/k
is a positive integer. In this case, a conjecture is proposed in Section 3 such
that in an a-resolvable BIB(v,b = Gt,r = at,k, ), which is not affine a-
resolvable, when (v — 1,@) = 1, an inequality b > 2(v — 1) + ¢ holds. Note
that the lower limit is expressed through v and ¢ only.

Now, when o = 1, the following is known. )

Theorem 5.1.1 (Kageyama, 1971). In a resolvable BIB(v,b = fr, 1k, \),
that is not affine resolvable, an inequality b > 2(v — 1) + r holds.

Next, when a > 2, the following is shown.

Theorem 5.1.2 (Kadowaki and ‘Kageyama, 2003). In an a-resolvable‘BIB(v,
b= pt,r = at,k,\) with (v — 1,a) = 1 that is not affine a-resolvable, if
(r = X)/k > 2, an inequality b > 2(v — 1) + ¢ holds.

By Theorems 5.1.1 and 5.1.2, a case of (r —\)/k = 1 only has to be taken
under (v—1,a) =1 and & > 2 as the remaining exhaustive investigation for
the present problem.

5.2. Several bounds

Through an argument as in the previous subsection, consider here a class
of a-resolvable BIB(v,b = ft,r = at,k, A), that is not affine a-resolvable,
under (v — 1,a) = 1, > 2 and (r — A\)/k = 1. This class is denoted by
a-BIBD* throughout this section.

At first the following relation is derived.

Lemma 5.2.1. In an o-BIBD*, a relation v > ¢ + 1 holds.

Proof. By (5.1.1), the a-BIBD* shows that b =v+7—1. Thenv—-1=
b—r=(8—a)t>t, since § > a+1. Hencev>1t+1. ]

As in the above proof, note that in an a-BIBD*, (¢,a) =1 and (3,a) = 1.
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Furthermore, Lemma 5.2.1 yields the following.
Corollary 5.2.1. In an a-BIBD*, a relation 2(v — 1)+t > v — 1+ 2t holds.
Now the following bound is given.

Theorem 5.2.1. In an o-BIBD*, an inequality & > v — 1+ 2¢ holds. In
particular, the bound is attained if and only if a = 2.

Proof. By (r—A)/k =1with (5.1.1),b=v—-14+r =v—1+at > v—1+2t,
since a > 2. n

Note that v — 1+ 2¢t = 2(v — 1) + ¢ if and only if v = ¢ + 1. Hence we
have the following.

Corollary 5.2.2. In an a-BIBD* with v = t+1, an inequality b > 2(v—1)+¢
holds.

Example 5.2.1. Consider a 2-BIBD*(12, 33, 22, 8, 14) with ¢t = 11 (cf.
Kageyama and Mohan, 1983). Then (v ~ 1,a) = L,Lv = t+ 1 and b =
v—1+2t=2(v~1)+t. '

From a point of view of investigating the present conjecture, there is a
problem on the existence of an o-BIBD* with b satisfying 2(v—1)+¢ > b >
v — 1+ 2t in general. By Lemma 3.1 and Corollary 3.1, when v =t + 1, this
problem is solved, while when v > ¢ 4 1 the problem is still open.

Theorem 5.2.2. There does not exist an o-BIBD* with \ = 1.

Proof. A relation A(v — 1) = r(k — 1) implies that v — 1 = at(k — 1).
Hence (v —1,) # 1 since a > 2. ]

- Lemma 5.2.2. In an o-BIBD* with A = 2",n > 1, an inequality b <
2(v — 1) + ¢ holds.

Proof. It follows from r = k+ A that v = 14+r(k—1)/A = k+k(k-1)/2™,
which implies that 2"k or 2"|(k — 1).

Case 1: k—1=2"¢> 1. Now it holds that v = (£ + 1)(2"¢ + 1),r =
(e+1)2"+1,b=(£+1)[(¢+1)2"+1]. Hence b —2(v — 1) = —(£ + 1)[(¢ -
1)2° +1]+2 <0, ie., b< 2(v—1)+1.

Case 2: k= 2",{ > 1. Similarly, v = 4[({+1)2" — 1],r = ({+ 1)2",b =
(£+1)[(¢+1)2"—1]. Hence b—2(v—1) = —(£=1)[(£+1)2"-1]+2 < 0if £ > 2,
ie., b<2(v—1)+t. Then £ =1 yields that v = 2"} —=1,b = 2(2"*1 - 1),r =
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27+l k= 2" X\ = 2" Since b = Bt,r = ot and t > 2, it necessarily holds that
a=2"3=2""1—1and t=2. Hence (v—1,a) =2 # 1. n

Remark 5.2.1. Any existing example of the design satisfying Lemma 3.2 is
not found. In particular, when n = 1 in Lemma 3.2, Kadowaki and Kageyama
(2008a) disprove the existence of a 2-BIBD*(10, 15, 6, 4, 2) with ¢ = 3 and
b=15<2(v—-1)+t=21.

Lemma 5.2.3. In an o-BIBD* with A = p",p being a prime > 3 for a
positive integer n, A\|(k — 1) or A|k. Furthermore,

(1) when A|(k — 1), an inequality b < 2(v — 1) + ¢ holds;

(ii) when k = ), parameters v = 2\ — 1,b =22\ - 1),r =2\ k= \,a =
AB=2XA-1,t=2hold, ie,b=2(v—-1)+¢

(iii) when k = £\, £ > 2, an inequality b < 2(v — 1) + ¢ holds.

Proof. Since r = k+ ), it follows that v = k + k(k — 1) /p", which implies
that p™|k or p™|(k — 1).

Case 1: k—1 = £p™, £ > 1. It holds that v = (¢+1)(€p"+1),r = (£+1)p"+
1,b = (€+1)[(¢+1)p"+1]. Hence b—2(v—1) = —(6+1)[((=1)p"+1]+2 < 0,
ie,b<2v-1)+t

Case 2: k= £p™,£ > 1. Similarly, v = {[({ + 1)p" — 1],r = (£ + 1)p", b=
(£+1)[(€+1)p"—1] and hence b —2(v—1) = —((+ 1)[({ - 1)p" - 1] < 0
if £>2,ie,b<2(v—1)+twhen k= £\ and £ > 2. So next £ =1 yields
v=2p"—1,b=2(2p"—1),r = 2p™, k = p™, A\ = p". Since b = ft,r = at and
t > 2, it follows that « = p",f = 2p"—1 and t = 2. In thiscase (v—1,a) =1
since p 2> 3. : . ]

Example 5.2.2. Any existing example of the designs for cases (i) and (iii)
in Lemma 3.3 is unknown. For the case (ii), there exists a 3-BIBD*(5, 10,
6, 3, 3) with t = 2 and 8 = 5. Here b = 2(v — 1) + ¢. The blocks and two
resolution sets are given by [(3, 4, 5), (2, 4, 5), (1, 3, 5), (1, 2, 4), (1, 2, 3)],
[(2, 3, 5), (2, 3, 4), (1, 3, 4), (1, 4, 5), (1, 2, 5)]. Also when A = 5, there
exists a 5-BIBD*(9, 18, 10, 5, 5) with ¢t = 2 and 8 = 9 (cf. Kageyama and
Mohan, 1983). :

Remark 5.2.2. A general result on existence of the design (ii) in Lemma
3.3 is presented as follows. Since v < 2k, .its complement can be considered,
i.e., an o*-BIBD*(v* =22 —1,0* =2(2A = 1), =2(A—=1),k* = A -1, \* =

26



A—2,a*=A—1,0* =2\ - 1,t* = 2), whose existence is seen by Theorem
4.4.15 of Hedayat and Kageyama (1980) when A and 2\ — 1 is a prime or a
prime power, since one initial block constructed there through GF(2X — 1)
produces a resolution set.

Next, we consider an a-BIBD* with a composite number on A whose
smallest case (being not a power) is A =6 =2 x 3.

Lemma 5.2.4. In an o-BIBD* with A = 6, an inequality b < 2(v — 1) +¢
holds, except for an existing 2-BIBD*(6, 15, .10, 4, 6) with ¢ = 5 having
b=2(v—-1)+t=v—1+2t.

Proof. Since r = k + ), it follows that v = k + k(k — 1) /6, which implies
that 2|k, 3|k, 6|k, 2|(k — 1), 3|(k — 1), or 6|(k — 1). A

Case 1: k—1=2{,¢4 > 1. It holds that v = (20 + 1)(£ + 3)/3,r =
204+7,b=(£+3)(2¢+7)/3. Hence b—2(v—1) = —(£+3)(2(-5)/3+2<0
if £ > 3,ie,b< 2(v—1)+t. When £ = 1,2, there is no design for an
a-BIBD*.

Case 2: k—1=3¢,£> 1. Similarly, v = (3¢+1)({+2)/2,7r =3(+T7,b=
(€+2)(3¢+7)/2. Hence b— 2(v — 1) = —(£+2)(3¢ — 5)/2+2 < 0if £ > 2,
ie,b<2(v—1)+t Next, £{=1yields v =6,b=15,r =10,k = 4,A = 6.
Since b = Bt,r = at and t > 2, it follows that « = 2,8 = 3 and t = 5.
This 3-resolvable BIB design exists as a complement of the design of No. 2
in Kageyama (1972).

Case 3: k—1=06¢(,£> 1. Similarly, v = (£ +1)(6{+1),r =6{+7,b=
(£+1)(6£+ 7). Hence b—2(v—1) = —(£+1)(6 -5)+2<0if £ > 1, i.e,
b<2(v—1)+t.

Case 4: k = 64, > 1. Similarly, v = £(6¢ + 5),r = 6(£ + 1),b =
(£+1)(6¢£+5). Hence b—2(v —1) = —(£ —1)(6¢+5)+2 < 0if £ > 2, i.e.,
b < 2(v—1) +¢t. Next, when £ =1, there is no design.

Case 5: k = 3¢,£ > 1. Similarly, v = £(3¢ + 5)/2,r = 3(¢ + 2),b =
(£+2)(3¢+5)/2. Hence b— 2(v — 1) = —(£ — 2)(3¢+5)/2 + 2 < 0 if £ > 3,
e, b<2(v—1)+t. Next, when £ = 1,2, there is no design.

Case 6: k = 2(,¢ > 1. Similarly, v = £(2¢ + 5)/3,7 = 2(£ + 3),b =
(£+3)(2¢+5)/3. Hence b—2(v—1) = —(€ = 3)(2¢ +5)/3+2 < 0if £ > 4,
ie., b < 2(v—1)+1¢ Next, when ¢ = 1,3, there is no design, while £ = 2
yields v = 6,b = 15,7 = 10,k = 4, A = 6 which is the same as the design in
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Case 2. ]

Remark 5.2.3. Any existing example of the design satisfying Lemma 3.4 is
not found.

Similarly, another case of a composite number A = 10 = 2 x 5 can be
investigated as follows. The proof is routine and similar to that of Lemma
5.2.4 and hence it is omitted. '

Lemma 5.2.5. In an o-BIBD* with A = 10, an inequality b < 2(v—1) +1¢
holds, except for an existing 5-BIBD*(7, 21, 15, 5, 10) with ¢ = 3 having
b>2(v—1)+t.

Example 5.2.3. The existing 5-BIBD*(7, 21, 15, 5, 10) in Lemma 5.2.5 has
21 blocks and 3 resolution sets as follows: [(3, 4, 5, 6, 7), (2, 4, 5, 6, 7), (1,
3,5,6,7),(1,24,6,7), (12357, (1,234, 6), (1,2, 3,4, 5)], [(2 3,
5,6,7),(234,6,7),(1,3,4,57),(1,24,5,6),(1,4,56,7),(1,2,3,5,
6), (1,2, 3. 4, )], [(2, 3, 4, 5, 7), (2,3, 4, 5, 6), (L, 3, 4, 6, 7, (L, 3, 4, 5, 6),
(1,2,4,5,7),(1,2,3,6,7),(1,2,5,6, 7)]. Here b =21 > 2(v — 1)+t = 15.
In fact, b=3(v—1) +¢.

Remark 5.2.4. Among a-BIBD* satisfying b > 2(v — 1)+, most of designs
have b = 2(v—1)+¢. Asin Example 5.2.3, a design with b > 2(v—1)+¢ can
be constructed in a-BIBD*. Furthermore, we can show the existence of such
designs, for example, a-BIBD* of Nos. 44 (z = 3), 65 (z = 3), 75 (z = 4), 80
(z =5), 84 (z = 3), 89 (z = 4), 98 (z = 5) in Kageyama and Mohan (1983),
where b = z(v — 1) + ¢ that is an interesting relation. Also note that the
design of Example 5.2.3 is the smallest example with £ = 3 among designs
with b > 2(v—1) +¢.

Finally, to investigate further the real existence of an a-BIBD* with b <
2(v — 1) + t, this problem can be also considered in terms of a GD design. It
is to utilize the fact (Theorem 8.5.1 of Raghavarao, 1988) that the existence
of an a-BIBD*(v,b = ft,r = at,k,)) is equivalent to the existence of an
a-resolvable singular GD design with parameters v* = nv,b* = b = gt,r* =
r = at,k* =nk,\} =r,\5 = \;m* = v,n* =n for a positive integer n > 2.
The a-resolvability is obvious. In this case, b < 2(v — 1) + ¢ is equivalent to
b* < 2(v*/n — 1) +t. In Table IV of Clatworthy (1973), unfortunately any
example of such GD designs is not available within the scope of parameters.
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In fact, the existihg GD designs in the table shows b* > 2(v*/n — 1) + .
5.3. Remarks

An improvement of bounds on the number of blocks has been discussed
in this section. The basic bound is b > v+ ¢ — 1 for an a-resolvable BIB
design with o > 1. Our problem is for a class of a-resolvable BIB designs
that are not affine a-resolvable. Usually in this case, the basic bound is
improved by one, i.e., b > v + ¢{. Though the present problem is considered
under a condition (v — 1,a) = 1, the basic bound could be improved for
both cases of (i) @ = 1 and (ii) @ > 2 and (r — A)/k > 2. However, the
remaining case of & > 2 and (r — \)/k = 1 (quasi-residual design) shows us a
completely different status. For this case the improved bound b > 2(v—1)+t
cannot be derived similarly to the cases (i) and (ii). Finally, a relationship
on parameters is described.

Proposition 5.3.1. In an a-BIBD*, it holds that

Mb<2v-1)+t <= >20-1 <= t<(v-1)/(a-1),
2)b=2v-1)+t <= f=2a-1 << t=(v-1)/(a—-1),
B)b>2(v-1)+t <= [f<2a-1 <= t>(v—-1)/(a—1),

where ¢ is the number of resolution sets and 3 is the number of blocks in
each resolution set.

Proof. Note that b= v+ r — 1 is equivalent to v — 1 = (8 — a)t. Hence,
fb=v+r—1<2(v—1)+t, then (a— 1)t < (- a)t, ie., 8>2a-1,
and conversely. Also, if b (=v+r—1)=v+at—1<2(v—1)+t, then
(¢ — 1)t < v~ 1, and conversely. The other cases are similar. ]

Thus, in an a-BIBD*, b = v + at — 1, which is in terms of v,¢ and «, whose
lower limit cannot be expressed in terms of v and ¢ only. As Proposition 5.3.1
reveals, several relations on parameters may occur in an a-BIBD*. Without
having the parameter «, an inequality b > v+2{—1 may be the best in general
as in Theorem 5.2.1. As in Lemmas 5.2.2 — 5.2.5, the bound b < 2(v—1) +1¢
is derived as a parametric characterization. As far as the authors are aware
of, any example of the design for such cases cannot be constructed.

Remark 5.3.1. Note that § > 2a <= b > 2r <= v > 2k. The relations
(2) and (3) in Proposition 5.3.1 make an improvement to (i) of Theorem 2.4
of Kadowaki and Kageyama (2003). Also, in (2), (8,a) = 1.

e -
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6. Affine a-resolvable PBIB designs

The present section is devoted to the combinatorial investigation on a
property of affine a-resolvability in a 2-associate PBIB design.

In literature there are much combinatorial discussions on a-resolvable
PBIB designs (see, for example, Bose, 1977, Kageyama, 1977, 2007, 2008a,
2008b, Kageyama and Mohan, 1985). However, there are not many papers
on “affine” a-resolvable PBIB designs. As was mentioned in Section 2, there
are several types of 2-associate PBIB designs. Among them, two types are
at first considered here.

Let us take a class of cyclic PBIB designs (see Definition 2.6). In this
case the following can be seen.

Theorem 6.1. There does not exist an affine a-resolvable cyclic 2-
associate PBIB design for any a > 1.

Proof. In this design, it is known that the number of treatments is v =
4t + 1 being a prime. On the other hand, the affine a-resolvability requires
that g, = k2 /v is an integer. Now since v is a prime and v > k, g3 is not an
integer. Hence the proof is complete. , |

Next consider a class of triangular PBIB designs with v = n(n — 1)/2
(see Definition 2.4). No example has been found for an affine a-resolvable
triangular design for @ > 1 in literature. Recently the following has been
shown.

Theorem 6.2 (Kageyama, 2007, 2008b). There does not exist an affine
a-resolvable triangular design for 1 < o < 10.

Then Kageyama has conjectured that there does not exist an affine a-
resolvable triangular design for any @ > 1. Since the attractive result on
existence could not be further obtained, the existence problem of affine a-
resolvable triangular designs will not be discussed in this thesis.

As of today, a C);clic design forms the only class of 2-associate PBIB

designs which do not possess entirely a property of affine a-resolvability in
design theory. A class of triangular designs may be the next such candidate.
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For further argument, the following lemma is useful. This can be derived
by use of Lemmas 2.1 and 2.2.

Lemma 6.1 (cf. Kageyama, 2007). In a 2-associate PBIB design, having
the incidence matrix N, with parameters v, b, 7, k, A;, 0;, p;, i = 0,1, 2, where
X =100 =1k, po = 1, 6; and 0, are the nonnegative eigenvalues (other
than rk) of NN’ with respective multiplicities p; and p;, when 8, > 0 and
" #, > 0, the design does not possess a property of affine a-resolvability.

Remark 6.1. Similarly to A; as in Definition 2.2(3), the eigenvalues 6; are
corresponding to ith associates of an association scheme, ¢ = 0, 1,2 (Caliniski
and Kageyama, 2003, Raghavarao, 1988). Since in a cyclic 2-associate PBIB
design all the eigenvalues of NN’ are positive (see, pp. 126 and 129 in
Raghavarao, 1988), Lemma 6.1 can yield the same result as in Theorem 6.1.

The following result plays a crucial role to characterize affine a-resolvable
2-associate PBIB designs in this thesis.

Theorem 6.3. Let N be the v x b incidence matrix of an affinc a-
resolvable 2-associate PBIB design with parameters v,b = Gt,r = at, k, Ay,
A2, q1 = k(e —1)/(8 — 1) and g, = k*/v, and further let 6; be eigenvalues
of NN’ with multiplicities p;, i = 0, 1,2, where 6y = rk and py = 1. Then,
when 6; >0 and 6y = 0,i # ¢ € {1,2}, g1 =k —6; and b=t + p; hold.

Proof. By Lemma 2.1, N’N has the only nonzero eigenvalue (other than
rk) k{1 — (a — 1)/(8 — 1)}, which is equal to k — ¢;, with multiplicity b — ¢.
Then (i) when 6; > 0 and 6; = 0, Lemma 2.2 implies that k — q; = 6,
and b — t = p;, while (ii) when 6, = 0 and 6, > 0, Lemma 2.2 implies that
k—¢q =0, and b —t = py. On account of Lemma 6.1 note that a case of
6; > 0 and 8, > 0 does not occur in this design. ]

Remark 6.2. In Theorem 6.3, when 6; = 6, = 0, i.e., NN’ has the
only one nonzero eigenvalue rk, the design is orthogonal and then N = 1,1},
which is not incomplete (cf. Caliriski and Kageyama, 2003, Chapters 6 and
7), where 1, is an s X 1 column vector all of whose elements are 1. Hence,
the orthogonal design is not a PBIB design, but a randomized block design.

In a 2-associate PBIB design, when A\; = )z, the PBIB design becomes a
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BIB design and hence, as eigenvalues of NN’, §; = r — A only other than rk.
Therefore, by Theorem 6.3, in an affine a-resolvable BIB design q; = k+A—1
holds (see the statements after Definition 2.1).

The largest, simplest and perhaps most important class of 2-associate
PBIB designs is known as GD (group divisible). In a GD design the eigen-
values of NN’ have 6; = rk — v\ and 6, = r — A; (other than rk) with
respective multiplicities p; = m — 1 and p; = m(n — 1). Hence by Definition
2.3 and Lemma 6.1 the following has been provided.

Theorem 6.4 (cf. Kageyama, 2008a). There does not exist an affine
a-resolvable regular GD design for any a > 1.

By Remark 6.2, other two subclasses (i.e., SGD and SRGD) of GD designs
will be discussed in subseque;nt Sections 6.1 to 6.4 below.

6.1. Affine a-resolvable SGD designs

By Definition 2.3, the present section is devoted to a GD design with
r = Ay, i.e., of singular type. Note that A; > A3 in an SGD design. Shah and
Kabe (1981) discussed the affine a-resolvability of an SGD design, but their
argument does not help the present consideration.

It is known (Bose and Connor, 1952) that the existence of an SGD(v =
mn, b,7 = A, k, A1, \2) is equivalent to the existence of a BIB(v*, b*,7*, k*, A*),
where v = nv*,b=b*r=r*k=nk*, A\ =1r*, X2 = X, m =v*,n =n. This
result can be obtained from replacing each treatment of the BIB design by a
group of n treatments for n > 2. It is obvious that the present replacement
procedure preserves a property of affine a-resolvability between a BIB design
and an SGD design. Hence the following result has been established.

Theorem 6.1.1. The existence of an affine a-resolvable SGD(v = nv*,b =
b* = fBt,r = = at,k = nk*,\; = r*; )y = X;m = v*,n = n) with
q1 = nk*(a—1)/(8—1) and g, = n(k*)?/v* is equivalent to the existence of an
affine a-resolvable BIB(v*, b* = 8t,r* = at, k*, \*) with q; = k(a—1)/(8-1)
and ¢ = k?/v. _ .

Now an integral expression of ¢; is derived like ¢y = k+ A —r in an affine
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a-resolvable BIB design.

Corollary 6.1.1. In an affine a-resolvable SGD design, q; = k(o —
1)/(B — 1) = k — Mk + vz holds.

Proof. Since 6; = rk —vAg and 03 = r — A\; = 0, by Theorem 6.3 we have
q1=k—01=k—rk+v)\2. |

Now the parameters of an affine a-resolvable SGD design with parameters
v=mn,b=pt,r =atk,A, s, q1 = k(a—1)/(8—1) and g, = k?/v are
characterized. The following can be shown.

Theorem 6.1.2. The parametefs of an affine a-resolvable SGD design
are given by : ' '

Bm—-1) am-1) amn . am-1)
,B—]. = ,3—]. ,k_ ,8 aAl— /3_1 ’
_ofam—-p) , m-1 _ o’mn
)‘2_ ﬁ(/@—'l) 1t—ﬁ_l,Q2 ﬂ2 I

where am/f is an integer.

v=mn,b=

Proof. Since eigenvalues of NN’ are rk—v); and r—A; = 0 with respective
multiplicities m — 1 and m(n — 1), it follows from Theorem 6.3 that b —t =
m—1,ie.,t=(m—1)/(8-1) which also implies that m > 3. Then we obtain
the expression of parameters as v = mn,b = ft = f(m—-1)/(f—1),r = at =
a(m—-1)/(8—-1),k =vr/b=amn/B,\ =r = a(m — 1)/3. Furthermore,
by a relation r(k — 1) = nyA; + naAg, we get Ay = alam — 8)/[8(8 — 1)].
Also by Theorem 6.1.1, k/n = am/f must be an integer. =

Thus, all parameters of an affine a-resolvable SGD design can be ex-
pressed in terms of m,n,a and §. It is clear that these parameters satisfy
Corollary 6.1.1. '

6.2. Table of affine resolvable SGD designs with v < 100 and r, k£ < 20
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There are a number of affine a-resolvable SGD designs with parameters
v = mn,b = Bt,r = at, k, M\, A2, q1,q2. In this section, we restrict ourselves
to the case of o = 1. Even so, by Lemma 2.3, some of other affine a-resolvable
SGD designs can be constructed for some a > 2. Now, since g = k2/v, by
Theorem 6.1.2 we have the expression of parameters as

B(m —1) m-—1 mn

ﬁ—l a”‘:ﬂ_lak:Fr

/\_m—l)\_m—ﬂ _mn
l—ﬁ’ 2_,8(;6——1)-’(12_—,[72—’
where m/( is an integer. Since m > (3, according to the value being a positive
integer (> 2) of m/f, we now systematically search the designs with admis-
sible parameters (i.e., of satisfying necessary conditions for the existence)
within the scope of v < 100 and r, k < 20. All the design parameters should
be integers. In fact, there are 41 parameters’ combinations, all of which have
explicit information on the existence of affine a-resolvability. By Theorem
6.1.1 the existence problem completely depends on the existence status of
the corresponding affine resolvable BIB(v* = v/n,b* = b,7* = r = A\, k* =
k/n,\* = A;) whose combinatorics has been discussed widely in literature
(cf. Kageyama, 1972, Shrikhande, 1976, Furino, Miao and Yin, 1996). For
example, the existence of a “self-complementary” (i.e., v = 2k) affine resolv-
able SGD design with parameters v = mn,b = 2(m — 1),r = m — 1,k =
mn/2,\y =m—1,A = (m —2)/2,q; = 0,q2 = mn/4 is equivalent to the
existence of an affine resolvable BIB(v* = m,b* =2(m—1),r* =m—-1,k* =
m/2,\* = (m — 2)/2) for even m.

In Table 6.2, the admissible parameters of affine resolvable SGD designs
are listed along with existence information. The designs are numbered in
the ascending order of m and for the same m in the order of n. Since
g1 = 0, the parameter is not listed. “Non-E” means the nonexistence of the
design, Kz+{y} in Source 1 means that the design is constructed through
an affine resolvable BIB design of No. z in Kageyama (1972) in which each
treatment is replaced by a group of y new treatments. In Source 2, when an
affine resolvable SGD design does not exist, the status on existence of the
corresponding BIB design, i.e., an SGD design, which is not affine resolvable,
is described.

v=mn,b=
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Table 6.2. Affine resolvable SGD designs

No. | m n v b r k]l x| x| q Source 1 Source 2 Remark
1 4 2 8 6 3 4 3 1 2 K1+{2} S6
2 4 3 12 6 3 6 3 1 3 K1+{3} S27
3 4 4 16 6 3 8 3 1 4 K1+{4} S61
4 4 5 20 6 3110 3 1 5 K1+{5} S106
5] 4] 6| 24| 6| 3]12] 3| 1| 6| Ki+{6}
6 4 7 28 6 3114 3 1 7 Ki1+{7}
7 4 8 32 6 3116 3 1 8 K1+{8}
8 4 9 36 6 3118 3 1 9 K1+{9}
914110 40 6 3120 3 1| 10 || K1+{10}
10 6 2 12 | 10 5 6 5 2 3 Non-E BIB(6,3,2) + {2} X1
11 6 4 24 1 10 5|12 5 2 6 Non-E BIB(6, 3,2) + {4} X1
12 6 6 36 | 10 5] 18 5 2 9 Non-E BIB(6, 3,2) + {6} ¥1
13 8 2 16 { 14 7 8 7 3 4 K5+{2} S63
14 8 3 24 | 14 7112 7 3 6 K5+{3}
15 81 4 321 14 7116 7 3 8 K5+{4}
16 8 5 40 | 14 7120 7 3110 K54{5}
17 91 .2 18 | 12 4 6 4 1 2 K6+{2} S37
18 9 3 27 | 12 4 9 4 1 3 K6+{3} S91
19 9 4 36 | 12 4|12 4 1 4 K6+{4}
20 9 5 45 | 12 4115 4 1 5 K6+{5}
21 9 6 54 | 12 4118 4 1 6 K6+{6}
22 110 2 20 | 18 9| 10 9 4 5 Non-E BIB(10,5,4) + {2} X1
23 | 10 4 40 | 18 9| 20 9 4110 Non-E BIB(10,5,4) + {4} 1
24 112 2 2412|1112 11 5 6 K12+{2}
25 | 12 3 361221111811 5 9 || K12+{3}
26 | 14| 2| 28|26 (13|14 13| 6| 7| NonE | BIBA4,7,6)+{2} | X1
27 | 15 3 45 | 21 7115 7 2 5 Non-E Non-E 2
28 | 16 2 32120 5 8 5 1 2 | K17+{2} S74
29 | 16 2 32 |3 |15 16| 15 7 8 || K18+{2}
30 | 16 3 48 | 20 5] 12 5 1 3 || K17+{3}
31| 16 4 64 | 20 51 16 5 1 4 || K17+{4}
32116 5 80 | 20 5120 5 1 5 || K17+{5}
33118 2 36 | 34|17 {18 ] 17 8 9 Non-E BIB(18,9,8) + {2} X1
34 120 2 40 | 38 | 191 20 | 19 9 | 10 || K25+{2}
35| 25 2 50 | 30 6] 10 6 1 2 || K28+{2} S121
36 | 25 3 75 | 30 6115 6 1 3 || K28+{3}
37| 25 4 { 100 | 30 6| 20 6 1| 4 | K28+{4}
38 | 27 2 54 1399|1318 13 4 6 || K30+{2}
39 | 36 2 72 | 42 7112 7 1 2 Non-E Non-E X3
40 | 40 2 80 {52113 ]20]| 13 3 5 Non-E BIB(40,10,3) ? X4
41 | 49 2 98 | 56 8| 14 8 1 2 || K40+{2}

The column of Remark shows some information:

For example, S6 denotes an SGD design number from Table IV of
Clatworthy (1973). An actual affine resolvable solution is also given
there.
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% 1: Though a BIB(v* = v/n,b* = b,r* = r,k* = k/n,A\* = \p) exists,
(k*)2/v* is not an integer. Hence the corresponding affine resolvable
solution does not exist.

% 2. ABIB(v =15,b=21,r =7,k =5\ = 2) does not exist (Takeuchi,
1962). Hence an affine resolvable solution does not exist.

% 3: ABIB(v =36,b=42,7r = 7,k = 6,\ = 1) does not exist (Takeuchi,
1962). Hence an affine resolvable solution does not exist.

¥ 4: In a BIB(v = 40,b = 52,r = 13,k = 10,\ = 3), k%/v is not an integer
and hence such an affine resolvable solution of a design of No. 40 does
not exist, but the existence as a BIB design (or an SGD design) is in
doubt.

6.3. Affine a-resolvable SRGD designs

In this section an affine a-resolvable SRGD design with parameters v =
mn,b = Bt,r = at,k, A, A2, ¢t = k(a—1)/(8—1) and go = k?/v, in which
rk — vA = 0, is considered. Note that A\; > A; in an SRGD design.

Now an integral expression of ¢; is derived like ¢; = k+ X —r in an affine
a-resolvable BIB design and as in Corollary 6.1.1.

Corollary 6.3.1. In an affine a-resolvable SRGD design, q; = k{a —
1)/(B—1) = k+ A\, — r holds.

Proof. Since 6; = vk —vA; = 0 and 6; = r — Ay, Theorem 6.3 implics
that gy = k+ X\ — 7. [}

Furthermore, a typical result is remarked.

Lemma 6.3.1 (Bose and Connor, 1952). In an SRGD design, k is divis-
ible by m.

Next the following characterization of parameters is obtained.

Theorem 6.3.1. The parameters of an affine a-resolvable SRGD design
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are given by

B _Pm(n—-1)  am(n-1)  amn =am(an—ﬂ)
v=mn,b= 51 T = A1 k= 3 AL —,B(,B—l) ,
_a®m(n—-1)  mn-1)  o’mn
A2-" ﬂ(ﬂ_l) at_ ,8—1 12 = ,82 ’

where an/f3 is an integer.

Proof. Since eigenvalues of NN’ are rk—vA; = 0 and r—\; with respective
multiplicities m — 1 and m(n — 1), by Theorem 6.3 it holds that b —t =
m(n—1), i.e., b = v+t—m which also implies that t = m(n—1)/(8—1). Then
it follows that v = mn,b= gt = fm(n—-1)/(B—1),r = at = am(n—-1)/(B—
1),k = vr/b = amn/B, Xy = 7k/v = o®*m(n — 1)/[B(B — 1)]. Furthermore,
from a relation r(k — 1) = n1A; + n2Xg, we get Ay = am(an — B)/[B(8 — 1)]-
Also by Lemma 6.3.1, k/m = an/# must be an integer. |

Thus, all parameters of an affine a-resolvable SRGD design can be ex-
pressed in terms of m,n,a and (. It is clear that these parameters satisfy
Corollary 6.3.1.

There are 14 affine resolvable SRGD designs listed by Clatworthy (1973),
among of which 12 designs are symmetric. That is, only two affine resolvable
“nonsymmetric” SRGD designs are available within the scope of parameters
in Clatworthy (1973).

When the SRGD design is symmetric, we have t = m and n = (3. Hence
Theorem 6.3.1 yields the following.

Corollary 6.3.2. The parameters of an affine a-resolvable symmetric
SRGD design are given by

am(a —1) ) = a*m

v=b=mn,r=k=am,)\ =

n—1 y N2 — n )
t=m,8=n.

All the existing affine a-resolvable symmetric SRGD designs satisfy m =
n. In this case Corollary 6.3.2 yields the following since n = 3.
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Corollary 6.3.3. The parameters of an affine a-resolvable symmetric
SRGD design with m = n are given by

-1
v=b=m2,r=k=am,/\1=————am(a )
, ‘ m—1
Note that in Corollary 6.3.3

)\1=a(a—1)+%

which causes some restriction on the values of (> 2) for given m in v = mn.

As a method of construction of an SRGD design belonging to Corollary
6.3.3, Kageyama and Mohan (1985, Corollary 2.1) show that when v* is a
prime, the existence of a symmetric BIB(v* = b*,r* = k*, \*) implies the
existence of an affine a-resolvable symmetric SRGD design with parameters
v=b=(v*)?r=k=0vk" =X = (k) q =\ q= (k) a=
r*,t = 3 = v* for m = n = v*. By use of this result, for example, the
following can be given. (i) Since a symmetric BIB(3, 3, 2, 2, 1) exists,
we get a design of No. 6 of Table 6.4, i.e., SR23. (ii) Since a symmetric
BIB(5, 5, 4, 4, 3) exists, we get an affine 4-resolvable SRGD design with
parameters v =b=25,r=k=20,A\; =15, =16,t =3 =5;m=n =25,
whose complement is, by Lemma 2.3, an affine resolvable SRGD design with
parameters v =b=25,r =k =5, 1 =0, 2 = 1;m =n =5, i.e., a design of
No. 13, which may be different from SR60. (iii) Since a symmetric BIB(7,
7, 3, 3, 1) exists (cf. Takeuchi, 1962), we get an affine 3-resolvable SRGD
design with parameters v=b=49,r =k =21\, =7, =9,t =3 =T for
m=n="7.

For the next section the case of @ = 1 will be investigated in detail. For an

affine resolvable SRGD design, t = r and then Theorem 6.3.1 with g = k%/v
shows the expression of design parameters as

pmn—1) _mn-1), mn  _ mn-§)

B-1 T T p-1 g BB—-1)"
_mn—l) g _Trk_n
AZ_ ﬂ(ﬁ_l)a(h—O,(h— ,32 ’m—ﬁ'

Then it holds that Ay — A\; = m/8. Therefore, there exist positive integers =
and y such that

v=mn,b=

m=zf and n=yg.
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These x and y can be used to express the required parameters as

zf%(By — 1) zB(ys — 1)

V= Il;yﬁz,b = T,r = W, k = .’Eyﬂ, (631)
A1 = %’Ai: %'-6%1)1 Q= 01 qQ = xy;% =Y. (632)

In this case A — A; = = and A; = B(A; — zy) (> 0). Note that A\; = 0 if and
only if y = 1, i.e., the design is symmetric.

Now a way of presentation of the design parameters is made according to
four patterns on the values of positive integers x and y.

Case I. T =y =1, ie, m = n = (. In this case we have the design
parameters as '

U=b=ﬂ27r=k=iﬂ,/\1:0,)\2=1,(12:1,‘7%:17

which is symmetric. In fact, the existing SR1, SR23, SR44, SR60, SR&7,
SR97 and SR105 in Table VI of Clatworthy (1973) belong to this class. By
Lemma 2.3, note that the complement of the design of Case 1 is an affine (6—
1)-resolvable symmetric SRGD design with parameters v* = b* = §%,r* =
k* = B(B-1), M = B(B-2),\; = B(B—2)+1,4; = B(B-2), 45 = B(B-2)+1,

and vice versa. For the present case a construction result can be provided.

Theorem 6.3.2. When f is a prime or a prime power, there exists an
affine resolvable symmetric SRGD design with parameters

v=b=,32,r=k=,8,/\1=0,)\2'=1,q1=0,q2=1;m=n=ﬂ.

Proof. 1t is well known (cf. Caliniski and Kageyama, 2003; Chapter 6)
that when 8 is a prime or a prime power, an affine resolvable BIB(v* =
B4 b* = B(B+1),r = B+ 1,k* = B,A* = 1) can be constructed by use
of an affine plane. The dual of this design can yield an SRGD design with
parameters v = 3(8 + 1),b = B%,r = B,k =6+ 1,\; = 0,\; = 1. In this
design by deleting a group of § treatments corresponding to a partition for
the affine resolvability of the original BIB design, we can obtain an SRGD
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design with parametersv = b = 32,7 = k = 8, \; = 0, A\, = 1. The remaining
problem is to introduce the affine resolvability for the present design. It can
be shown that this affine resolvability is naturally given when the incidence
structure corresponding to 3 treatments of a group deleted in the dual design
is

I 8 X 1’ ,

where A ® B denotes the Kronecker product of matrices A and B, and Iz is
the identity matrix of order S. [

Remark 6.3.1. From the combinatorial structure on incidence in the
construction process given in the proof of Theorem 6.3.2, it is obvious that
the existence of an “affine resolvable” SRGD design as in Theorem 6.3.2 is
equivalent to the existence of an affine plane of order g.

Case 2: y =1, i.e., n = . In this case we have the design parameters as

U=b=$,82,'r'=k=$ﬂ,>\1=0,A2=$,Q2=$7§;=1,

which is symmetricc. When x = 1, this case coincides with Case 1 and
then x > 1 is mainly considered. In fact, the existing SR36, SR72, SR92,
SR95 and SR102 in Table VI of Clatworthy (1973) belong to this class for
x =2,2,4,2 and 3, respectively. By Lemma 2.3 note that the complement of
the design of Case 2 is an affine (§ — 1)-resolvable symmetric SRGD design
with parameters v* = b* = 0%, 7* = k* = z08(8 — 1), \} = z8(8 — 2),\; =
z[B(8 — 2) +1],qf = zB(8 — 2), 45 ==[B(5 — 2) + 1].

As a method of construction of a design belonging to Case 2, Bose,
Shrikhande and Bhattacharya (1953) show that when s is a prime or a prime
power, there exists an affine resolvable symmetric SRGD design with param-
etersv =b=s5r=k=35%) =0,) = 5,90 = 5;m = s2,n = 5. Here
z =s and y = 1. When s = 2 and 3, we have designs of Nos. 8 and 23 in
Table 6.4, respectively. When s = 4, we can obtain a solution of an affine
resolvable SRGD design of No. 37 with parameters v = b = 64,r = k =
16,\i =0, 2 =4,¢0=4;m=16,n=4.

Furthermore, to construct affine resolvable symmetric SRGD design of
Case 2, a special type of a difference scheme (cf. Hedayat, Sloane and Stufken,
1999) will be utilized.
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An m x m matrix A with entries from a set S = {0,1,...,s —1} for s > 2
is here called a difference scheme, denoted by DS(m,s;z), if on a vector
difference in any two columns of A every entry of S occurs z times.

Remark 6.3.2. The same concept as the difference scheme has been dis-
cussed under other names of a difference matrix D{(m, m, s) or a generalized
Hadamard matrix GH(s, z) by interchanging roles of rows and columns (see
Beth, Jungnickel and Lenz, 1999, Colbourn and Dinitz, 2007).

It is easily seen that (i) all entries in the first row and first column of
a DS(m, s;x) can be set 0, and (ii) in each of columns except for the first,
every entry of S occurs z times. The property (ii) implies that m = zs in a
DS(m,s; x).

Furthermore, the following properties can be derived (see Beth, Jung-
nickel and Lenz, 1999, pp. 532 — 534, especially, Remark 3.9(a), or Hedayat,
Sloane and Stufken, 1999, p. 115).

(iii) In each of rows except for the first one of the DS(m, s; ), every entry
of S occurs z times.

(iv) On a vector difference in any two rows of a DS(m, s; ), every entry of
S occurs z times.

Now the following construction result can be shown.

Theorem 6.3.3. The existence of a DS(m, s; z) implies the existence of
an affine resolvable symmetric SRGD design with parameters

v=b=zs’,r=k=zs, =0 =z, =0, =x;m=xs,n=s
for s > 2.

Proof. Replace the entries 0, 1, ..., s—1 in an mXxm matrix as a DS(m, s; z)
by s x s matrices 7tl,,i = 0,1, ...,s — 1, respectively, where 7 is a row per-
mutation such that 7R, = Ry, and R, is the ¢th row of I,. Then from
m = zs such replacement can show the required design with a GD associa-
tion scheme on an zs x s array. In fact, under the property (ii), parameters
v=>0=as®k=u1xs,)\ =0,m =zs and n = s are obvious. The property
(iii) with m = zs implies r = zs. It is also clear that the replacement of
s x s (0, 1)-matrices shows the resolvability consisting of m resolution sets of
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s blocks each, and then ¢, = 0. Furthermore, the properties (i) and (ii) of
the DS(m, s; z) with properties (iii) and (iv) can yield A\, = z and ¢ = =
(affine resolvability). : n

When s = 5 and z = 2 in Theorem 6.3.3, it is illustrated by use of a
DS(10, 5; 2) given as follows (see Table 6.35 in Hedayat, Sloane and Stufken,
1999).

00000000O0OOQO
0431210423
0312442013
0124312304
0243141320
02323041471
0113024432
0044233112
0301123244
| 0420431231,

which obviously satisfies the above properties (i) to (iv).

Example 6.3.1. There exists an affine resolvable symmetric SRGD de-
sign with parameters v = b = 50,7 = k = 10,A\; = 0, 2 = 2,¢0 = 2;m =
10,n = 5, whose GD association scheme of 50 treatments is

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
41 42 43 44 45
46 47 48 49 50

Now, replace 0, 1, 2, 3, 4 in the above DS(10,5;2) by the following five
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matrices of order 5:

10000 000O0°1 00010
01000 10000 00001
00100¢{, 01000], 100600],
00010 00100 01000
00001 00010 00100
00100 01000
00010 00100
000©O0T1]|, 00010},
10000 00001
01000 10000

respectively. Then the 50 blocks of 10 resolution sets (i.e., a resolution set
showing a bracket [ ] below) of 5 blocks each are given by

[(1, 6, 11, 16, 21, 26, 31, 36, 41, 46), (2, 7, 12, 17, 22, 27, 32, 37, 42, 47),
(3, 8, 13, 18, 23, 28, 33, 38, 43, 48), (4, 9, 14, 19, 24, 29, 34, 39, 44, 49), (5,
10, 15, 20, 25, 30, 35, 40, 45, 50)],

[(1, 10, 14, 17, 23, 28, 32, 36, 44, 50), (2, 6, 15, 18, 24, 29, 33, 37, 45, 46),
(3,7, 11, 19, 25, 30, 34, 38, 41, 47), (4, 8, 12, 20, 21, 26, 35, 39, 42, 48), (5,
9,13, 16, 22, 27, 31, 40, 43, 49)],

[(1,9, 12, 18, 25, 29, 32, 40, 41, 48), (2, 10, 13, 19, 21, 30, 33, 36, 42, 49),
(3, 6, 14, 20, 22, 26, 34, 37, 43, 50), (4, 7, 15, 16, 23, 27, 35, 38, 44, 46), (5,
8, 11, 17, 24, 28, 31, 39, 45, 47)),

[(1, 7, 13, 20, 24, 28, 34, 40, 42, 46), (2, 8, 14, 16, 25, 29, 35, 36, 43, 47),
(3,9, 15, 17, 21, 30, 31, 37, 44, 48), (4, 10, 11, 18, 22, 26, 32, 38, 45, 49), (5,
6, 12, 19, 23, 27, 33, 39, 41, 50)],

[(1, 8, 15, 19, 22, 29, 31, 38, 42, 50), (2, 9, 11, 20, 23, 30, 32, 39, 43, 46),
(3, 10, 12, 16, 24, 26, 33, 40, 44, 47), (4, 6, 13, 17, 25, 27, 34, 36, 45, 48), (5,
7, 14, 18, 21, 28, 35, 37, 41, 49)],

[(1,7, 15, 17, 25, 26, 33, 39, 43, 49), (2, 8, 11, 18, 21, 27, 34, 40, 44, 50),
(3,9, 12, 19, 22, 28, 35, 36, 45, 46), (4, 10, 13, 20, 23, 29, 31, 37, 41, 47), (5,
6, 14, 16, 24, 30, 32, 38, 42, 48)],

[(1, 6, 13, 18, 22, 30, 35, 39, 44, 47), (2, 7, 14, 19, 23, 26, 31, 40, 45, 48),
(3, 8, 15, 20, 24, 27, 32, 36, 41, 49), (4, 9, 11, 16, 25, 28, 33, 37, 42, 50), (5,
10, 12, 17, 21, 29, 34, 38, 43, 46)),

[(1, 10, 11, 19, 24, 27, 35, 37, 43, 48), (2, 6, 12, 20, 25, 28, 31, 38, 44, 49),
(3,7, 13, 16, 21, 29, 32, 39, 45, 50), (4, 8, 14, 17, 22, 30, 33, 40, 41, 46), (5,
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9, 15, 18, 23, 26, 34, 36, 42, 47)),

[(1, 8, 12, 16, 23, 30, 34, 37, 45, 49), (2, 9, 13, 17, 24, 26, 35, 38, 41, 50),
(3, 10, 14, 18, 25, 27, 31, 39, 42, 46), (4, 6, 15, 19, 21, 28, 32, 40, 43, 47), (5,
7, 11, 20, 22, 29, 33, 36, 44, 48)),

[(1,9, 14, 20, 21, 27, 33, 38, 45, 47), (2, 10, 15, 16, 22, 28, 34, 39, 41, 48),
(3, 6, 11, 17, 23, 29, 35, 40, 42, 49), (4,7, 12, 18, 24, 30, 31, 36, 43, 50), (5,
8, 13, 19, 25, 26, 32, 37, 44, 46)).

Six designs of Nos. 23, 29, 30, 33, 39 and 42 in Table 6.4 are also con-
structed by use of Theorem 6.3.3 with DS(9, 3; 3), DS(12,3;4),DS5(12,2%; 3),
DS(14,7;2), DS(18,3;6) and DS(20,5;4), respectively. Many useful infor-
mation on the existence of a difference scheme can be found in Beth, Jung-
nickel and Lenz (1999), Hedayat, Sloane and Stufken (1999; Chapter 6) or
Colbourn and Dinitz (2007).

Another characterization for Case 2 is provided. It is clear (see, for ex-
ample, Hedayat, Sloane and Stufken, 1999, Theorem 7.6) that a DS(2z, 2; x)
exists iff a Hadamard matrix of order 2z exists. Here Theorem 6.3.3 with
s = 2 can be especially expressed as an equivalence existence.

Theorem 6.3.4. The existence of a Hadamard matrix of order 2z is
equivalent to the existence of an affine resolvable symmetric SRGD design
with parameters '

v=b=dz,r=k=2z, 1 =0, =z,1 =0, o =2;m =22,n = 2.

Proof. (Necessity) In a Hadamard matrix H of order 2z, replace +1 and
—1 by I, and 1,15 — I respectively. Then the relation HH' = 2zl,, = H'H
can yield that A; = 0 and A; = z with the affine resolvability. Thus the
required design can be obtained. Or apply Theorem 6.3.3.

(Sufficiency) Since v = 2k, from the properties of the GD association
scheme on a 2z X 2 array, the resolvability and A\; = 0, it follows that the
4z x 4z incidence matrix is partitioned into (2z)? submatrices of order 2,
whose pattern is either I; or 1,15 — I;,. Now replace I and 1,15 — I, by +1
and —1 respectively. Then we get a 2z x 2z matrix H whose elements are
+1 or —1. In the original incidence matrix of the design, each of four rows
(consisting of two columns each) corresponding to the replacement (which
follows the above partition of the incidence matrix) has one of four patterns

44



as (Iz, 12)’, (Iz, 12112 - 12),, (121’2 - 12, 121’2 - 12)’, (121,2 - 12, 12),. Hence,
on account of Ay = z, it can be shown that HH' = 2z1,,. |

In Theorem 6.3.4, when x = 6, by use of a Hadamard matrix I, of order
12 as

[1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 =117
1 1 -1 1 -1-1-1 1 1 1 -1 1
1 1.1 -1 1-1-1-1 1 1 1 -1
1 -1 1 1-1 1-1-1-1 1 1 1
1 1 -1 1 1 -1 1 -1 -1 -1 1 1
1 11 -1 1 1 -1 1 -1 -1 -1 1
1 1T 1 1 -1 1 1 -1 1 -1 -1 =1}’

1-1 1 1 1-1 1 1 -1 1 -1 -1
1 -1-1 1 1 1-1 1 1 -1 1 -1
1 -1-1-1 1 1 1-1 1 1-1 1
1 1 -1 ~-1-1 1 1 1-1 1 1 -1
1 -1 1-~-1-1-1 1 1 1 -1 1 1]

we can obtain an affine resolvable symmetric SRGD design of No. 28 in Table
6.4. This will be given in Example 6.3.2.

Example 6.3.2. There exists an affine resolvable symmetric SRGD de-
sign with parameters v = b =24,r =k =12,0; = 0, 2 = 6,q0 = 6;m =
12,n = 2, whose GD association scheme of 24 treatments is given by the
usual 12 x 2 array. If the entries +1 and —1 in Hy, are replaced by

[o 7] = 13 0]

respectively, then the 24 blocks of 12 resolution sets of 2 blocks each are given
by

[(1,3,5,7,9,11,13,15,17,19,21,23), (2,4,6,8,10,12,14,16,18,20,22,24)],
[(2,3,5,8,9,11,13,16,18,20,21,24), (1,4,6,7,10,12,14,15,17,19,22,23)),
[(2,4,5,7,10,11,13,15,18,20,22,23), (1,3,6,8,9,12,14,16,17,19,21,24)),
[(2,3,6,7,9,12,13,15,17,20,22,24), (1,4,5,8,10,11,14,16,18,19,21,23)],
[(2,4,5,8,9,11,14,15,17,19,22,24), (1,3,6,7,10,12,13,16,18,20,21,23)],
[(2,4,6,7,10,11,13,16,17,19,21,24), (1,3,5,8,9,12,14,15,18,20,22,23)),
[(2,4,6,8,9,12,13,15,18,19,21,23), (1,3,5,7,10,11,14,16,17,20,22,24)],
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[(2,3,6,8,10,11,14,15,17,20,21,23), (1,4,5,7,9,12,13,16,18,19,22,24)],
[(2,3,5,8,10,12,13,16,17,19,22,23), (1,4,6,7,9,11,14,15,18,20,21,24)],
[(2,3,5,7,10,12,14,15,18,19,21,24), (1,4,6,8,9,11,13,16,17,20,22,23)],
[(2,4,5,7,9,12,14,16,17,20,21,23), (1,3,6,8,10,11,13,15,18,19,22,24)),
[(2,3,6,7,9,11,14,16,18,19,22,23), (1,4,5,8,10,12,13,15,17,20,21,24)).

It is well known that a necessary condition for the éxistence of a Hadamard
matrix is that the order is either 2 or a multiple of 4. Then Theorem 6.3.4
can produce the following. '

Corollary 6.3.4. When z is odd (> 3), there does not exist an affine
resolvable symmetric SRGD design with parameters v = b = 4z,r = k =
2z, M =0, =2, =0,90 = z;m = 22,n = 2.

Remark 6.3.3. The existence of a Hadamard matrix of order 2z is
known for all 2z < 664 (i.e., the smallest order in which a Hadamard matrix
is undecided is 668) (Kharaghani and Tayfeh-Rezaie, 2005). Hence an affine
resolvable symmetric SRGD design of Theorem 6.3.4 exists for all even z <
332. In fact, it is conjectured that a Hadamard matrix always exists for any
order (= 0 mod 4) (see Hall, 1986).

Remark 6.3.4. By Theorem 6.3.3, Theorem 6.3.4 and Corollary 6.3.4,
the nonexistence information on designs of Nos. 14, 17, 25, 27, 32, 34, 35 and
38 in Source 1 of Table 6.4 for y = 1 implies the nonexistence of difference
schemes (difference matrices, generalized Hadamard matrices) DS(m, s; 1)
(or GH(s,z)) in DS(6,2;3), DS(6,6;1), DS(10,2;5), DS(10,10;1), DS(14,
2;7), DS(15,3;5), DS(15,5;3) and DS(18,2;9), respectively. Since the ex-
istence of DS(12,6;2) and DS(20,2?%;5) is unknown, designs of Nos. 31 and
41 may not be constructed through Theorem 6.3.3. In general, it also follows
from Theorem 6.3.4 and Corollary 6.3.4 that there does not exist a difference
scheme DS(2z,2;z) for any odd = > 3.

Case 8 x =1, i.e., m = (3. In this case we have the design parameters as

pws-1) _ puB-1)

k=190,

_ 2 7
_By-1), yb-1 _ k _
Al——ﬁ_l yAg = ,B—l’qz_y’m—y'
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When y = 1, this case coincides with Case 1 and then y > 1 is mainly
considered. In fact, the existing SR38 and SR71 in Table VI of Clatworthy
(1973) belong to this class for y = 2 and 3, respectively. In this case, all the
existing designs satisfy v = 2k (self-complementary). However, note that the
parameters of an unknown design of No. 12 do not satisfy v = 2k.

As a method of construction of a design belonging to Case 3, Kageyama,
Banerjee and Verma (1989) show that the existence of an affine resolvable
BIB(v* = 2k*,b* = 2r*,r* = 2k* — 1,k*, \* = k* — 1) implies the existence of
an affine resolvable SRGD design with parameters v = 4k*,b = 4(2k*-1),r =
22k —1),k=2k* \y =2(k* = 1), = 2k* —1;m = 2,n = 2k*. Herez =1
and y = k*. Note that this design has only possibility of existence when k*
is even. When k* = 2 we have a design of No. 2 in Table 6.4, i.e., SR38.
When k* = 4, a design of No. 4 in Table 6.4 is newly constructed as will
be constructed in Example 6.3.3, because there exists an affine resolvable

BIB(8, 14, 7, 4, 3) (cf. Kageyama, 1972).

Example 6.3.3. There exists an affine resolvable SRGD design with
parameters v =16,b=28,r =14,k =8, A\ =6, o =7, =4,m=2,n =8
whose GD association scheme of 16 treatments is

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 |~

The 28 blocks of 14 resolution sets of 2 blocks each are given by

[(1,2,3,5,9,10,11,13), (4,6,7,8,12,14,15,16)),
[(4,6,7,8,9,10,11,13), (1,2,3,5,12,14,15,16)],
[(2,3,4,6,10,11,12,14), (1,5,7,8,9,13,15,16)],
[(1,5,7,8,10,11,12,14), (2,3,4,6,9,13,15,16)),
[(3,4,5,7,11,12,13,15), (1,2,6,8,9,10,14,16)],
[(1,2,6,8,11,12,13,15), (3,4,5,7,9,10,14,16)],
[(1,4,5,6,9,12,13,14), (2,3,7,8,10,11,15,16)],
[(2,3,7,8,9,12,13,14), (1,4,5,6,10,11,15,16)),
[(2,5,6,7,10,13,14,15), (1,3,4,8,9,11,12,16)],
[(1,3,4,8,10,13,14,15), (2,5,6,7,9,11,12,16)],
[(1,3,6,7,9,11,14,15), (2,4,5,8,10,12,13,16)],
[(2,4,5,8,9,11,14,15), (1,3,6,7,10,12,13,16)],
[(1,2,4,7,9,10,12,15), (3,5,6,8,11,13,14,16)],
(3,5,6,8,9,10,12,15), (1,2,4,7,11,13,14,16)].
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This is constructed by use of Theorem 1 and Corollary 2 of Kageyama, Baner-
jee and Verma (1989) with an affine resolvable solution, {(0, 1, 2, 4), (3, 5, 6,
00)] mod 7, of a BIB(8, 14, 7, 4, 3) having the incidence matrix N, i.e., the
constructed design has

10 , 01
vo ! 9] - ma [0 1]

with some renumbering of 16 new treatments to suit the present GD associ-
ation scheme from the original scheme

1357 911 13 15
2 46 8 10 12 14 16

Case 4: x > 1 and y > 1. In this case we have the design parameters as
in (6.3.1) and (6.3.2). In general, since

z(y—1)

g-1"
for given x and y there are a finite number of values of 3 since A; is an integer.
Thus all parameters of an affine resolvable SRGD design are systematically

expressed in terms of parameters z,y and .
Some special cases are taken below.

Case 4.1: x =2 and y = 2. In this case Ay = 2+ 2/(3 — 1) which implies
B = 2,3. When 8 = 2, we have the parameters v = 16,b = 24,r = 12,k =
8,A\1 =4,y = 6;m = n =4. This is a design of No. 10 in Table 6.4 and will
be constructed as in Example 6.3.4. This is the only existing affine resolvable
SRGD design for £ > 1 and y > 1 as far as the author is aware of. When
B = 3, we have the parameters v = 36,b = 45,7 = 15,k = 12, \; = 3, =
5;m = n = 6 a design of which is shown to be nonexistent by Theorem 12.6.2
in Raghavarao (1988).

Example 6.3.4. There exists an affine resolvable SRGD design with
parameters v = 16, b=24,r =12,k = 8,\ =4, )\2—6q2—4m—n—4
whose GD association scheme of 16 treatments is

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

M=z(y—-1)+
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The 24 blocks of 12 resolution sets of 2 blocks each are given by

[(1,2,5,6,9,10,13,14), (3,4,7,8,11,12,15,16)],
[(1,2,5,6,11,12,15,16), (3,4,7,8,9,10,13,14)],
[(1,2,7,8,9,10,15,16), (3,4,5,6,11,12,13,14)],
[(1,2,7,8,11,12,13,14), (3,4,5,6,9,10,15,16)],
[(1,3,5,7,9,11,13,15), (2,4,6,8,10,12,14,16)],
[(1,3,5,7,10,12,14,16), (2,4,6,8,9,11,13,15)],
[(1,3,6,8,9,11,14,16), (2,4,5,7,10,12,13,15)],
[(1,3,6,8,10,12,13,15), (2,4,5,7,9,11,14,16)),
[(1,4,5,8,9,12,13,16), (2,3,6,7,10,11,14,15)],
[(1,4,5,8,10,11,14,15), (2,3,6,7,9,12,13,16)],
[(1,4,6,7,9,12,14,15), (2,3,5,8,10,11,13,16)],
[(1,4,6,7,10,11,13,16), (2,3,5,8,9,12,14,15)].

This is constructed by trial and error under some manner.

Case 4.2: £ =2 and y = 3. In this case A\; = 4+4/(8 — 1) which implies
B =2,3,5. When 8 = 2, we have the parameters v = 24,b = 40,7 = 20,k =
12, A; = 8, X2 = 10;m = 4,n = 6 whose affine resolvable solution as a design
of No. 11 in Table 6.4 is unknown. However, a 5-resolvable solution under
the usual 4 x 6 GD association scheme of 24 treatments can be given by trial
and error as follows.
[(1,2,3,7,8,9,13,14,15,19,20,21), (1,2,4,7,8,10,13,14,16,19,20,22),
(1,3,5,7,9,11,13,15,17,19,21,23), (1,4,6,7,10,12,13,16,18,19,22,24),
(1,5,6,7,11,12,13,17,18,19,23,24), (2,3,6,8,9,12,14,15,18,20,21,24),
(2,4,5,8,10,11,14,16,17,20,22,23), (2,5,6,8,11,12,14,17,18,20,23,24),
(3,4,5,9,10,11,15,16,17,21,22,23), (3,4,6,9,10,12,15,16,18,21,22,24));
[(1,2,3,7,8,9,16,17,18,22,23,24), (1,2,4,7,8,10,15,17,18,21,23,24),
(1,3,5,7,9,11,14,16,18,20,22,24), (1,4,6,7,10,12,14,15,17,20,21,23),
(1,5,6,7,11,12,14,15,16,20,21,22), (2,3,6,8,9,12,13,16,17,19,22,23),
(2,4,5,8,10,11,13,15,18,19,21,24), (2,5,6,8,11,12,13,15,16,19,21,22),
(3,4,5,9,10,11,13,14,18,19,20,24), (3,4,6,9,10,12,13,14,17,19,20,23)];
[(1,2,3,10,11,12,13,14,15,22,23,24), (1,2,4,9,11,12,13,14,16,21,23,24),
(1,3,5,8,10,12,13,15,17,20,22,24), (1,4,6,8,9,11,13,16,18,20,21,23),
(1,5,6,8,9,10,13,17,18,20,21,22), (2,3,6,7,10,11,14,15,18,19,22,23),
(2,4,5,7,9,12,14,16,17,19,21,24), (2,5,6,7,9,10,14,17,18,19,21,22),
(3,4,5,7,8,12,15,16,17,19,20,24), (3,4,6,7,8,11,15,16,18,19,20,23)];
[(1,2,3,10,11,12,16,17,18,19,20,21), (1,2,4,9,11,12,15,17,18,19,20,22),

49



(1,3,5,8,10,12,14,16,18,19,21,23), (1,4,6,8,9,11,14,15,17,19,22,24),
(1,5,6,8,9,10,14,15,16,19,23,24), (2,3,6,7,10,11,13,16,17,20,21,24),
(2,4,5,7,9,12,13,15,18,20,22,23), (2,5,6,7,9,10,13,15,16,20,23,24),

(3,4,5,7,8,12,13,14,18,21,22,23), (3,4,6,7,8,11,13,14,17,21,22,24)),

where 10 blocks in each square bracket shows a 5-resolution set. Note that
this is not affine 5-resolvable.

When B = 3, we get the parameters v = 54,b = 72,r = 24(> 20),k =
18,1 = 6,\; = 8;m = 6,n = 9 whose solution as a design is unknown.
When § = 5, we obtain the parameters v = 150,b = 175,r = 35,k = 30, )\, =
5,A2 = 7;m = 10,n = 15 a design of which is shown to be nonexistent by
Theorem 12.6.2 in Raghavarao (1988).

Case 4.8 z = 3 and y = 2. In this case A; = 3 + 3/(8 — 1) which
implies § = 2,4. When (3 = 2, we have the parameters v = 24,b = 36,7 =
18,k = 12,\) = 6,X2 = 9;m = 6,n = 4 a design of which is shown to be
nonexistent by Theorem 12.6.2 in Raghavarao (1988). When g = 4, we get
the parameters v = 96,b = 112,r = 28(> 20),k = 24(> 20),A\; = 4,X2 =
7;m = 12,n = 8 whose solution as a design is unknown.

~Case 4.4 « = 3 and y = 3. In this case \; = 6 4+ 6/(8 — 1) which
implies § = 2,3,4,7. When 8 = 2, we have the parameters v = 36,b =
60,7 = 30,k = 18,\; = 12, = 15;m = n = 6 a design of which is shown
to be nonexistent by Theorem 12.6.2 in Raghavarao (1988). When g = 3,
we get the parameters v = 81,0 = 108,r = 36,k = 27,A\; = 9, A = 12;m =
n = 9 whose solution is unknown as a design. When § = 4, we obtain the
parameters v = 144,b = 176,r = 44,k = 36,\; = 8, = 1l;m =n =
12 whose solution is unknown as a design. When 8 = 7, we obtain the
parameters v = 441,b = 490,r = 70,k = 63, \y = T, A2 =10;m =n =21 a
design of which is shown to be nonexistent by Theorem 12.6.2 in Raghavarao
(1988). All designs of Case 4.4 have r or k£ > 20 which are beyond the scope
in Table 6.4:

Other cases may have r and/or k > 20.

The above-mentioned information will be summarized in Table 6.4 of the
next section.

6.4. Table of affine resolvable SRGD designs with v < 100 and
r, k<20
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According to the values of positive integers z and y as expressed in (6.3.1)
and (6.3.2), we now systematically search affine resolvable SRGD designs
with admissible parameters within the scope of v < 100 and r,k < 20. In
fact, there are 42 parameters’ combinations, among of which 26 designs are
existent, 11 designs do not exist, while other 5 cases are unknown for the
existence. '

In Table 6.4, the admissible parameters of the affine resolvable SRGD de-
signs are listed along with existence information. The designs are numbered
" in the ascending order of m and for the same m in the order of n. Since
q1 = 0, the parameter is not listed. “Non-E” means the nonexistence of the
design. Source 1 has some information on the existence of the corresponding
affine resolvable SRGD design, while Source 2 shows some information on
the existence of the corresponding SRGD design when the affine resolvable
solution does not exist or is unknown. The symbol ? means that the exis-
tence or nonexistence of the corresponding design is unknown. Half of the
existence is confirmed in Table VI of Clatworthy (1973}, for example, SR1,
etc. By Theorem 12.6.2 of Raghavarao (1988), it can be seen that affine
resolvable designs of Nos. 7, 14, 16, 17, 18, 32, 34 and 35 do not exist. The
nonexistence of designs of Nos. 17 and 27 also follows from Remark 6.3.1
since an affine plane of order 6 or 10 does not exist (cf. Lam, Thiel and
Swiercz, 1989). The nonexistence of designs of Nos. 25 and 38 follows from
Corollary 6.3.4.
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Table 6.4. Affine resolvable SRGD designs

No. | m n v b r RIS RN Source 1 | Source 2 z |y
1 2 2 4 4 2 2 0 1 1 SR1 1/1
2 2 4 8 12 6 4 2 3 2 SR38 1]2
3 2 6 12 20 | 10 6 4 5 3 SR71 1]3
4 2 8 16 28 | 14 8 6 7 4 Exist 114
5 21|10 20 36 (18| 10 8 9 5 ? ? 1]5
6 3 3 9 9 3 3 0 1 1 SR23 1]1
7 3 9 27 36 | 12 9 3 4 3 Non-E ? 113
8 4 2 8 8 4 4 0 2 2 SR36 211
9 4 4 16 16 4 4 0 1 1 SR44 1]1

10 4 4 16 24 ] 12 8 4 6 4 Exist 2|2
11 4 6 24 40 | 20 | 12 81 10 6 ? Exist 213
12 4] 16 64 80| 20| 16 4 5 4 ? ? 114
13 5 5 25 25 5 5 0 1 1 SR60 1(1
14 6 2 12 12 6 6 0 3 3 Non-E SRe67 311
15 6 3 18 18 6 6 0 2 2 SR72 211
16 6 4 24 36 ] 18| 12 6 9 6 Non-E ? 3|2
17 6 6 36 36 6 6 0 1 1 Non-E ? 111
18 6 6 36 45 | 15 | 12 3 5 4 Non-E 7 212
19 7 7 49 49 7 7 0 1 1 SR87 1 1
20 8 2 16 16 8 8 0 4 4 SR92 411
21 8 4 32 32 8 8 0 2 2 SR95 211
22 8 8 64 64 8| 8 0 1 1 SR97 1]1
23 9 3 27 27 9 9 0 3 3 SR102 311
24 9 9 81 81 9 9 0 1 1 SR105 111
25 | 10 2 20 20 {10 | 10 0 5 5 Non-E SR108 511
26 | 10 5 50 50 | 10 | 10 0 2 2 Exist 2|1
27 10 J 10 || 100 | 100 | 10 | 10 0 1 1 Non-E ? 1)1
28 | 12 2 24 24 |12 | 12 0 6 6 Exist 6|1
29 | 12 3 36 36 | 12 | 12 0 4 4 Exist 411
30 | 12 4 48 48 | 12 | 12 0 3 3 Exist 31
31| 12 6 72 72 112 | 12 0 2 2 7 ? 2|1
32| 14 2 28 28 114 | 14 0 7 7 Non-E ? 711
33| 14 7 98 98 | 14| 14 0 2 2 Exist 2|1
34|15 3 45 45 | 15 | 15 0 5 5 Non-E ? 511
35115 5 75 751151 15 0 3 3 Non-E ? 3|1
36 | 16 2 32 32116 | 16 0 8 8 Exist 8|1
371 16 4 64 64 | 16 | 16 0 4 4 Exist 411
38118 2 36 36 | 18 | 18 0 9 9 Non-E ? 911
39 | 18 3 54 54 | 18 | 18 0 6 6 Exist 611
40 | 20 2 40 40 | 20 | 20 0 10 | 10 Exist 10] 1
41 | 20 4 80 80 | 20 | 20 0 5 5 ? ? 511
42 | 20 5 100 | 100 | 20 | 20 0 4 4 Exist 411

6.5. Affine a-resolvable L, designs

For the description of an Ly design with v = s? treatments, having the
incidence matrix N, see Definition 2.5. Note. (c¢f. Raghavarao, 1988) that
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NN’ has eigenvalues 7 + (s — 2)A\; — (s — 1)z (= 61, say) and 7 — 2\, + ),
(= 0,, say) other than simple rk with respective multiplicities 2(s — 1) and
(s —1)2. ,

Now we consider an affine a-resolvable L, design with parameters v =
s%,b=pt,r = at,k, A\, A2, q1 = k(a —1)/(8 — 1) and ¢; = k? /.

By Lemma 6.1, we have the following.

Theorem 6.5.1. If r + (s — 2)A; — (s — 1)A2 > 0 and r — 2X; + A2 > 0,
then there does not exist an affine a-resolvable Ly design for any a > 1.

Therefore, by Remark 6.2, other two cases are considered to investigate
L, designs with the affine a-resolvability.

Case 6.5.1: 6, =r+(s—2)A1—(s— DA =0and 6 =r —2\; + A, > 0.
In this case, it is clear that Ay > A;.
At first, an integral expression of ¢ is derived like ¢ = K+ A — 7 in an

affine a-resolvable BIB design and as in Corollaries 6.1.1 and 6.3.1 for affine
a-resolvable GD designs.

Corollary 6.5.1. In an affine a-resolvable L, design of Case 6.5.1, q; =
k—r+ 2/\1 - Az holds. '

Proof. Since ) =r+(s—2)\1—(s—1DA;=0and 6, =r—2\; + X, > 0,
Theorem 6.3 implies that ¢y = k(a —1)/(B—1) =k —r+ 21 — Xa. |

Furthermore, a useful result is remarked.

Lemma 6.5.1 (Kageyama and Tsuji, 1977). In an Ly design of Case
6.5.1, k is divisible by s.

In the present case the following can be shown.

Theorem 6.5.2. The parameters of an affine a-resolvable L, design of
Case 6.5.1 are given by

=,[3(.9—1)2 r=a(s—1)2 k:gﬁ



afs — 1)(as — B)
BB —1)

where a.s/( is an integer.

alas®+ 8 —2as) . (s—1)°

A= Bp-1 T -1

1A2=

Proof. Since eigenvalues of NN’ are r + (s — 2)A; — (s — 1)A2 = 0 and
r — 2\ + A2 > 0 with respective multiplicities 2(s — 1) and (s — 1)?, by
Theorem 6.3 it holds that b — ¢t = (s — 1)?, i.e,, b = v+t — 25 + 1 which
also implies that ¢ = (s — 1)2/(8 — 1). Then it follows that v — s2,b=pt=
B(s—1)2/(8-1),r = at = a(s—1)?/(8—1),k = vr/b = as?/[. Furthermore,
from relations r(k — 1) = njA; + noAg and 7+ (s — 2)A; — (s = 1)A2 = 0, we
get A1 = a(s — 1)(sa — B)/[B(B—1)] and X, = a(s’a+ 8 — 2sa)/[B(8 — 1)].
Also by Lemma 6.5.1, k/s = as/ must be an integer. |

Thus, all parameters of an affine a-resolvable L, design of Case 6.5.1 can
be expressed in terms of s, and 8. It is clear that these parameters satisfy

Corollary 6.5.1.
Note that )
_ S2a(a—1) and g = <s_a_)
BT RE-y TR

For the next section the case of o = 1 will be investigated in detail. For
an affine resolvable L, design of Case 6.5.1, t = r and then Theorem 6.5.2
shows the expression of design parameters as

P CE0) I () SN (8 \ ()

W= - 3 )
g-1 p—-1 g BB —-1)
A 2+ 0—2s 0.0 = fi k_s
2 = ,H(ﬂ_l) A s o1 = 7q2_ﬂ213_ﬂ'
Then there exists a positive integer £ such that
s={0

which implies that
BB — 1) (48 — )

51 T o k=028, (6.5.1)

= 1) A Ch+1-2¢

B-1""" -1

54

v=(£6)%b

M=£L-1)+ gz = £2. (6.5.2)



Thus all parameters of an affine resolvable L, design of Case 6.5.1 are ex-
pressed in terms of £ and . In particular, the above expression of A\; means
that for given ¢, we have a finite number of g since A; in (6.5.2) is an integer.
For example, some ¢ are investigated.

(i) £=1: A\; =0 and then we have the design parameters as v = §%,b =
B(B—1),r=0—-1,k=,\ =0,)2 = 1. The existing LS36 and LS61 in
Table XII of Clatworthy (1973) belong to this case. Note (Raghavarao, 1988;
Theorem 8.10.1) that there exists an Ly design, whose solution may not be
affine resolvable, with the above parameters for any § of a prime or a prime
power. However, the following can be further obtained.

Theorem 6.5.3. The existence of an affine resolvable symmetric SRGD
design with parameters

v=b=nlr=k=n,M=0X=1,=0,=1m=n

is equivalent to the existence of an affine resolvable L, design of Case 6.5.1
with parameters

vt =n? b = nn—1),r""=n—-1k"=n,A]=0,\=1,¢{ =0,q; = L.
Proof. In the first resolution set of the given affine resolvable SRGD

design, without loss of generality, we can put the incidence structure, by
suitable permutations on rows for each of n groups of n treatments, as follows:

1, ® I,

where the GD association scheme is

1 2 e m
n+1 n+2 cee 2n

: \ : (6.5.3)
m=-n+1 n—=1)n+2 --- n?

Now, by deleting the first resolution set 1, ® I, of n blocks from the original
affine resolvable SRGD design, it can be seen that the remaining structure
forms an affine resolvable L, design of Case 6.5.1 with parameters v* = v =
nb*=b-n=nn-1),r*=r—-1=n—-1k"=k=nA =X or -1,
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A5 = Az, whose association scheme is the same as in (6.5.3) by following
Definition 2.5. The converse process is obvious. [

We should know the existence of the SRGD design in Theorem 6.5.3 as
described in Theorem 6.3.2 and Remark 6.3.1. Four designs of Nos. 1, 6, 7
and 8 in Table 6.6.1 are provided by Theorem 6.5.3 with n = 3,7,8 and 9,
respectively. When n = 4 and 5, the designs are available as LS36 and LS61.

(i) £ = 2: A, = 2+ 1/(8 — 1) which yields 8 = 2. Hence we have the
parameters as v = 16,b = 18,r = 9,k = 8, A; = 3, A2 = 5 whose solution is
known as LS100 in Table XII of Clatworthy (1973).

(iii) € = 3: A\; = 6+ 4/(8 — 1) which yields 8 = 2,3,5. When 8 = 2,
we have v = 36,b = 50,r = 25,k = 18, \; = 10, )\, = 13. When 8 = 3, we
have v = 81,0 = 96,r = 32,k = 27, = 8§, Ay = 22. When = 5, we have
v =225,b = 245,r = 49,k = 45,\; = 7, Ay = 10. All have r and/or k£ > 20
which are beyond the scope in Table 6.6.1.

(iv) £ > 4: Since r, k > 30, the parameters are not described here.

Case 6.5.2: 1 =r+(s—2)\ —(s—1)A2>0and =7 —2\; + Ay = 0.
In this case, it is clear that A\; > As.
At first, an integral expression of ¢, is derived like ¢; = k+A—7 in an affine

a-resolvable BIB design and as in Corollary 6.5.1 for an affine a-resolvable
L, design of Case 6.5.1. '

Corollary 6.5.2. In an affine a-resolvable Ly design of Case 6.5.2, ¢ =
k—r—(s—2)A + (s — 1)) holds.

Proof. Since 0 =r+(s—2)A1—(s—=1DA;>0and b =r—2\; + X\ =0,
Theorem 6.3 implies the required expression. ]

Furthermore, the same result as in Corollary 6.5.1 is remarked in this
case as follows.

Lemma 6.5.2 (Kageyama and Tsﬁji, 1977). In an Lp design of Case
6.5.2, k is divisible by s.
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In this case the following is also seen.

Theorem 6.5.4. The parameters of an affine a-resolvable L, design of
Case 6.5.2 are given by

=2ﬂ(s—1) _2a(s—1) k_a_32

’U=32,b ﬂ—]_ , T = ,6_1 k= IB',
A ___a(as+,38—2,3) A =2a(as—,8). tzz(s_l)
1 ,B(ﬁ—l) y N2 ,3(,6_1) ’ ﬁ—]. ,

where as/f is an integer.

Proof. Since eigenvalues of NN’ are r + (s — 2)A\; — (s — 1)A2 > 0 and
r — 2\; + A2 = 0 with respective multiplicities 2(s — 1) and (s — 1)?, by
Theorem 6.3 it holds that b — ¢t = 2(s — 1), i.e., t = 2(s — 1)/(8 — 1). Then
it follows that v = s%,b= Bt =26(s — 1)/(B - 1),7r = ot = 2a(s — 1)/(B -
1),k = vr/b = as?/B. Furthermore, from relations r(k — 1) = mA; + naXp
and r — 2)\; + A, = 0, we obtain \; = a(sa + sB — 26)/[B(8 — 1)] and
A2 = 2a(sa — B)/[B(B — 1)]. Also by Lemma 6.5.2, k/s = as/S must be an
integer. |

Thus, all parameters of an affine a-resolvable Ly design of Case 6.5.2 can
be expressed in terms of s, and 3. It is clear that these parameters satisfy
Corollary 6.5.2.

Note that

sta(a—1)

= —————and ¢ = <£)2
BT RE-y) P TE)

For the next section the case of o = 1 will be investigated in detail. For
an affine resolvable L, design of Case 6.5.2, t = r and then Theorem 6.5.4
shows the design parameters as

_ap 261 A=l 8 (s=2f+s

E

IR T T U AT S VI
_2s=B) _,,._Sk_s
Az—m,ql—ﬂ,qz— 25§
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Then there exists a positive integer ¢ such that
s=4L0
which implies that

_ _2B(eB-1) _ 2(¢6—1)
v=(¢B)%b= T = 31

g—1

2(¢-1) 2(¢-1)
P

f-1 g—-1

Thus all parameters of affine resolvable L, design of Case 6.5.2 are expressed

in terms of £ and 8. In particular, the above expression of \; or A, in (6.5.5)

means that for given ¢, we have a finite number of 8. For example, some ¢

are investigated.

k=28, (6.5.4)

/\1=€+

Q2 = £, (6.5.5)

(i) £ = 1: The design of this case always exists for any § as the following
shows.

Theorem 6.5.5. There exists an affine resolvable L, design of Case 6.5.2
with parameters

.U=ﬂ2,b:2ﬁ,T:2,k=ﬂ,A1=1,A2=0,Q1=O,Q2=1.

Proof. 1t follows that the present design can be provided by the incidence
matrix as

[Iﬁ ®lg:15® Iﬂ].

Here the association scheme is given by the g x § array as

1 2 e B
B+1 B+2 .- 28

B-1B+1 B-1)F+2 - f°
which is the same structure as in (6.5.3). |

When § = 2, a design of No. 10 in Table 6.6.2 is provided. The existing
LS7, LS28, LS51, LS74, LS84, LS102, LS119 and LS137 in Table XII of
Clatworthy (1973) belong to this case.
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(i) £ =2: A\ = 2+ 2/(B — 1) which yields # = 2,3. When 8 = 2,
we have v = 16,b = 12,7 = 6,k = 8, A\ = 4,)2 = 2 a design of which
exists as LS98 in Table XII of Clatworthy (1973). When 8 = 3, we have
v=236,b=15,7r =5,k = 12,\; = 3,3 = 1 a design of which does not exist
by Theorem 12.6.6 of Raghavarao (1988).

(i) € = 3: A\ = 3+4/(8 — 1) which yields § = 2,3,5. When § = 2,
we have v = 36,b = 20,7 = 10,k = 18,A\; = 7,A\» = 4 whose solution is
unknown. When 8 =3, wehavev =81,b=24,r =8,k =27,A\1 =5,y = 2.
When 8 =5, we have v = 225,b=35,r =7,k = 45,\; = 4, \; = 1. The last
two designs have k > 20 which are beyond the scope of Table 6.6.2.

(iv) £ > 4: Since r and/or k > 30, the parameters are not described here.
6.6. Tables of affine resolvable L, designs with v < 100 and r,k < 20

According to the values of positive integers £ in (6.5.1), (6.5.2), (6.5.4)
and (6.5.5), we now systematically search affine resolvable L, designs, of two
cases, with admissible parameters within the scope of v < 100 and r, k& < 20.
In fact, there are 21 parameters’ combinations, among of which 17 designs
are existent, 3 designs do not exist, while only one case is unknown for the
existence.

In Tables 6.6.1 and 6.6.2, the admissible parameters of the affine resolv-
able L, designs are listed along with existence information. The designs are
numbered in the ascending order of v and for the same v in the order of b.
Since ¢; = 0, the parameter is not listed. “Non-E” means the nonexistence
of the design. Most of the existence is confirmed in Table VII of Clatworthy
(1973), for example, LS36, etc. Source has some information on the exis-
tence of the corresponding affine resolvable L, design (cf. Clatworthy, 1973).
Comment shows theorems on the construction. The existence of designs of
Nos. 1, 6, 7 and 8 is newly shown by Theorem 6.5.3. It is also shown by
Theorems 12.6.5 and 12.6.6 of Raghavarao (1988) that two designs of Nos.
5 and 16 do not exist. The nonexistence of a design of No. 9 is shown by
Theorem 6.5.3 with Remark 6.3.1. A design of No. 10 is newly listed by
Theorem 6.5.5.
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Table 6.6.1. Affine resolvable L, designs with r+ (s —2)A; — (s — 1)A\; =0

No. v| blr| k|A|A2]| g | Source Comment
1 91 6121 301111 Exist | Theorem 6.5.3
2 1611213 4({ 0] 11 LS36 | Theorem 6.5.3
3 161819} 8] 3 | 5 | 4 || LS100
4 2512041 51041111 LS61 | Theorem 6.5.3
5 36130 |5 6[ 01| 1] Non-E '
6 4914216 7101111 Exist | Theorem 6.5.3
7 64156 |7 8]0 11 1 Exist | Theorem 6.5.3
8 8117218 910 (1|1 Exist | Theorem 6.5.3
9 1100[(9019]10] 0] 1] 1| Non-E

Table 6.6.2. Affine resolvable L, designs with 7 — 2\ + A, =0

No. v bl r| k] A | A2]| g | Source Comment
10 41 41 21 2|1 1|0 {1]| Exist | Theorem 6.5.5
11 91 61 2{ 311101 LS7 Theorem 6.5.5
12 16| 81 21 411101 LS28 | Theorem 6.5.5
13 16|12 6| 81 4} 2| 4 L.S98
14 251101 2] 811101 LS51 | Theorem 6.5.5
15 36112 21 6|1 ]01]1 LS74 | Theorem 6.5.5
16 36|15 51121 3| 1| 4 || Non-E
17 362010181 7 | 4|9 7?7
18 49114 2| 71110 |1 LS84 | Theorem 6.5.5
19 64116 2] 81 1| 0] 1 || LS102 | Theorem 6.5.5
20 81118 21 911107 1| LS119 | Theorem 6.5.5
21 (100120 2110) 1} 0| 1} LS137 | Theorem 6.5.5
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7. Bounds in affine resolvable PBIB designs

A simple comparison between the number of treatments v and the number
of blocks b will be made. As mentioned in Section 2, Fisher’s inequality b > v
holds for a BIB design, but it is not always valid in a PBIB design.

The following results are well known (cf. Raghavarao, 1988): (i) In a
regular GD design b > v holds. (ii) In an SGD design with v = mn, b > m
holds. (iii) In an SRGD design with v =mn, b > v — (m — 1) holds. (iv) In
an Ly design with v = 2, 6; =7+ (s —2)A\; —(s— 1)z and 0, = 7 —2X; + )y,
(iv-1) when 6, > 0 and 62 > 0, b > v holds, (iv-2) when 6; > 0 and 6, = 0,
b > v—(s—1)2 holds, and (iv-3) when ; = 0 and 65 > 0, b > v—2(s—1) holds.
Thus, for the incidence matrix N of a block design, if one of eigenvalues of
NN' is zero, then an inequality b > v may not hold in general. Through
the property of affine resolvability, this inequality will be examined as in
Theorem 7.1. :

By Theorem 6.3, we can see some relations on v and b through other
parameters in an affine a-resolvable 2-associate PBIB design. Even so, a
property of the affine resolvability shows the following as a simple comparison
between v and b only.

Theorem 7.1. In affine resolvable PBIB designs, it holds that

(1) for an SGD design, b < v;
(2) for an SRGD design, b > v;
(3) for an L design with 8; > 0 and 6, =0, b < v.

Proof. (1) It follows that b=r+m—-1=(m—-1)/(-1)+m—-1=[1+
1/(B-1)](m—1) < 2(m—1) < n(m—1) < nm = v. (2) Since \; =r—k > 0,
r > kand hence b= fr > Bk =v. (3)Sinceb=v—-1—-(s—1)?+r,
v-b=s5-2s+2-2(s-1)/(B-1)=s2-2(s -1 +1/(B-1)] >
sf—4(s—-1)=(s—2)2>0. |

Note that (2) in Theorem 7.1 is interesting in the sense that one of eigen-
values is zero and further the Fisher inequality holds. Also note that in an
affine resolvable L, design with 8, = 0 and 6; > 0, two casesb<vorb>v
hold. Both such examples exist. For example, see the existing LS51, LS61
and LS100 in Table XII of Clatworthy (1973).
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The argument made in this section is motivated by the discussion given
in Sections 3, 4 and 5.
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Conclusions

We show the usefulness of number-theoretic approach to investigate com-
binatorial structure of affine a-resolvable BIB or PBIB designs. In particular,
much fruitful contribution is made for 2-associate PBIB designs. Usually, this
kind of approach may not yield much results in design theory. However, as
far as a property of the affine a-resolvability is concerned, the approach is
powerful. Of course, this does not solve the problem completely. We may
require other combinatorial consideration. For example, some new direct
constructions of affine a-resolvable block designs should be devised. Finding
a recursive method of construction may not be easy for the affine a-resolvable
block designs, especially for PBIB designs.

If we restrict ourselves to a = 1, i.e., affine resolvability, then we could get
more concise results on existence. Within the practical range of parameters
in 2-associate PBIB designs, it reveals that there are not many such designs
as in tables given in Sections 6.2, 6.4 and 6.6. In fact, we cannot find many
new series of such PBIB designs other than ones in Theorems 6.3.2, 6.3.3,
6.3.4 and 6.5.5, except for designs constructed by use of the result that the
complement of an affine resolvable block design is an affine a-resolvable block
design for some .. Theorems 6.3.4 and 6.5.3 have some potential to produce
many affine resolvable designs.

As a practical investigation (i.e., v < 100 and r, k& < 20) of affine resolv-
able SGD, SRGD, L, triangular and cyclic designs, only six designs are left
unknown (i.e., five SRGD designs, one Ly design).
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