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Abstract 

The "Geometrical Approach to Problems of Pursuit-Evasion Games" is extended to the case 

that pursuer and evader are disturbed by additive white noise. It is shown how to obtain the optimal 

controls and a numerical method to calculate the capture probability is proposed. A simple numerical 

example is given to illustrate the above mentioned theory. Some remarks about the validity of the 

"Geometrical Approach to Problems of Pursuit-Evasion Games" are added. 

1. Introduction 

The study of differential games was initiated by Isaacs [1] in 1954. who used game 

theoretic concepts originated by von Neumann and Morgenstern [2J. His approach closely 

resembled the dynamic progamming approach to optimization problems. Since then many 

papers have been published. mainly on the subject of pursuit-evasion games. 

A pursuit-evasion game is a noncooperative (in general two-player) game. One player • 

. the Pursuer. tries to capture the Evader. while the Evader tries to avoid capture. Capture 

means that the distance between the Pursuer' g and the Evader's state becomes less than 

a certain prescribed positive quantitye . If capture occurs before a given time T elapses. 

the Pursuer wins the game. otherwise the evader wins. 

In most of the papers solutions were achieved. using the calculus of variations techniques 

or a direct application of functional analyses. In this paper we will use the topological 

properties of the reachable region as shown in [3J to derive solutions. 

The reachable region of a system is this part of the statespace. which can be reached 

by the system within a given time T. using constrained controls. 
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2. The Reachable Region Approach 

Before formulating the actual game. we will introduce the concept of the reachable 

region and its application to the solution of pursuit-evasion games. 

For more detailed information and proofs see [3J and [4]. 

Let us consider the two -player pursuit -evasion game. describai by the linear differential 

equations: 

Xp (t) = Axp (t) + Bu(t) 

x, (t) = Cx, (t) + Dv (t) 

(2.1) 

(2.2) 

where X p • X, E R" are the state vectors and u E R~, v E R' are the control vectors 

of Pursuer P and Evader E. A, B, C and Dare n x n. n x m. n x nand n x r given 

rna trices respectively. 

It is assumed that u and v are restricted to the following sets of admissible strategies: 

u (t) E U, V (t) E V, t. ::;; t ::;; T 

with: 

T 

U={u(t), II u II ~ ( Ju' (t) u (t) dt)'} ::;; Ep (2.3) 
I. 

T 

V = {v (t), II v II ~ ( J v' (t) v (t) dt) I} ::;; E, (2.4) 
I. 

In other words: both players are restricted in their total energy by positive constants 

E p and E,. 

The game begins at initial time t .. P wins. if he can satisfy the distance 

I Xp (t) - x, (I) I::;; e within a given time T,t. ::;; T::;; 00; otherwise E wins. 

The solutions of (2.1) and (2.2) are given by: 

xp (t) = if>p (t. t.) Xp (t,) + ~ ~p (t. r )Bu (r) dr (2.5) 
I. 

I 

x, (t) = if> , (t. t,) x, (t.) + jif>, (t. r)Dv (r) d r (2.6) 
I. 

where if> p (t. t,) and if> , (t. t,) are the transition matrices of (2.1) and (2.2) and Xp (t,) 

and x, (t.) are the known initial states. 

For convenience let us define: 

ap (t. t,) = Xp (t) - if>p (t. t.) Xp (t,) (2.7) . 
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a, (t, t,) = x, (t) - tp, (t, t,) x, (t,) (2.8) 

HpCt,T)=tppCt,T)B (2.9) 

11 It (t, T) == rp If (t, T) D -J. (2.10) 

• t 

G p (t, t.) = J H p Ct, T) H ~ (t, T) d T (2.11) 
t. 

G, Ct, t.) = (2.12) 
t. 

2.1 The Time-optimal Controls 

Having established these prelimenaries we are now faced with a classical time-optimal 

control problem [5]. : Find the control variables, constrained in some manner, which bring 

the state of the controlled plant from some initial value to a desired final one in shortest 

time. 

The optimal controls, which fullfill this requirements are, as shown in [3J and [4J : 

(2.13) 

(2.14) 

2.2 The Reachable Region 

The reachable region R (T, to) of a player is the set of all points a (T, to) in R" which 

can be reached at time T using all the strategies in the admissible set. 

By inserting (2.13) into (2.3) and (2.14) into (2.4) we will get the explicit expressions 

of Rp (T, to), the rechable region of the Pursuer and R, (T, to), the reachable region of 

the Evader. 

(2.15) 

R, (T, to) = {x, (T) E R'; a: (T, to) G;1 (T, to) a, (T, to) ~ E~ , 

a, = x, (T) - tp, (T, to) x, (to)} (2.16) 

The boundary oRp (T, to) of R p (T, x o) is defined by (2.15) by replacing the ~ sign 

with the equality sign. Similarly oR, (T, to), the boundary of R, (T, to) can be expressed 

by (2.16). 

In other words: the boundary of the reachable region can be reached in time Tusing 

the full energy permitted by the constrained. All points inside the boundary can be reached 
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either in shorter time t, to::; t ::; T, or by using lesser energy. or by a combination 

of both. 

If the allowed terminal miss E is not equal to zero we can take this into account 

by expressing an expanded reachable region of the pursuer by replacing x, (T) in (2.15) 

with x p (T) + E 11,. Where 11, is the unit vector outward. normal to a tangent plane 

at any point of oR p (T, to) 

According to [3] game termination is only possible when the reachable region of the 

Pursuer includes the reachable region of the Evader and furthermore the optimal termination 

time yo for both players is achieved when oR, and oR. have one common point x,. This 

point x, is then the optimal game termination point. 

3. Pursuit-Evasion Game with White Noise Disturbance 

Let us now focus on the two-player pursuit-evasion game with additive white noise. 

described by the following stochastic differential equations: 

Axp dt + Budt + dwp 

dx. Cx. dt + Dvdt + dw. 

(3.1) 

(3.2) 

where Xp and x, are the n-dimensional state vectors of pursuer P and evader E respectively 

and u and v are their control vectors. The matrices A, B, C, and D have appropriate 

dimensions. {w p (t). -00 ::; t ::; oo} and {w. (t). -00 ::; t ::; Do} are n-dimensional 

Wiener-processes with incremental covariances Rp dt and R. dt respectively. It is assumed 

that the processes Wp and w, are independent. They are also independent of· x p and x •. 

The initial states Xp (to) and x, (to) are normal with mean mop and mo. and covariance 

rna trices Rop and Ro,. 

The controls are restricted to the following sets of strategies: 

u (t) E U, V (t) E V, to::; t ::; T 

whe!"e 

T 

U = {u (t). II u II Q ( u' (t) u (t) dt) l} ::; Ep (3.3) 
I, 

T 

V= {vet). II vii Q(jv'(t)V(t)dt)l} ::;E. (3.4) 
I, 

E p and E. are positive constants. 

According to [6J the stochastic processes Xp (t) and x, (t) are normal processes since 

the values of Xp and x. at particular times are linear combinations of normal.variables. 

'The stochastic processes x p (t) and x, (t) can thus be completely characterized by their 

mean value functions and covariance functions. 
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The mean value functions for P and E are: 

dmx p 
--- = Amxp + Bu , mxp (t 0) = mop 

dt 

dmx, 

dt 
Cmxp + Dv , mx, (t 0) = mo, 

where mxp (t) = E (xp (t» and mx, (t) = E (x, (t». 

- 35 -

(3.5) 

(3.6) 

Pp (t) = cov [xp (t), Xp (t)J, the covariance of Xp (t) andP,(t) = cov [x, (t), x, (t)J, the 

covariance of x, (I) are determined as follows: 

(3.7) 

.dP, , ( 
&=.CP, + p,c +R" p, to) =Ro, (3.8) 

Using the ~chable region approach we can now calculate the optimal game termination 

point and the optimal game termination time for the mean value functions of pursuer 

mxp (t) and of the evader mx, (t), and with these results find the optimal open loop 

controls for the mean value functions. We will not use the capture distance • to determine 

a slightly expanded reachable r~ion for the pursuer, but use • as a parameter to determine 

the probability of capture. 

3. 1 Capture Probability 

Having obtained the optimal open loop controls, using the reachable region approach 

for the mean value functions, it is now left to examine how good these controls suit 

the actual noise disturbed game. We can do this by calculating the probability that capture 

will occur, if we apply these controls. We have to do this calculation for each state 

seperately because the noise characteristics as well as the capture distances • = ( • 1, 

.2 , ... , .. ) may be different. 

As the integration of the density function of a normal distributed random variable 

has no closed analytical solution, we have to do this calculation numerically. In the following 

= (1,2, ... , n) indicates the state. 

We will consider the situation at time tp, to ~ t p ~ T. For this time we will calculate 

the mean values of the it> state of pursuer mxp, (tp) and evader mx" (tp) and their 

covariances Pp, (tp) and p" (tp). With this information we can give the probability of 

every value X p, (tp) and x" (tp). We will however consider only values of X P' (t p) and x" 

(t p) out of the following intervals: 
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6 

Fig. 1. Density functions of X,i (t,) and X,i (t,). 

(3.10) 

where s" (t,) and s,' (t,) are the standard deviations of the i'· state of pursuer and evader 

at time t,. 

The interval : 

has now to be devided into m subintervals of length o. We have to choose m that 

o « e ,. The caputure probability PC, (t,) of the ill state at time t, ca:"n now be 

calcula ted : 

",-1 

PCi = L P [x,,: mx" + 4 S,i - k 0 :::; X'i 
k=O 

?: mx" + 4 s,' - (k+ 1) 0 ] 

·P[Xp,: mx" + 4s" - ko - 0/2 + e,:::; x" 

~ mx" + 4 s,' - k 0 - 0/2 - e ,J (3.11) 

The dependence upon t, of the variables in (3.11) was omitted for simplicity. " 

If we calculate PC, for each state variable at sufficient enough points of time 

tp , to :::; t p :::; T, (p = 1,2, ... ) we will get numerically the functions PC, (t), to :::; 

:::; T. The total capture probability PCT: the joint probability of all states, is expressed 

by: 
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;=1 

With these results, we can now judge if the open loop controls will give sufficient results. 

4. Stochastic Difference Equation 

If we want to simulate the beforehand mentioned "Pursuit-Evasion Game with White 

Noise Disturbance" with a digital computer, we have to change the stochastic differential 

equations into stochastic difference equations. 

Let us consider the following stochastic differential equation: 

dx = Axdl + Budl + dv (4.1) 

where x is an n-dimensional state vector, u the control vector and {v (I), -00 ~ ~ 

oo} is an n-dimensional Wienerprocess with incremental covariance Rdt. 

Multiplying (4.1) with e-A1
, we get: 

Integration of (4.2) gives: 

t i+1 

x (Ii+!) = ifJ (li+1 - Ii) x (Ii) + J ifJ (li+1 
I; 

t i+1 

+ jifJ(l i +1 - t)dv(t) 
I; 

where the matrix ifJ is defined by : 

difJ (I - Ii) 
= A (I) ifJ (I - Ii) 

dl 

ifJ(O)=/ 

Of particular interest in (4.3) is the term: 

iJ (Ii) = /~ (li+1 - I) dv (I) 
I; 

We will find that: 

'HI 

EiJ (I;) = E J ifJ (li+1 - I) dv (I) = 0 
'i 

and: 

(4.2) 

t) Bu (t) dl 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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';+1 

Efj (Ii) fjT (Ii) = E J ¢ (ti+\ - I) duet) duT (s) ¢T (ti+1 - s)J 
'i 

'HI J ¢ ([i+1 - IJR( IJ ¢T([i+1- IJ dl (4.7) 
'i 

Therefore {fj (Ii), i =1,2, ... } is a sequence of independent normal random variables 

with zero mean value and covariance given by (4.7). For more detailed information see 

[6J. 

5. Example 

To illustrate the application of the method shown in the previous chapters, we will 

consider a pursuit-evasion game, described by the following system of equations: 

dxp [-: 0] x,dt +[' :J udt + dwp 
- 1 0 

(5.1) 

dx, [-: l·dt+[' :Jwt + dw. 
-1 0 

(5.2) 

with covariance matrices: 

R op 
[OO~ 

:.002J Rp 
~[05 :,J (5.3) 

R .. ~ [ :.0025 
:.002J R, [ :.01 :,J (5.4) 

and energy constraints: 

E, = 1.3918 

The play begins at initial time 10 = 0 and the mean values of the initial positions 

are: 

(5.5) 

We will obtain the game termination time TO and the game termination point. Xf for 

the mean value functions: 
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2 
- 0.7 ] 

0.9281 

The results are shown III Figs. 2 ~ 11. 
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Fig. 2. Time- trajectories of X/>I 

of P and x <1 of E 

Fig. 4. Time-trajectories 
of mx,r of P and mX,1 of E 

"'~ w 
X 

I 

"'0 "--0 
X 

0.40 0.80 I. 20 1.60 

TIME 

Fig. 3. Time-trajectories of X/>2 

of P and x ,2 of E 
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Fig. 5. Time-trajectories of mx />2 

of P and mX,2 of E 
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Fig. 9. Capture probability PCI of 
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6. Validity of the Reachable Region Approach 

Let us consider the following deterministic pursuit-evasion game: 

Example 6.1 

[-1 0] [1 0] 
xp = Xp + u 

o - 1 0 2 

-x, = [ - 1 0 ] x, + [1 0] v 

o - 1 0 1 

with energy constraints: 

E, = 2 

The play begins at initial time to = 0 and at initial positions: 

- 41 -

(6.1) 

(6.2) 

(6.3) 

We will obtain the game termination time To and the game termination point XI: 

2.0143. 
[ 

2.0588 ] 

XI = 0.8027 
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Fig .12 shows the state trajectories and reachable regions for r and x I of pursuer 

and evader. Fig .13 shows the reachable region of the pursuer for time T = 1. 4 and the 

same state trajectory of the evader as in Fig .12, but drawn only until time T = 1.4. 

As we see, already at time T = 1.4 the pursuer could intercept the evader if the latter 

tries to reach XI in time T= 2.0413. Therefore the found solution with XI = (2.0588, 

0.8027) T.and r = 2.0143 is not optimal for the pursuer. 

To understand, why the reachable region approach does not give a correct solution 

for this example, we have to see that reachable regions for systems with initial point 

a:}ual zero and reachable regions for systems with initial point not a:}ual zero, have different 

properties. 

Let us therefore consider the following example: 

Example 6.2 

(6.4) 

with energy constraint: 

E= 2 

The initial time is to = 0 and the initial point is : 

Example 6.2.1 

Example 6.2.2 

The reachable regions for times T6 > To > T. > T3 > T2 > TI are shown for both 

examples 6.2.1 and 6.2.2 in Figs.14 and 15. 

Generally, we can say : if the initial point is zero, then the symmetry points of all 

reachable regions are identically with the initial point of the system and the reachable 

region for a time T2 contains completely the reachable region for a time T 1 , if T2 > 
T 1 • 

If the initial point is not a:}ual zero, then the symmetry points of the reachable regions 

move along the trajectory of the uncontrolled system. The reachable region for a time 

T2 does not generally contain completely the reachable region of a time T 1 , if T2 > 
T 1 • 
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-2 

N 

N 
I 

r<> 
I 

TI 
T2 
T3 

2 3 
T4 XI 

TS 
TS 

Fig.14. Reachable regions of example 6.2.1 for times 

T 6 > Ts > T. > Ta > T2 > Tl 

-2 

(\J 
1 

Trajectory of 
the uncontrolled 
system 

3 4 s 

Fig.15. Reachable regions of example 6.2.2 for times 

T 6 > Ts > T. > T3 > T2 > Tl 
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Because of this; the boundaries of the reachable regions can have points of intersection, 

which yield two .different times in which these points can be reached, using the optimal 

controls and the same amount of energy. 

We can show this for example 6.1. The boundary of the reachable region of the evader 

in example 6.1. has the following equation: 

If we solve this equation for the time, using the data of example 6.1: x{l = 2.0588, 

XI2 = 0.8027, E, = 2, we will get two results: T, = 2.0143 the time we got as optimal 

game termination time with the reachable region approach and T2 = 0.8735. The reachable 

regions for both times are shown together with the state trajectories in Fig.l6. Fig.17 

shows the reachable region for T, = 2.0143 and the general appearance of the state 

trajectories with final points on the boundary of this reachable region. 

The boundary of the reachable region of the pursuer of example 6.1 is expressed by 

the following equation: 

2 1 
----=-=_ [ x~ +- x In = E~ 
1 _e- 2T 4 

(6.6) 

If we set x{l = 2.0588 ap.d XI2 = 0.8027 in this equation and in equation (6.5) and calculate 

the functions Ep (T) and E, (T), we will get the results shown in Fig .18. Here we can 

also see that for the evader with E. = 2 two different times T are possible. This 

phenomenon has been already mentioned in Ref. [7J. 

Furthermore we see that for time T = 1.25 a minimum E, = 1.311 of energy is needed 

to reach XI = (2.0588,0.8027) T. The reachable region of the evader for T = 1.25 and 

E, ,; 1.311 and the state trajectory are shown in Fig.19. 

Summing up these results we will come to the following conclusions. The reachable 

regions as given in (2.15) and (2.16) were obtained in [3J by finding the minimal norm 

of the controls, which take the state of a linear system to a point x (T) in state space 

in a given time T. Therefore the meaning of this reachable regions is that they are, for 

a fixed time T, functions Xp (Ep) and x, (E,) respectively. And in this sense they really 

have, for systems with initial point equal zero as well as for systems with initial point 

not equal zero, the properties of a reachable region. That is: The reachable region for 

an energy E2 contains completely the reachable region for an energy E" if E2 > E" or 

in other words: if the boundary of the reachable region (equality holds in (2.15) and (2.16» 

is reached with a energy E2 , then for an arbitrary point inside this boundary we can say, 

it is reached with energy E" E2 > E" and an arbitrary point outside the boundary is 

reached with energy E3, E3 > E2. 

We can see this if we calculate the reachable regions for examples 6.2.1 and 6.2.2 

for a fixed time T and different values of energy E. The results are shown in Figs. 20 

and 21. 
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Fig.16. Reachable regions for times T, = 2.0143 and 

T 2 = 0.8735 of E and state trajectories of x, of E for 

T, and T2 

-I 

Fig .17. Reachable region for T, = 2.0143 of E and 

state trajectories with final points on the boundary 

of this reachable region 



Stochastic Pursuit-Evasion Games by the R. R. Approach - 47 -
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Fig .18. Functions Ep (T) and 
E, (T) of example 6.1 for 
X/I = 2.0588 and XI' = 0.8027 
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This reachable regions are therefore sets of final points for a certain time T, which do 

not state how this points are reached, that is, how the state trajectories \\Till look like. 

In the reachable region approach for pursuit-evasion games [3J, however, the roles 

of time and energy were reversed. Here we give a fixed energy in order to get functions 

Xp (T) and x. (T). This is possible only for systems with initial point equal zero. Because 

then the function E (T) for a fixed point x in state space, is a one to one relation as 

we saw for Ep (T) in Fig.18. And everything that was said before about the properties 

of the reachable region for the energy, holds here for the time. In the case that the initial 

point is not equal zero, the function E (T) for a fixed point in state space is not a one 

to one relation as we saw for E. (T) in Fig.18. 

Therefore, if we inverse it, the resulting configuration has no more the properties 

of a reachable region. We can see in Fig .15 that there are points of the inside of the 

boundary, which is reached in time T z, that can be reached in time T 1 , Tl < Tz. and 

points, that can be reached in time T 3, T3 > T z• The same holds for the outside. And 

because of this trajectories like the one of the evader in example 6.1 can occur. 

7. Conclusion 

Because the reachable region approach yields open-loop controls, its extension to the 

case with white noise disturbance can only be meaningfull, if the disturbance is small. 

Otherwise closed-loop controls which take into account the actual noise disturbed trajectories 

of pursuer and evader will yield better results. 

However, as we saw in chapter 6, we can not be sure, if the results of the reachable 

region approach are indeed optimal, without checking the resulting state trajectories. For 

further research it would therefore be of interest to reformulate the reachable region 

approach. 
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