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Conserved Charged Amino Acids within Sendai Virus C
Protein Play Multiple Roles in the Evasion of Innate
Immune Responses
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Abstract

One of the accessory proteins of Sendai virus (SeV), C, translated from an alternate reading frame of P/V mRNA has been
shown to function at multiple stages of infection in cell cultures as well as in mice. C protein has been reported to
counteract signal transduction by interferon (IFN), inhibit apoptosis induced by the infection, enhance the efficiency of
budding of viral particles, and regulate the polarity of viral genome-length RNA synthesis to maximize production of
infectious particles. In this study, we have generated a series of SeV recombinants containing substitutions of highly
conserved, charged residues within the C protein, and characterized them together with previously-reported C'/C(-),
4C(—), and F170S recombinant viruses in infected cell cultures in terms of viral replication, cytopathogenicity, and
antagonizing effects on host innate immunity. Unexpectedly, the amino acid substitutions had no or minimal effect on viral
growth and viral RNA synthesis. However, all the substitutions of charged amino acids resulted in the loss of a counteracting
effect against the establishment of an IFN-a-mediated anti-viral state. Infection by the virus (Cm2’) containing mutations at
K77 and D80 induced significant IFN-3 production, severe cytopathic effects, and detectable amounts of viral dsRNA
production. In addition to the Cm2’ virus, the virus containing mutations at E114 and E115 did not inhibit the poly(l:C)-
triggered translocation of cellular IRF-3 to the nucleus. These results suggest that the C protein play important roles in viral
escape from induction of IFN-f and cell death triggered by infection by means of counteracting the pathway leading to
activation of IRF-3 as well as of minimizing viral dsRNA production.

Citation: Irie T, Nagata N, Igarashi T, Okamoto |, Sakaguchi T (2010) Conserved Charged Amino Acids within Sendai Virus C Protein Play Multiple Roles in the
Evasion of Innate Immune Responses. PLoS ONE 5(5): €10719. doi:10.1371/journal.pone.0010719

Editor: Patricia T. Bozza, Fundagao Oswaldo Cruz, Brazil
Received March 24, 2010; Accepted April 27, 2010; Published May 19, 2010

Copyright: © 2010 Irie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science. The funders had no role in study

* E-mail: tirie@hiroshima-u.ac.jp

design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Sendai virus (SeV; mouse parainfluenza virus type 1), a
prototype of the family Paramyxoviridae of the order Mononegavirales
which includes some of the most important and ubiquitous
disease-causing viruses of humans and animals, such as measles
virus, parainfluenza viruses, mumps virus, Nipah virus, Hendra
virus, human metapneumovirus, Newcastle disease virus, canine
distemper virus, and rinderpest virus, contains a nonsegmented,
negative-stranded RNNA genome with length of 15,384 nucleotides
[1]. This genome encodes six viral structural proteins, a
nucleprotein (N), a highly phosphorylated component of the viral
RNA-dependent RNA polymerase (vVRARp) complex (P), a matrix
protein (M), a glycoprotein with haemagglutinin-neuraminidase
activity (HN), a glycoprotein with membrane-fusion activity (F),
and a large catalytic subunit of the VRdRp complex (L), tandemly
in this order [1]. Both the replication of genome-length RNAs,
including negative (—)-sense genome and positive (+)-sense
antigenome RNAs, and the transcription of viral messenger RNAs
(mRNAs) are carried out by a vRdRp mainly composed of the L
and P proteins [1].

The Paramyxovirus P gene is unique in producing more than
one polypeptide species. The SeV P gene is the most diverse of the

@ PLoS ONE | www.plosone.org

paramyxovirus P genes, with at least seven polypeptides expressed
from it: in addition to P protein, four C proteins (C’, C, Y1, and
Y?2) are translated from start codons in the +1 reading frame
relative to the P open reading frame (ORF), and proteins V and W
are produced from the altered P ORF with the insertion of one or
two G residues at a specific position of the mRNA, respectively,
during transcription [1].

The SeV C proteins have been shown to have multiple
functions during viral replication in cell cultures (in vitro) and in
mice (in wvwo). The best-characterized of these functions is
mterruption of the Jak/STAT signaling pathway after stimulation
by type I IFNs, resulting in a lack of activation of IFN-stimulated
genes (ISGs) and establishment of an antiviral state in the infected
cells [2,3,4,5,6]. C proteins have been shown to physically interact
with cellular signal transducers and activator of transcription
(STAT) 1, and to inhibit tyrosine phosphorylation of STAT1 and
STAT2 and dephosphorylation of phosphorylated STAT1 by an
unidentified mechanism [4,7,8,9]. The C terminal half of C
protein is sufficient for this function, since the four C proteins of
SeV are virtually indistinguishable with regard to their antago-
nizing effects on responses to IFN [6], and deletion of the N-
terminal half does not abolish this ability, though shortening 14
amino acids of the C-terminal does [5]. Recently, it has been
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reported that the substitution of three charged amino acid residues
at positions 151, 153, and 154 within C protein conserved among
SeV strains dramatically reduced the anti-IFN ability without any
alteration of the other functions of C protein in experiments with
C protein expressed from cDNA as well as infections of SeV
recombinants [10,11]. These substitutions led to an attenuation of
the SeV recombinant in mice in a STAT1-dependent manner, but
not to reduced viral growth in cell cultures [10].

SeV C protein is also reported to inhibit apoptosis induced by
the infection through an undefined mechanism. The apoptosis
induced by VSV was efficiently inhibited by pre-infection with
wild-type (WT) SeV but not a SeV recombinant lacking C protein
expression [12]. Infections of SeV recombinants lacking the
expression of C protein or containing an F170S mutation
within the protein leads to a dramatically quicker and severer
cytopathology due to apoptosis than infections of SeV-WT
[3,12].

In addition, C protein has been reported to regulate viral RNA
synthesis. Earlier studies reported that the elimination of C
protein expression from the P gene increased mRNA synthesis in
infected cells and supplementation with C protein from cDNA
eliminated this increase [13,14], and that trans-supplied C
proteins inhibited viral replication [15]. Detailed studies using
mini replicons mimicking SeV defective-interfering (DI) genomes
have shown that C protein inhibited synthesis of positive-sense
viral RNAs including viral mRNAs and antigenomic RNA from
the leader promoter at the extreme 3'-end of viral genomic RNA
[13,16]. Such inhibitory effects of C protein on viral RNA
synthesis have been suggested to be exerted through physical
interaction between C and L proteins, since the strength of C-L
interaction correlated with defects in viral RNA synthesis in
experiments using a series of C mutants containing substitutions
of highly conserved, charged amino acids [11,17]. We have
recently reported that SeV C protein regulates viral RNA
synthesis to optimize production of infectious particles probably
by controlled inhibition of positive-sense viral RNA synthesis in
the course of viral replication [18]. Production of non-infectious
viral particles containing (+)-sense antigenomic RNA was
markedly increased compared to that of (—)-sense genomic
RNA-containing infectious particles in cell cultures infected with
C-deficient SeV recombinants [18].

SeV C proteins function also in the formation and budding of
viral particles. Lack of C protein expression has been reported
to reduce production of infectious particles and increase
production of heterogeneous particles [18,19]. In addition, C
protein has been shown to enhance the budding of virus-like
particles (VLPs) formed by SeV M protein by recruiting Alix/
AIP1, a cellular protein involved in apoptosis and endosomal
trafficking, to the plasma membrane through physical interac-
tion [20,21].

In this paper, a series of SeV recombinants containing
substitutions of highly conserved, charged amino acid residues
within C proteins were characterized exhaustively in terms of
growth kinetics, viral protein synthesis, release of wviral
particles, genomic and antigenomic RNA replication, ability
to inhibit induction of an antiviral state triggered by IFN
treatment, inducibility of IFN-B in the infected cells, and
inhibitory effect on poly(I:C)-mediated activation of cellular
IRF-3. It was found that the charged amino acids conserved
within C protein play multiple roles in the evasion of host
innate immunity, by means not only of the well-characterized
ability to antagonize IFN signaling but also of minimizing viral
dsRINA production and counteracting the pathway leading to
IRF-3 activation.
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Results

Recovery and growth kinetics of a series of SeV
recombinants with mutations in their C proteins

It has been reported that clusters of charged amino acids
conserved within C proteins among SeV strains are important for
the inhibition of (+)-sense viral RNA synthesis [17], and that some
of the charged amino acids play an important role in the inhibitory
action against IFN signaling [11]. To examine the importance of
the charged amino acids to the functions of C protein in the course
of an infection, we generated a series of SeV recombinants, Cm2’,
Cm3’, Cm4’, and D80A, containing changes to clustered, charged
amino acids within C proteins with reference to a previous report
[17] (Fig. 1A). The substitutions introduced into these viruses were
not exactly the same as those in the previous report where all of
the charged amino acids were replaced by alanines [17]. The
substitutions were made so as not to alter the P polypeptide in the
overlapped, shifted C ORF (Fig. 1A). A recombinant SeV, F170S,
possessing an F170S mutation within the C protein was also
generated. The F170S mutation has been reported to lead to an
attenuation of virulence in mice, loss of the ability to antagonize
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Figure 1. SeV recombinants used and their growth kinetics. (A)
Schematic representation of the SeV genome highlighting the start
region of the P gene including the C ORF. The amino acid changes for
the various mutants are indicated. (B) Graphs of one-step growth
kinetics of the viruses in LLC-MK; cells. Each titer represents the average
for at least three independent experiments.
doi:10.1371/journal.pone.0010719.g001
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IFN signaling, and increased induction of apoptosis without
affecting virus growth in cell cultures [3,4,22]. The previously
reported SeV recombinants, C'/C(—) and 4C(—), in which the
expression of C" and C, and all four C proteins is knocked out,
respectively [23], and the Cm* recombinant containing triple
amino acid substitutions, K151A, E153K, and R157L, in the C
protein resulting in a loss of anti-IFN capacity without a change in
virus multiplication in cell cultures [10] were also used in this
study.

We first examined the growth kinetics of these C mutant viruses
with a one-step growth curve in LLC-MK, cells (Fig. 1B). As
reported [23], overall titers of the C'/C(—) and 4C(—) viruses
were reduced by 1 to 2 logs compared to those of SeV-WT
(Fig. 1B). In contrast, titers of the other C mutant viruses were not
markedly different than those of SeV-WT. Titers of Cm2" and
Cm3’ were the lowest and highest, respectively, among the viruses
tested during the course of the experiments (Fig. 2B).

Profiles of viral protein expression

Since we and others have previously reported that lack of
expression of C proteins affected the synthesis of viral proteins and
the budding efficiency of viral particles [18,23], production of viral
proteins in the cells infected with the C mutant viruses and release
of virion proteins into the culture medium were examined by SDS-
PAGE and Western blotting using viral protein-specific antibodies
(Fig. 2). Consistent with the previous report [18], viral N protein
expression was slightly increased in the 4C(—)-infected cells
compared to that in the SeV-WT-infected cells (Fig. 2, lanes 10
and 12). The expression of viral N protein in the cells infected with
the other C mutant viruses was not markedly different from that in
the WT-infected cells, although the amount of N protein in the
cells infected with the Cm4' and F170S viruses was slightly
increased (Fig. 2A, lanes 10-18). Similar results were observed for
the expression of P protein in the infected cells, confirming that the
mutations introduced into the C ORF did not affect the protein
synthesis from the P ORF (Fig. 2A, lanes 19-27). As for C
proteins, the expression of C protein was dominant over than that
of C', Y1, and Y2 proteins and a much smaller amount of Y2 and
a trace amount of Y1 proteins were detected in the cells infected
with the viruses tested except for the C'/C(—) and 4C(—) viruses
(Fig. 2A, lanes 28-36). In the 4C(—)-infected cells, elimination of
the expression of all four C proteins was confirmed (Fig. 2A, lane
30), and consistent with the report by Kurotani e al. [23], C" and
C protein expression was also knocked out in the C'/C(—)-
infected cells, but the expression of Y2 protein was increased
compared to that observed in the WT virus-infected cells (Fig. 2A,
lane 29).

The protein profiles of the virions purified by ultracentrifugation
through a sucrose cushion from the culture medium of the cells
infected with the indicated viruses were also compared by SDS-
PAGE (Fig. 2A, lanes 1-9). The composition of virion proteins of
each mutant virus was virtually identical to that of the WT virion.
As reported [18], the amount of virion protein of C'/C(—)
detected in the culture medium was reduced, and that of 4C(—)
was virtually unchanged compared to that of SeV-W'T' (Fig. 2A,
lanes 1-3). As for the other viruses except for Cm2' and Cm3’, the
amount of virion protein was virtually identical to that of the WT
(Fig. 2A, lanes 1 and 4-10). Consistent with the slightly reduced
viral titers and the highest titers of the viruses tested, the amounts
of Cm2" and Cm3' virion proteins were slightly lower and higher
than the amount of the W'T virion protein, respectively (Fig. 2A,
lanes 4 and 5).

The N protein bands of virion samples (vN) and cells (cN) were
quantified, and the ratios of vN to cN were compared to examine
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Figure 2. Protein profiles for WT and recombinant viruses. (A)
SDS-PAGE analysis of virion proteins released and accumulated for 48 h
p.i. in the culture medium of LLC-MK; cells infected with the indicated
viruses and Western blots for N, P, and C protein expression in the
infected cells. (B) The amounts of N protein in virions (vN) and in the
infected cells (cN) in Fig. 2A were quantitated and the ratio of vN to cN
is shown as a bar graph. The ratio in SeV-WT was set to 1. Bars represent
the average for three independent experiments.
doi:10.1371/journal.pone.0010719.g002

the efficiency of viral release (Fig. 2B). As reported [18], the vIN/
¢N ratios of the C'/C(—) and 4C(—) viruses were reduced almost
90% and only 10-20%, respectively, despite an almost 2-log
reduction in infectivity compared to that of the WT virus (Fig. 2B).
As for the other C mutant viruses, except for Cm2’ and Cm3’, the
ratios were virtually identical to that of SeV-WT. As expected
from their viral infectivity observed in their one-step growth
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kinetics, the ratios of the Cm2’ and Cm3’ viruses were 60% lower
and 70% higher than that of the WT virus, respectively (Fig. 2B).

Polarity of viral genomes in particles

It has been reported that C proteins inhibit the synthesis of (+)-
sense viral RNA including antigenomic RNA and viral mRNA
probably through direct interaction with viral L protein [17]. In
addition, we have recently reported that C proteins regulate (+)-
sense viral RNA synthesis to maximize production of infectious
particles containing (—)-sense viral genomic RNA but not that of
uninfectious particles containing (+)-sense antigenomic RINA [18].
To examine whether the mutations introduced into the charged
amino acids within the C proteins would affect efficiency of
production of (—)-sense genomic RNA-containing infectious
particles, we next compared the composition of (—) and (+)-sense
RNAs in the virions released from the cells infected with the C
mutant viruses (Fig. 3). As we recently reported [18], the ratio of
(4) to (—)-sense RNA in the C'/C(—) and 4C(—) virions released
from the infected cells into the culture medium was remarkably
higher (approximately 14 and 26-fold, respectively) than that
observed in the WT virions, indicating that the particles produced
from the infected cells include (+)-sense antigenomic RNA-
containing non-infectious virions at a ratio much higher than that
observed in the WT virions (Fig. 3). As for the other C mutant
viruses, the (+)/(—) ratio in virions was virtually identical to that
detected in the WT virion except in the Cm2’ virion, in which it
was 4.5-fold higher than that in the WT virion (Fig. 3). These
results indicate that the conserved charged amino acids in C
proteins do not play critical roles in the regulation of viral RNA
synthesis at the level observed in the C-knock out viruses.

The mutations in the conserved, charged amino acids are not
suggested to dramatically affect the efficiency of viral replication in
cell cultures, although a slight reduction in the release of particles
and increase in production of (+)-sense antigenomic RINA-
containing particles were observed for the Cm2" virus.

Cytopathic effect of the C mutant viruses

C proteins have also been reported to inhibit apoptosis induced
by infection [12]. In fact, as reported [12], the viruses lacking C
protein expression, C'/C(—) and 4C(—), had a mild and much
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Figure 3. Viral genomic and antigenome-sense RNA incorpo-
rated in virions. Ratios of (+)- to (—)-sense RNAs in the indicated
virions, which were detected by two-step qRT-PCR, are shown as a bar
graph. The ratio of the WT-sample was set to 1. Bars represent the
average for three independent experiments.
doi:10.1371/journal.pone.0010719.g003
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greater cytopathic effect (CPE) at a later time point after infection
(48 h p.i.) in LLC-MKj cells, although SeV-W'T showed virtually
no CPE at this time point (Fig. 4A). CPEs induced by infections of
the other C mutant viruses were also observed at earlier (24 h p.i.)
and later (48 h p.i.) time points in LLC-MKj cells (Fig. 4A). The
Cm3’ virus showed little CPE similar to the WT virus throughout
the experiment, and the CPE observed in the cells infected with
Cm4’ and Cm* was slightly severer than that observed in the WT-
infected cells at the later time point. As expected from previous
reports [3,22], the F170S virus showed a severer CPE than the
WT as well as Cm3’ and Cm* viruses, although it was slightly
milder than that of the 4C(—) virus. Surprisingly, the Cm2" virus
showed a much quicker and severer CPE than the other viruses
including even the 4C(—) virus. Indeed, Cm2’ showed a severe
CPE at 24 h p.i.,, comparable to that of the 4C(—) virus observed
at 48 h p.i., and at 48 h p.i., almost all cells were rounded or
detached. A similar result was obtained for the D80A virus
possessing one of the amino acid substitutions introduced into the
Cm?2’ virus, indicating that only the D80A mutation of the C
protein was responsible for the phenotype. The viability of the cells
infected with the C mutant viruses almost paralleled the results in
Fig. 4A (Fig. 4B), confirming that the CPEs observed in the cells
infected with the C mutant viruses were the result of cell killing
induced by the infection. These results indicate that some of the
conserved, charged amino acids such as K77 and D80 play critical
roles in the cell-killing ability of SeV, or conversely, in the ability to
inhibit cell-killing induced by SeV infection.

Ability of the C mutant viruses to antagonize IFN
signaling

SeV C proteins have been well demonstrated to antagonize IFN
signaling [2,3,4,5,6,7,8,9], and the charged amino acids intro-
duced into the Cm* virus were reported to be important for this
function [10,11]. We next examined the effect of the C mutant
viruses on the induction of an antiviral state triggered by IFN-o
treatment (Fig. 5). Briefly, HeLa cells infected with the SeV
recombinants were treated with IFN-a, and then superinfected
with rVSV-GFP. The production of GFP by replication of rVSV-
GFP in the cells was examined by fluorescent microscopy and
Western blotting using an anti-GIFP antibody (Fig. 5).

In the microscopic analysis (Fig. 5A), GFP-fluorescence was not
detected after IFN-a treatment in uninfected cells due to the
induction of an antiviral state by the treatment, while almost all
cells not treated with IFN-oo showed GIFP-fluorescence as
expected. In contrast, as reported [24], numbers of GFP-
fluorescent cells were virtually unchanged in the SeV-WT-infected
cells, regardless of IFN-a treatment, due to the inhibitory effect of
the SeV-WT infection against an IFN-o-triggered antiviral state.
In contrast, the results obtained with the cells infected with the C'/
C(—), Cm3’, Cm4’, and F170S viruses were similar to those for
the uninfected cells, indicating that these viruses have lost the
ability to inhibit the induction of an antiviral state by IFN-o
treatment. Interestingly, among the cells infected with the 4C(—),
Cm2’, Cm*, and D80A viruses, numbers of GFP-fluorescent cells
were also reduced dramatically by IFN-o treatment, but reduced
remarkably even in the absence of IFN-a, suggesting that the
infection itself was able to induce an antiviral state without IFN
treatment, and that the charged amino acids substituted within the
Cm?2', Cm*, and D80A viruses played important roles in this
function.

GFP expression was also monitored by Western blotting using
anti-GFP antibody (Fig. 5B, lanes 1-20), and the protein bands of
GFP were measured and represented as a bar graph (Fig. 5C) to
confirm the observation of Fig. 5A. Expression of P protein was
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Figure 4. Cytopathogenicity of the WT and recombinant viruses. (A) Microscopic analysis of virus-induced CPE. LLC-MK; cells were mock-
infected or infected with the indicated viruses at an MOI of 5 and cells were observed at 24 and 48 h p.i. (B) Cytotoxicity assay using LLC-MK; cells.
LLC-MK; cells were infected with the indicated viruses at an MOI of 5. The lactate dehydrogenase (LDH) activity released from the damaged cells for
48 h after infection was measured as described in the Materials and Methods section. The value of the WT-sample was set to 1.

doi:10.1371/journal.pone.0010719.g004

virtually identical between samples infected with the recombinant
viruses, confirming their almost equal levels of replication (Fig. 5B,
lanes 21-40). Expression of C proteins was also examined by
Western blotting using anti-C pAb, and levels of C protein
expression did not differ greatly between the samples except for
those samples infected with the Cm2’ and D80A viruses where
levels of C proteins were reduced despite an equivalent expression
of P protein to that in SeV-WT-infected cells.

Induction of IFN-B production in the cells infected with
the C mutant viruses

The antiviral state induced by the Cm2’, Cm*, and D80A
viruses without IFN treatment might be due to the production of
IFNGs in the infected cells. To assess this possibility, levels of IFN-8
mRNA in the cells infected with the C mutant viruses were
compared using a quantitative RT-PCR (Fig. 6). As expected,
amounts of IFN-f mRNA were much higher in the cells infected
with 4C(—), Cm2’, Cm*, and D80A (approximately 160, 290, 90,
and 130-fold, respectively) than in the uninfected cells, while levels
in the SeV-WT-infected cells were increased only 6-fold. In the
cells infected with the other viruses, expression of IFN-B mRNA
was also increased compared to that in the WT-infected cells
(ranging from 2.2 to 5.7-fold), but the levels were lower than those
observed in the cells infected with the IFN-B-inducing recombi-
nant viruses. Together with the results in Fig. 5, this indicates that
the mutations in some of the C mutant viruses affect the ability of
the viruses to induce IFN-B expression as well as to inhibit IFN-
evoked responses in the infected cells, and strongly suggests that
that charged amino acids, K77, D80, K151, E153, and R157, play
important roles in the ability of the C proteins to induce IFN-8
expression by SeV infection.

Synthesis of dsRNA in the cells infected with the C
mutant viruses

It has been believed that RNA species such as dsRNA and 5'-
triphosphate RNA, produced in cells infected with an RNA virus,
are sensed by cellular RNA sensors, such as retinoic acid-inducible
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gene I (RIG-I) and melanoma differentiation associated gene 5
(MDAD)), leading to production of cytokines including IFN-
[25,26,27,28,29]. Recently, dsRNA was reported to be detected
in cells infected with recombinant SeVs lacking the expression of C
proteins, but not in WT virus-infected cells [30]. To address the
possibility that the induction of IFN-B expression by SeV
recombinants is triggered by the production of dsRNA in the
infected cells, we next examined dsRNA production in the cells
infected with the C mutant viruses by immunofluorescent staining
using an anti-dsRNA antibody (Fig. 7). As reported [30], fluorescent
signal of dsRNA was readily detectable in the cells infected with
NDV, while it was not detected in uninfected cells. As for SeV,
consistent with the previous report, dsRINA was not detected in the
cells infected with the W'T virus, as in the uninfected cells, but was
clearly observed in the 4C(—)-infected cells. The fluorescent signals
of dsRINA 1n the cells infected with NDV and 4C(—) was eliminated
by treatment of the fixed, infected cells with RNase III which
specifically cleaves dsRNA, before staining with the anti-dsRNA
antibody, confirming that the fluorescent signals were specific to
dsRINA (data not shown). In the cells infected with most of the other
mutant viruses except Cm2’, Cm*, and D80A, no fluorescence was
detected. However, in the Cm2'- and D80A-infected cells,
fluorescent-positive cells were detected at a much lower frequency
than that observed in the 4C(—)-infected cells. Fluorescence of
dsRINA was hardly detectable, but weak signal was observed in the
Cm*-infected cells, which was stronger than in the WT-infected
cells. These four-dsRNA producing viruses, 4C(—), Cm2', Cm*,
and D80A, produced the highest IFN-f levels in the infected cells
(compare Figs. 6 and 7), and levels of dsRNA detected in the
infected cells were roughly correlated with levels of IFN-B
production induced by infection, implying a link between the
ability of the C mutant viruses to induce IFN-B production and to
produce dsRNA in the infected cells.

Inhibition of poly(l:C)-induced translocation of IRF-3 into
the nucleus by infection of the C mutant viruses

Finally, we examined whether the C mutant viruses could
inhibit the innate immune responses triggered by the introduction
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P, and C proteins. (C) The amounts of GFP in the cell lysates of Fig. 5B were quantitated and shown as a bar graph. The value of the mock-infected,
IFN-a-non-treated sample was set to 1. Bars represent the average for three independent experiments.

doi:10.1371/journal.pone.0010719.g005

of poly(I:C) into infected cells. For this purpose, the subcellular
distribution of cellular IRF-3 was observed after poly(I:C)
treatment of the cells infected with the C mutant viruses (Fig. 8).
“ellular IRF-3 was predominantly detected in the nucleus after
poly(I:C) treatment of uninfected cells (Fig. 8), while diffusely-
distributed in the cytoplasm without the treatment (data not
shown). In the cells infected with the WT, C'/C(—), Cm4’, Cm*,
and F170S viruses, nuclear translocation of IRF-3 induced by

@ PLoS ONE | www.plosone.org

poly(I:C) treatment was detected in the SeV antigen-negative but
not positive cells, indicating that the poly(l:C)-induced transloca-
tion of IRF-3 to the nucleus was inhibited by these viruses. In
contrast, in the cells infected with the 4C(—), Cm2’, Cm3’, and
D8O0A viruses, the nuclear localization of IRF-3 after poly(I:C)
treatment was observed even in SeV-antigen-positive cells. These
results indicate that C proteins have the ability to inhibit the
pathway from the recognition of poly(I:C) by the cellular RNA
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Figure 6. IFN-p production in the HelLa cells mock-infected and
infected with the indicated viruses. The relative amounts of IFN-§
mRNA detected in the cells infected with the indicated viruses at 48 h p.i.
revealed by one-step qRT-PCR are shown as a bar graph. The amount of
the mRNA detected in the mock-infected sample was set to 1.
doi:10.1371/journal.pone.0010719.g006

sensors to the activation and translocation of IRF-3, and suggest
that some of the charged amino acids, especially K77, D80, E114,
and E115, play an important role in this function.

Discussion

The SeV C proteins have been shown to exert multiple actions
at multiple steps of infection i vitro and i vivo; making it difficult to
evaluate each function individually in the course of an infection.
For example, the C'/C(—) and 4C(—) viruses, which lack
expression of the C protein partly and totally, respectively, showed
extensive deficiencies in replication in the cell cultures as well as in
mice. This is thought to be due to the combined effects of aberrant
formation and budding of viral particles, uncontrolled synthesis of
viral RNAs, and loss of antagonizing ability against IFN responses
and inhibitory effect against the induction of apoptosis
[2,12,18,19,23,24]. Previous studies using a spontancous SeV
mutant, Ohita-MVC11, isolated from the virulent Ohita-M1
strain have indicated that even a single amino acid substitution of
F170S within the C proteins, which led to severe attenuation in
mice, modified more than one function associated with the C
proteins [3,22]. In experiments using recombinant C proteins, C-
terminal deletion of the C proteins resulted at least in the loss of
ability to antagonize IFN responses as well as that to enhance SeV
M-VLP budding [5,20,31]. In addition, a series of substitutions of
highly conserved, charged amino acid residues within the C
protein altered the ability to inhibit viral RNA synthesis from the
leader promoter in a mini replicon system and to counteract IFIN
responses [11,17]. Here, we generated a series of SeV recombi-
nants containing single to triple substitutions of conserved, charged
amino acid residues within the C protein without affecting the P
ORF and analyzed their infection characteristics in cell cultures
compared with the previously characterized SeV recombinants,
C'/C(—), 4C(—), and F170S. We found that the C protein
antagonized host innate immunity with multiple strategies, not
only by its counteraction of IFN responses through a Jak/STAT
pathway (summarized in Table 1).

Unexpectedly, none of the mutations within the C proteins
introduced in this study dramatically affected viral replication in
LLC-MK, cells. Indeed, growth kinetics, the release of viral
particles from the infected cells into the culture medium, viral
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protein synthesis in the infected cells, and ratios of particles
containing (+)- and (—)-sense genome-length RNAs were not
significantly different between the WT and C recombinant viruses
except for the C-deficient viruses, C'/C(—) and 4C(—), though
only the Cm2’ virus showed a relatively small impairment of
replication, with a slight reduction in titer and release of particles,
and increase of production of (+)-sense antigenome RNA-
containing non-infectious virions compared to the WT virus.

In previous studies using cDNA, alanine substitutions of
conserved, charged amino acid residues have been shown to
reduce the ability of the C protein to inhibit viral RNA synthesis
from the leader promoter in a mini replicon system [11,17].
Although such alterations of C protein function would be expected
to result in an increase in the production of (+)-sense antigenome
RNA-containing non-infectious particles, no significant difference
was observed in infectivity between the WT and the mutant
viruses. This discrepancy may be due to the difference in the
amino acids that were substituted; in the previous reports [11,17],
all amino acids were substituted with alanines, but in this paper,
substitutions were highly limited due to the restriction of not
affecting the P ORF. Alternatively, it may be due to the difference
in experimental systems; a simplified protein expression system
from cDNA in the previous reports, and a complicated system
using live recombinant viruses in this report.

As for the antagonizing effect of C proteins against IFN
responses through a Jak/STAT pathway, infection of all of the
SeV recombinants, Cm2’, Cm3’, Cm4’, and Cm*, containing
substitutions of the charged amino acid residues had lost their
counteraction against induction of an antiviral state triggered by
IFN-o treatment, suggesting that K77, D80, E114, E115, D142,
K151, E153, and R157 within the C proteins are all important for
this function. Again, there was a discrepancy between this result
and those of previous reports in that the amino acid substitutions
KI151A, E153A, and R157A but not K77A and D80A, E114A and
E115A, and M139A and DI142A diminished the antagonizing
capability, probably due to the difference in the amino acids
substituted and/or in the experimental system used, as mentioned
above.

More interestingly, an antiviral state was fully induced by the
infection of Cm2’ itself at a similar level to the case of 4C(—)
infection, and partially by the Cm* and D80A viruses. The
induction was almost correlated with IFN-B production in the
infected cells. This observation strongly suggests the importance of
the C proteins in viral circumvention of host innate immunity as
typified by IFN-f production.

The infection of host cells has been known to be sensed by
cellular RNA helicases, RIG-I and MDAJS, which have differential
roles in the recognition of different viruses [27]. RIG-I has been to
be believed to detect many RNA viruses including paramyxovi-
ruses, orthomyxoviruses, rhabdoviruses, and filoviruses probably
by recognizing 5'-triphosphated RNA and short dsRNA produced
during viral RNA synthesis [25,26,29], while MDAS5 has been
reported to detect picornaviruses by recognizing long dsRNA
[26,27,28]. In fact, dsSRNA was observed in the cells infected with
the IFN-inducible viruses, 4C(—), Cm2’, Cm*, and D80A, to
varying degrees. SeV C proteins have been shown to regulate viral
RNA synthesis from the leader promoter including production of
viral antigenomic RNA and mRNAs [13,16]. Viral leader RNA
synthesized during transcription of viral mRNAs is a 5'-
triphospated RNA, and believed to be recognized by RIG-I,
followed by induction of IFN-f [32]. Loss of the ability of the C
protein to regulate viral RNA synthesis might increase leader
RNA production, resulting in increased induction of IFN-B. In
addition, lack of C protein expression has been reported to
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Figure 7. Inmunofluorescent staining of the SeV-infected cells with an anti-dsRNA mAb. Hela cells were mock-infected or infected with
the indicated viruses. At 36 h p.i., cells were fixed, permeabilized, and then stained with an anti-dsRNA mAb J2, anti-SeV pAb, and DAPI as described
in the Materials and Methods section. Cells were observed under a Zeiss LSM5 confocal microscope.

doi:10.1371/journal.pone.0010719.g007

increase aberrant positive-sense viral RNA production at least
containing the region spanning from the leader to the M gene
[18]. Such aberrant RNA might serve as a trigger to induce host
innate immune responses. SeV C proteins might regulate viral
RNA synthesis to optimize production of (—)-sense viral genomic
RNA-containing infectious particles as well as to minimize
synthesis of viral RNA which is recognized by RIG-I and/or
MDAD) and triggers host innate immunity.

SeV C proteins also seem to have the ability to inhibit a
signaling pathway from the recognition of dsRNA by MDA5 to
activation of IRF-3. Translocation of IRF-3 to the nucleus
triggered by a synthetic dsRNA, poly(I:C), which is know to be
recognized by MDADS, was inhibited in the cells infected with the
WT, C'/C(—), Cm4’, Cm*, and F170S viruses, but not in those
infected with the 4C(—), Cm2’, Cm3’, and D80A viruses,
suggesting that K77, D80, E114, and E115 within C proteins
were important for the inhibitory action.

Infection of the Cm3’ virus exhibited little IFN-f induction and
dsRNA generation, although it has lost the ability to inhibit
poly(I:C)-mediated translocation of IRF-3 into the nucleus,

@ PLoS ONE | www.plosone.org

supporting above-mentioned relationship between viral abilities
to generate dsRNA and to induce IFN-B, and suggesting that the
viral dsRNA might be a major trigger of host innate immunity. In
contrast, the Cm* virus has the ability to inhibit poly(I:C)-induced,
MDAbS-mediated translocation of IRF-3, although dsRNA pro-
duction and significant induction of IFN-B was observed. This
difference between these two viruses might implicate the difference
of molecules triggering the innate immunity; viral RNA species,
such as 5'-triphospated RNAs including leader RNA and non-
encapsidated DI-genomes, other than dsRNA, might be major
triggers of IFN-B induction in the Cm*-infected cells.

Of note, all recombinant viruses used in this study express V
protein that has been reported to inhibit MDA5-mediated IFN-f
production by its direct interaction with MDAS [33,34]. However,
some of the recombinants, 4C(—), Cm2’, Cm3’, and D80A, failed
to inhibit poly(I:C)-mediated translocation of IRF-3. This
discrepancy might be due to the difference in the experimental
system used, as mentioned above; cDNA and live recombinant
virus systems. A previous study using genetically modified mice
knocked out RIG-I and MDAS genes has shown that infection of
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Figure 8. Subcellular distribution of cellular IRF-3 in the SeV-infected cells after induction by poly(I:C). Hela cells were mock-infected or
infected with the indicated viruses. At 12 h p.i., cells were transfected with 5 pg of poly(l:C) and incubated for another 6 h. Cells were fixed,
permeabilized, and then stained with anti-IRF-3 pAb and anti-SeV N mAb as primary antibodies. Cells were observed under a Zeiss LSM5 confocal

microscope.
doi:10.1371/journal.pone.0010719.g008

most of the RNA viruses including paramyxoviruses is recognized
preferentially by RIG-I rather than by MDADJ, despite functional
interaction between their V proteins and MDA) [27]. The V-
MDADJ interaction might have a marginal effect on inhibition of
virus-induced innate immunity. We are currently examining
additional recombinant viruses containing mutations within the
C as well as V proteins i vitro and i vivo to elucidate their
functions in virus infection.

Finally, C proteins also have the ability to inhibit apoptosis
induced by the infection. Lack of C protein and an F170S mutation
within the C protein led to a quicker and severer CPE in the infected
cells, although the WT-SeV infection had little CPE. Surprisingly,
the Cm2" and D80A viruses induced a much quicker and severer
CPE associated with apoptosis than the 4C(—) virus, although all of
the viral proteins of the D80A virus were the same as those of the
WT virus except for a single DB0OA mutation within the C protein. It
has been reported that the level of CPE induced by SeV infection is
correlated with the level of IRF-3-stimulated arginase II [35].
Indeed, levels of CPE in the cells infected with the recombinant

@ PLoS ONE | www.plosone.org

viruses are almost correlated with levels of IFN-f3 production in the
infected cells. The inhibitory effect of C proteins on virus-induced
apoptosis might be due to the combined effects of the C proteins to
minimize production of viral RNA species sensed by RIG-I and
MDAD) and to inhibit the signaling from recognition of viral RNA to
activation of IRF-3, followed by IRF-3-stimulated gene expression
including IFN-f and agrinase II, rather than due to the action of the
C proteins to inhibit certain apoptotic pathways.

SeV C proteins exert multiple actions to finally produce
infectious viral particles with maximum efficiency by utilizing
and preventing cellular functions and regulating viral RNA
synthesis. Here, we showed that C proteins play critical roles in
viral escape from the host innate immunity and innate immune
response-associated apoptosis. The C mutant viruses used in this
study showed no remarkable difference from the wt virus in
replication in cell cultures. However, most of the recombinant
viruses had lost the ability to block IFN-o-triggered signaling
leading to the establishment of an antiviral state in the infected
cells. Infection of some of the recombinant viruses highly induced
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Table 1. Properties

Innate Immune Evasion by SeV C

of the recombinant viruses used in this study.

f) n.d., not done.

doi:10.1371/journal.pone.0010719.t001

IFN-B production and apoptotic cell death. In addition, our results
strongly suggested that C protein inhibited poly(I:C)-mediated
activation of IRF-3 leading to IFN-B production as well as
regulated viral RNA synthesis to avoid recognition of viral RNA
by RIG-I and MDAS5. Only single or double amino acid
substitutions within C protein resulted in such a variety of viral
phenotypes, implying that the abilities of the C protein observed
above might be based on a common molecular mechanism. Since
all of the recombinant viruses, except for C'/C(—) and 4C(—),
showed virtually no growth defect in the cell cultures, we are
currently examining the replication and pathogenicity of these
viruses in mice, and i vitro experiments to elucidate the molecular
mechanisms for multiple functions of C protein are underway.
Further understanding of viral strategies for escape from host
innate immunity and for maximizing production of infectious
particles will hopefully lead to a better understanding of viral
pathogenesis and the development of novel therapeutics to target
important steps in viral replication.

Materials and Methods

Cells, viruses, and antibodies

LLC-MK,, CV1, BHK-21, Vero, and human HeLa cells were
maintained in Dulbecco’s minimum essential medium (DMEM;
Nacalai Tesque, Kyoto, Japan) supplemented with 10% fetal
bovine serum (FBS; Biological Industries, Kibbutz, Israel) and
penicillin-streptomycin  (Invitrogen) at 37°C. The polyclonal
antibody (pAb) against the entire virion of SeV was described
previously [36]. The pAbs against SeV P and C proteins were
kindly provided by A. Kato (National Institute of Infectious
Diseases, Japan). The monoclonal antibody (mAb) against SeV N
protein was kindly provided by E. Suzuki (National Institute of
Infectious Diseases, Japan). The pAb against green fluorescent
protein (GFP) (sc-8334; Santa Cruz biotechnology, Santa Cruz,
CA), pAb against human interferon regulatory factor 3 (IRF-3) (sc-
9082; Santa Cruz biotechnology), mAb against double-stranded
RNA (dsRNA) (J2; Scicons, Hungary), Alexa 488-conjugated anti-
mouse IgG and Alexa 546-conjugated anti-rabbit IgG goat pAbs
(Invitrogen), and horseradish peroxidase (HRP)-conjugated anti-
rabbit IgG goat pAb (Santa Cruz Biotechnology) were used
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10

Inhibition of IFN-a-triggered Induction of Induction Generation of Inhibition of poly(l:C)-mediated
Virus CPE? antiviral state® antiviral state® of IFN-p% dsRNA® translocation of IRF-39
WT = + = = = +
C'/c(-) + - - - n.d.”
4C(-) ++ - ++ ++ +H+ =
Cm2’ ++ - ++ ++ ++ -
Cm3’ - - - - - -
Cm4' + - — — —
Cm* A - AF i 1F 4
D80A ++ - + ++ -
F170S ++ - - - - +
a) CPE of the recombinants shown in Fig. 4A (—, little or no; +, slight; ++, severe; +++, quite severe).

b) Inhibitory effect of the recombinants against IFN-o-induced antiviral state examined in Fig. 5.

<) Inducibility of antiviral state by infection of the recombinants examined in Fig. 5 (=, no; +, moderate; ++, high).

d) Levels of IFN-B induced by infection of the recombinants examined in Fig. 6 (—, 1-50-fold; +, 50-150-fold; ++, >150-fold higher than that of uninfected sample, (—)).
e) dsRNA synthesis in the cells infected with the recombinants examined in Fig. 7 (—, no; +, slight; ++, weak; +++, strong).

9) Inhibitory effect of the recombinants against poly(l:C)-mediated translocation of IRF-3 into the nucleus examined in Fig. 8.

according to the protocols of the suppliers. Vaccinia virus
expressing T'7 RNA polymerase, vIT7.3 [37], was kindly provided
by B. Moss (National Institutes of Health, USA), and propagated
in CV1 cells. A recombinant VSV expressing GFP (rVSV-GFP)
was kindly provided by K. Shinozaki (Hiroshima Prefectural
Hospital, Japan) and propagated in BHK-21 cells. The SeV
recombinants, C'/C(—) and 4C(—) [23] and C* [10], were kindly
provided by A. Kato. All SeV recombinants and Newcastle disease
virus (Herts strain) were propagated in embryonated chicken eggs.
Titers of SeV recombinants were determined by an immunoflu-
orescent infectious focus assay in LLC-MK, cells and expressed as
cell infectious units (CIU)/ml, as described previously [36].

Construction and recovery of SeV recombinants

The Plasmid pSeV(+) encoding the full-length SeV c¢cDNA (Z
strain) was kindly provided by A. Kato. Mutations were
introduced into the C ORF of the P gene using a QuickChange
site-directed mutagenesis kit (Stratagene) to yield Cm2’, Cm3’,
Cm4’, D80A, and F170S. None of these mutations resulted in
alterations to the P polypeptide from an overlapping ORF. These
P genes were inserted back into pSeV(+) to generate the full-length
cDNA clones used to recover infectious viruses. SeV recombinants
were recovered as described previously by Kato et al. [38] or by
Nishimura et al. [39]. The mutations were confirmed by direct
DNA sequencing of the RT-PCR products of viral genomic RNAs
prepared from the purified virions.

One-step growth curves of SeV recombinants

LLC-MK, cells in six-well plates were infected with SeV mutants
at a multiplicity of infection (MOI) of 5. After 1h at 37°C, inocula
were removed, and cells were washed with phosphate-buffered saline
(PBS) three times and incubated with serum-free DMEM containing
20 pg/ml of trypsin (Merck) at 37°C for 48 h. The culture medium
was harvested at the indicated time points, clarified at 3,000 rpm for
10 min., and titrated in duplicate with LLC-MKy cells.

Virion protein profiles

LLC-MK, cells in 10cm-diameter dishes were infected with
SeV recombinants at an MOI of 5, as described above. At 48 h
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post-infection (p.i.), the culture medium was harvested and
clarified at 3,000 rpm for 10 min. Virions were then centrifuged
at 40,000 rpm for 2 h through a 20% sucrose cushion in a
Beckman SW55 rotor. The pellet was suspended in SDS-PAGE
sample buffer (125 mM Tris-HCI [pH 6.8], 4.6% SDS, 10% 2-
mercaptoethanol, 0.005% bromophenol blue, and 20% glycerol)
and analyzed by SDS-PAGE (8%). Gels were stained with SYPRO
tangerine protein gel stain (Invitrogen), and analyzed using a FLA-
3000G fluorescent image analyzer (Fuji Film). Cell lysates were
also prepared and analyzed by Western blotting using pAbs
against P and C proteins and a mAb against N protein. Protein
bands were visualized using an Immobilon Western Chemilumi-
nescent HRP substrate (Millipore), and analyzed using a
chemiluminescence imaging system (LAS-1000plus, Fuji Film).

RNA preparation

LLC-MKj or HeLa cells in six-well plates were infected with
SeV recombinants at an MOI of 5, as described above. At 24 or
48 h p.., the culture medium was harvested and clarified at
3,000 rpm for 10 min. Samples were treated with 20 pug/ml of
RNase A (Novagen) and 2 U of DNase I (Novagen) at 37°C for
1 h. Viral RNA was then prepared using a QIAamp viral RNA
mini kit (QIAGEN). Cells were also harvested by trypsinization,
and then total RNA was prepared using an RNeasy mini kit
(QIAGEN).

Quantitative RT-PCR

Quantitative RT-PCR was performed as described previously
[18]. Briefly, for the detection of (—) and (+)-sense viral genomic
RNAs, first strand ¢cDNAs were synthesized using a QuantiTect
Reverse Transcription kit (QIAGEN) with viron-derived RNA
samples prepared above and either 5SeVZ1683 or 3SeVZ1843 as
a primer to detect (—) or (+)-sense RNAs, respectively. The cDNAs
were then applied to a quantitative real time PCR (qPCR) using a
QuantiFast SYBR green PCR kit (QIAGEN) with the cDNAs
prepared above as templates and the primer set 5SeVZ1683+3-
SeVZ1843, and analyzed using a DNA Engine Opticon 2
continuous fluorescence detection system (Bio-Rad). For the
detection of IFN-f mRNA in the infected cells, RT-PCR was
performed using a QuantiFast SYBR Green RT-PCR kit
(QIAGEN) with the RNA samples prepared above from the
infected cells as templates and the primer set 5hIFNbl-481-
500+3hIFNb1-640-661 designed to amplify the region from nt 481
to 661 of the human IFN-B1 mRNA, and analyzed using DNA
Engine Opticon 2. The amplification of specific DNA fragments
during the reaction was confirmed by measuring the melting
temperature of the PCR products and separating the products on
an agarose gel.

Cytotoxicity assay

LLC-MK, cells in six-well plates were infected with SeV
mutants at an MOI of 5, as described above. At 24 and 48 h p.i.,
cells were observed using a light microscope (Nikon ECLIPSE
TE2000-S). At 48 h p.i., cytotoxicity in the infected samples was
assayed using a CytoTox 96 Non-Radioactive Cytotoxicity Assay
kit (Promega) according to the instructions supplied.

References

1. Lamb RA, Parks GD (2006) Paramyxoviridae: the viruses and their replication.
In: Knipe DM, Howley PM, eds. Fields virology, 5th ed. PhiladelphiaPA:
Lippincott, Williams & Wilkins. pp 1449-1496.

2. Garcin D, Latorre P, Kolakofsky D (1999) Sendai virus C proteins counteract
the interferon-mediated induction of an antiviral state. J Virol 73: 6559—
6565.

@ PLoS ONE | www.plosone.org

1

Innate Immune Evasion by SeV C

Detection of double-stranded RNA

Vero cells cultured on glass coverslips or in six-well plates were
infected with the indicated viruses at an MOI of 5, as described
above. At 24 h p.i, cells were fixed with a 0.5% formaldehyde
solution, permeabilized with 0.1% Triton X-100 and treated with
1% HyOy in PBS(—). Cells were stained with an anti-dsRNA mAb
as a primary antibody, and visualized using an HRP-conjugated
goat anti-mouse IgG antibody as a secondary antibody and the
Tyramide Signal Amplification Cyanine 3 System (Perkin Elmer).
Coverslips were mounted on glass slides and observed using a Zeiss
LSM 5 confocal microscope (Carl Zeiss).

Poly (I:C) treatment and Immunofluorescence

microscopy

HelLa cells cultured on glass coverslips were infected with SeV
mutants at an MOI of 5, as described above. At 12 h p.i., the
culture medium was replaced with fresh serum-free DMEM and
5ug of poly (:C) (GE Healthcare) was transfected using
Lipofectamine 2000 (Invitrogen). After an additional 6 h at
37°C, cells were fixed with the 0.5% formaldehyde solution, and
treated with 0.1% Triton X-100 in PBS. Cells were then stained
using a mAb against SeV N and a pAb against human IRF-3, as
primary antibodies, and Alexa 488-conjugated anti-mouse IgG
and Alexa 546-conjugated anti-rabbit IgG goat pAbs as secondary
antibodies. Coverslips were mounted on glass slides and observed
using the confocal microscope.

IFN-o treatment of rSeV-infected cells

HeLa cells in six-well plates were infected with the indicated
viruses at an MOI of 5. After a 1-h incubation at 37°C, inocula
were removed, and cells were washed with PBS three times and
incubated with serum-free DMEM at 37°C. At 6 h p.i., the culture
medium was replaced with fresh serum-free DMEM containing
IFN-o0 (1,000 IU/ml; R&D Systems). After an additional 6-h
incubation, the culture medium was removed, and cells were
superinfected with rVSV-GFP at an MOI of 3. After 1 h at 37°C,
inocula were removed, and cells were washed with PBS three
times and further incubated with serum-free DMEM at 37°C for
6 h. GIP expression was observed using a fluorescence microscope
(Nikon ECLIPSE TE2000-S). Cells were then lysed in SDS-PAGE
sample buffer, and proteins were analyzed by SDS-PAGE (12%)
followed by Western blotting using pAbs against GFP and SeV P
and C proteins as primary antibodies, and HRP-conjugated anti-
rabbit IgG goat pAb as a secondary antibody. Protein bands were
visualized and analyzed as described above.
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