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I (1) series or a linear combination between I (1) series

itself is weakly stationary but overdifferenced (i.e.,

I (－j) with a positive integer j), as stated by Lemma 3

in the subsequent section. The former as a relation

between series of different orders of integration is

associated with the occurrence of multicointegration

defined and discussed by the literatures such as

Granger and Lee (1990) and Engle and Yoo (1991),

whereas the latter is interpreted as one included in

relations on higher order cointegration, in the sense

that it exactly corresponds to the case d＝1 and b > 1

in Engle and Granger's (1987) definition of

cointegration.

As seen in many literatures, such a situation

compels the VECM representation/formulation to be

far apart from the conventional one. The VECM

formulation for time series systems of I (2)

components or a condition for the level series forming

such a VECM representation to be I (2) with some

inferences based on it has been studied vigorously in

many literatures such as Granger and Lee (1990),

Johansen (1995, p. 57 and p. 132) and Paruolo (1996),

and it is pointed out that an I (2) VECM representation

is characterized by the error correction mechanism

associated with relations on multicointegration or

higher order cointegration, although it is limited to a

particular one such as b＝2. On the other hand,

１　INTRODUCTION

AMONG MODEL FORMULATIONS for a system of

multivariate economic time series, the vector

autoregression (VAR) has been considered to be the

handiest one and applied widely in a large amount of

econometric researches. Particularly, numerous

econometric researches have been concentrated on the

situation in which individual time series are integrated

of order 1 (I (1)) and also paid attention to the

occurrence cointegration introduced by Granger

(1981). The Granger representation theorem (GRT)

presented in Engle and Granger (1987) is to provide a

VAR form coping with such a situation called the

VECM representation. However, there are some

cointegrated systems of I (1) components resulting in

the failure in the valid derivation of the VECM

representation by GRT. 

Provided that the DGP is a VMA representation in

first differences of original data series, the derivation

of an I (1) VECM by GRT becomes invalid by the

existence of some hidden unit roots in the VMA

characteristic equation (see Gregoir and Laroque

(1993) e.g.), and it is appeared as the phenomenon that

a linear combination either between a linear

combination of I (1) series forming a cointegrating

relation in the ordinary sense and a first differenced

TESTING FOR THE EXISTENCE OF
AN I (1) VECM REPRESENTATION
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Abstract
This paper proposes a method to test whether or not a VECM representation for a vector time series

consisting of I (1) components, claimed in Granger representation theorem, is derived validly from a VMA as

the DGP. The test is also available for the detection of the occurrence of multicointegration etc. Utilizing the

idea of the nonparametric test employed by Phillips and Oulialis (1990) and Shintani (2001) to detect the

existence of cointegration or the cointegrating rank, we construct a test statistic and establish its limiting

properties with some similarity to of those tests. Finite sample performances of the test proposed are also

investigated through some Monte Carlo experiment. 
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run covariances of I (1) or I (0) series constructed

based on the cointegrating rank and cointegrating

matrix and exhibit the degeneracy property

exclusively for the alternative hypothesis formulating

the situation in which GRT does not hold. It is shown

that the test is appreciated by the normalization-free

property, limiting distributions in terms of standard

Brownian motion and forming consistent tests, as ones

in the above-mentioned papers. It is also pointed out

that the test requires to obtain a consistent estimator of

the cointegrating rank and that this can be actualized

by Shintani's (2001) test mentioned above even if

GRT does not hold. Moreover, it should be noted that

one of Kernel estimators (or lag-windows) with a

related band-width parameter is required to estimate

the sample long-run covariance matrix of I (0) series,

similar to in the papers above. Monte Carlo

experiments are executed under some particular DGPs

and sample sizes 100, 250 and 500 in order to

investigate finite sample performances of the test.

Generally, the experimental results reveal that a

sample size as many as 250 is needed to secure the

asymptotics established theoretically for the test with a

careful selection from band-width parameters or

significance levels. On the other hand, the sample size

of 500 was sufficient for the test to approximate the

asymptotics and consequently the performances of the

test were satisfactory through all the experiments. 

The paper is organized as follows. Section 2

formulates the DGP, suppositions and some

preliminary concepts. The test proposed and its related

results are presented in Section 3. Section 4 deals with

Monte Carlo experiments. The remaining issues

including some concluding remarks are discussed in

Section 5. The proofs of a lemma and theorem in the

text are in Appendix.

２　DGP AND VECM FOR (1) SERIES

Associated with the Wold representation, suppose

that the observable vector time series yt of k-variates

considered is generated by a VMA in the first

differences1:

Gregoir and Laroque (1993) set up a representation

theorem as an extension of GRT under a more general

framework without excluding the occurrence of

hidden unit roots, any type of multicointegration or

higher order cointegration and provided a

representation not only in levels and differences but

also in their integrated one. In those literatures, we

may observe that the generalization of GRT or

multicointegration has been discussed under the

formulation for I (d) components with a positive

integer d greater than 1 ,  particularly for I (2)

components. However, it will be noticed in this paper

that the analysis of vector time series systems whose

individual components are I (d) with an integer d

greater than 1 can be converted into that of systems

consisting of I (1) components considering the d－1-th

difference series as the level ones. 

The purpose of this paper is to provide a meaningful

testing method to determine whether or not the

conventional GRT holds, motivated by that it has not

checked in many empirical researches for I (1)

cointegrated systems. The detection of

multicointegration or higher order cointegration will

be also aimed at through our test. We therefore adopt

the vector time series system of I (1) components as

the usual framework in which the conventional GRT is

discussed. It will be emphasized that a necessary and

sufficient condition for GRT to hold is used for

formulating the null hypothesis. Adopting a specific

VECM such as in Engsted et al. (1997) is not suitable

for our purpose since we are not interested in what a

sort of specific relation of multicointegration exists. 

The test constructed here is motivated by a

nonparametric approach introduced in Phillips and

Oulialis (1990) to test the existence of cointegration

and then led by Shintani (2001) to testing for

determining the cointegrating rank. The essential idea

leading to the characteristics of the tests is that some

sample covariance matrices or sample long-run

covariance matrices of I (1) or I (0) series become

degenerate or singular if and only if the null

hypotheses are not true. Our test will also utilize the

idea, exploiting similar matrices. These matrices are

interpreted as the sample covariances or sample long-
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(1)

where ∆ and B are the difference and backward

operators respectively, C(z) and C(1)(z) are the power

series C(z) and C(1)(z) given as

with k× k constant matrices Cj such that Σj＝1
∞ jν

_

, ||Cj||

< ∞ for some real number ν
_
≥ 1 the row vectors of

C(1) are all nonzero, 1 ≥ rank C(1) ≡ s ≥ k－1 and

the notice C(z)＝C(1)＋ (1－z)C (1)(z), {εt} is a

sequence of unobservable k × 1 random vectors

which are iid with Eεt＝0, Eεtεt́＝Ω00 > 0 and finite

fourth moments, and µ is a k-dimensional constant

vector forming the deterministic trends with the

supposition that in all the relations removing the

stochastic ones C(1)(Σh＝1
t εh), those are removed

similarly. Moreover, we assume that the VMA

characteristic equation det C(z)＝0 has roots either

equal to 1 or strictly greater than 1 in absolute value

and that (y 0́, y －́1, ... y －́q＋1)´ is either O(1) or Op(1), with

a positive integer q. Note that the former is imposed to

exclude noninvertibility caused by a root other than

z＝1 and the latter is put as some initial condition,

conventionally for cointegrated systems. Putting

with C(2)(z)＝Σj＝0
∞ (Σ∞i＝j＋2(i－1)Ci) z j, it follows from

(1) that for any t ≥ 1,

(2)

(3)

which will be useful for evaluating the initial

condition, trends in both stochastic and deterministic

sense or relations on cointegration or multicointegra-

tion, noting that even a quadratic trend must be

considered in deterministic ones for Σt
h＝1yh. 

It is now obvious from the supposition of rank C(1)

that there exist constant matrices γ of k× s and ß of

k× r, with r＝k－s, such that

rankγ́C(1)＝s,  ßγ́＝0,  ß´C(1)＝0,  rank ß＝r.

Without losing generality, suppose that if γ́C(1) µ≠

0, the first component of it is nonzero. As seen easily

by (2), all the elements of yt or all nonzero linear

combinations of γ́ yt are of I (1) and ß´yt becomes

weakly stationary if η0(1) as the term on the initial

vectors of yt and εt is out of consideration, implying

that it forms some coinetgrating relations with the

cointegrating rank r and cointegrating matrix ß.

Letting

Ω can be interpreted as the long-run covariance matrix

of (y t́ ß, ∆y t́γ)´, conditionally on the initial vectors, in

view of (1) and (2). 

Put

with the notice k ≥ s
_
≥ s. Now, we provide a necessary

and sufficient condition for the VECM representation

which GRT claims for I (1) cointegrated systems to

exist validly2:

Lemma 1 For yt generated by (1), there uniquely

exists a representation such that

(4)

where ∆＝1－B and the power series

satisfies A(z)C(z)＝(1－z) Ik, with a constant matrixα

of k × r column full rank, k × k identity matrix Ik, k

× k constant matrices Hj satisfying a convergence

condition similar to one for Cj and a k-dimensional
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３　TESTING METHORD

In this section we shall first discuss a method to test

whether or not the conventional VECM expressed as

(4) is derived validly under the DGP (1), provided that

the value of the cointegrating rank r is known. In

virtue of Lemma 1, the hypothesis tested can be

formulated by the value of s
_

associated with Condition

(A). This paper will naturally seek to test the null of

the situation in which the VECM derivation is valid as

H0 : s
_
＝k (Condition (A) holds)

H1 : s
_

< k (Condition (A) does not hold)

The construction of the test statistic proposed in this

paper needs some consistent estimates on the

cointegrating matrix ß with the value of r.

We now propose consistent estimators for ß and γ

suitably to our situation, although estimating ß and its

related consistency property have been examined and

established in numerous papers including famous

Stock and Watson (1993) under several situations.

Following the notations in Johansen (1995, pp. 90-91),

put Z0t＝∆yt, Z1t＝yt－1 and Z2t＝(∆y t́－1,…, ∆y t́－p, 1)´,

with a positive integer p, and based on those, 

with M2i＝Mí2, which in turn construct 

Sij＝Mij－Mi 2 M22
－1 M2j, i, j＝0, 1.

Letting λ̂1 ≥ … ≥ λ̂k and ξ̂1,…, ξ̂k be the ordered

eigenvalues of S11 and the corresponding eigenvectors,

the matrices ß̂ of k× r and  γ̂ of  k× s as 

ß̂＝[ ξ̂s+1,…,  x̂ik], γ̂＝[ ξ̂1,…,  x̂is].

Lemma 4 Let DT
－1 be the s × s matrix such that

Then, for ß̂ and γ̂ given above, there exist random

constant vector µ, if and only if

Condition (A) s
_

＝k

is satisfied.

Note that the absence of Condition (A) is equivalent

to the singularity of the long-run covariance matrix of

(y t́ ß, ∆γ́).3 It should be also noted in virtue of A(z),

C(z)＝(1－z)Ik that det A(z)＝0 has roots either equal

to 1 or strictly greater than 1 in absolute value. We

now show that the absence of Condition (A) may lead

to some relations embodying either multicointegration

or higher order cointegration.

Lemma 2 Suppose that Condition A is not satisfied

for yt generated by (1). Then there exists a relation as

either b 1́ ß´ (Σt
h＝1yh)＋b 2́γ́yt or b 1́ ß´(Σt

h＝1y
_

h), with

nonzero constant vectors b1 of r× 1 and b2 of s× 1,

which is weakly stationary except for the terms on the

initial vectors of yt and εt or deterministic trends.

The VECM for I (1) will be naturally deprived of its

validity by the existence of a VECM for I (2), as stated

already, and it will be formulated as follows:

Lemma 3 Suppose that yt is represented as4

(5)

with suitable constant matrices, provided that αi and

ßi, i＝1, 2, are column full rank, a constant vector µ

and a suitable initial condition on yt. Then, if (1) is

derived from (5), Condition (A) is not satisfied.

Put

The roots of det A(z)＝0 also satisfies the same

condition as for det C(z)＝0 or det A(z)＝0 in the

Lemma 1, as checked easily in the proof of this

lemma. 
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matrices  x̂,  ŷ,  û and  v̂ such that

ß̂＝ß x̂＋γŷ, γ̂＝γû＋ß v̂,

with x̂＝Op(1), x̂－1＝Op(1), DT ŷ＝Op (T－1), û＝Op(1),

û－1＝Op (1) and DT v̂＝Op(T－1).

Similarly to Zit and Mij above, we introduce the

notations Z0 ; t－n＝∆yt－n, Z1 ; t－n＝yt－n, Z3 ; t－n＝Σt
h＝1 yh,

Z4 ; t－n＝1, Z5 ; I－n＝(1, t) and Z6 ; t－n＝(Σt
h＝1yh́γ̂, 1, t, t2)´,

n＝0, 1,…, ST, with a sequence of positive integers

{ST} such that limT→∞ ST＝∞ and limT→∞ ST /T 1/2＝0,

with the notations for the product moment matrices

Mij ; m ; n＝ Zi ; t－mZ j́ ; t－n/T, i, j＝0, 1, 3, 4, 5, 6,

m＝0, n, n＝0, 1,…ST.

Moreover, let

with R̂ij (－n)＝R̂ íj(n). Note that those are constructed

so that deterministic terms in ∆yt, yt or Σt
h＝1 yh are

removed by detrending based on the least squares

regression.5

Our test statistic is motivated by Shintani's (2001)

P*(n, s) test statistic and is constructed simply by

some kernel estimator of the long-run covariance

matrix of (Σt
h＝1 yh́ ß̂, y t́γ̂)´ (conditioned the initial

vectors) and Ω. Those are given by

where w(･) is a real-valued kernel function defined by

the following assumption:

Assumption KL (Kernel Condition): The kernel

function w(･): R→[－1, 1 ] is a twice continuously

differentiable even function with:

(a) w (0)＝1, w´ (0)＝0, w´́ (0) ≠ 0 ; and either

(b) w (x)＝0, |x| ≥ 1, with either lim |x|→1w (x)/(1 －

T

Σ
t = n +2

|x|)2＝constant or lim |x| →1(1－|x|)3/w(x)＝

constant, or

(c) w (x)＝O (x－2), as |x| → 1.

Note that this assumption is made based on one

employed by Phillips (1995) and followed by Shintani

(2001), although this is more restrictive. It should be

also noted that ΣT－2
n＝－T+2 can be replaced with ΣST

n＝－ST

and ST is a band-width parameter, e.g., see Andrews

(1991). 

The test statitic is now given as

P̂＝TSTtr{w
_
Ω̂( M̂ZZ)－1},

with w
_
＝∫1－1w(x) dx.

In order to state the asymptotic properties of  P̂, let

us introduce the conventionalized symbols and Wn

(v) standing for weak convergence of probability

measures on the unit interval [0, 1] and the n-vector

standard Brownian motion on [0, 1] respectively.

Theorem 1 Suppose that yt is generated by (1).

Then:

(¡) Under H0,

where 

with the notice that Wk (u)＝(Wŕ (u), Wś (u))´.

(™) Under H1,

where P1 is of k × r
_

with r
_
＝k － s

_
and constitutes

[P1, P2] of k × k constant matrix such that rank [P1,

P2]＝k, P 2́ P1＝0,
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which the case r＝0 is allowed. Then:

(¡) If h＝r,

where  

(™) If h ≤ r－1,  P̃(h)＝TΣr
j＝h +1λ̌j－h (h)＋Op(ST

1/2),

where λ̌j－h (h), j＝h＋1,…, r, are the eigenvalues of 

ŵ ŕ－h ß´ Π̌ßŵr－h ( ŵ ŕ－h ß´Rv
_ ßŵr－h)－1,

where ŵ ŕ－h is of (r－h)× r such that ŵr－h＝Op(1) and

(ŵ ŕ－h ŵr－h)－1＝Op(1),  Π̌ is of k× k such that (T 1/2/ST
1/2)

Π̌＝Op(1) and {(T 1/2/ST
1/2)Π̌}－1＝Op(1), and R v

_＝E v
_

tv
_

t́,

putting v
_

t＝C(1)(B)εt.

Note in (™) that r must be positive. It is ensured by

this theorem that testing successively r＝0, r＝1,…,

based on P̃(h) and Johansen's (1996, p. 167) procedure

still leads to a consistent estimator for the true value of

r even if Condition (A) is not satisfied. Based on this,

it will not be so difficult to see that P̂constructed using

the estimate of r possesses the asymptotics close to

those for one under known r established by Theorem

1. 

４　EXAMPLES

In this section we shall illustrate to what extent the

asymptotic properties in the previous section are

preserved for finite samples, based on Monte Carlo

experiments in different DGPs as special cases of (1).

All the DGPs are bivariate systems (k＝2) with yt＝

(y1t, y2t)´ and εt＝(ε1,ε2)´ distributed as Gaussian with

mean zero and covariance matrix I2 (Ω00＝I2), provided

that whether or not each DGP possesses a linear trend

is decided by the parameter g taking either 0 or 1. The

DGPs presented below are classified into groups of

three: of VMA(2) models in first differences, VECMs

of finite lag-lengths for I (1) and those for I (2). The

DGPs included in each group are expressed in a

Π̃ is of k × k such that (T 1/2/ST
1/2) Π̃＝Op(1) and

{(T 1/2ST
1/2) Π̃}－1＝Op(1), and Ru

_＝E u
_

tu
_

t́ , putting

Theorem 1 (™) states that test statistic is of

Op(T 1/2ST
1/2) under the alternative. 

Let us denote the limiting distributions of P̂ in

Theorem 1 as Ψk ; s . Ψk ; s is simple, normalization-free

and free of nuisance parameters, indicating that to

estimate the percentage points using the Monte Carlo

method is easy. Table 1 reports the upper percentage

points of Ψk ; s as the 5 and 1 percent critical values of

the test for several k and s, simulating it with 70000

replications and 5000 samples based on pseudo

normal random variables.

This paper had studied the construction and

performance of the test based on P̂ under the

supposition that yt generated by (1) is cointegrated

(i.e., r ≥ 1) and r is known in spite of the reality that r

must be determined through some method. In this

section we shall discuss how our test can be dealt with

under the situation in which r is unknown. Now,

suppose that yt is generated by (1) in which r is

allowed to be 0, i.e., rank C(1)＝k is allowable. The

conventional way to deal with this issue is to

determine r before executing our testing procedure.

We will take up the test proposed in Shintani (2001) or

Phillips and Oulialis (1990), noting that the validity of

one based on Johansen's (1988) well-known likelihood

ratio test (trace test) is not established under our

situation in which the VECM for I (1) is not ensured to

be finite-order even if H0 is true. Let  λ̂1 ≥ … ≥  λ̂k be

the ordered eigenvalues of

and put  P̃(h)＝Σk
j＝ h + 1λ̂j for h＝0,…, k－2.  P̃(h) is

exactly the test statistic P(n, s) in Shintani (2001).

Having a keen awareness of the issue arising under the

lack of Condition (A), this paper will restate a part of

Shintani's (2001) Theorem 3.1 as

Theorem 2 Suppose that yt is generated by (1) in
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unified form with several parameters. All the DGPs

are constructed so that the roots of the VMA/VECM

characteristic equations are either equal to 1 or strictly

greater than 1 in absolute value, which is imposed for

det C(z)＝0 in (1). y－j, j ≥ 0, are supposed to be zero.

The unified expression for the first group is given as 

The values of gi are confined to the cases below: Case

(1) as g1＝g3＝0, g2＝0.2, Case (2) as g1＝0, g2＝0.2,

g3＝0.4, Case (3) as g1＝1, g2＝1.8, g3＝0.2, and Case

(4) as g1＝1, g2＝1.2, g3＝－0.2 respectively. We put

g＝0 through these cases. For i＝1,…, 4, Case (i*) is

defined as one added a deterministic trend to Case (i)

(i.e., Case (i) replaced by g＝1 without changing other

parameter values). Through all the cases in this group,

it is obvious that the matrix of the first term in the

right-hand side of the above relation corresponds to

C(1) and that it of the second term is C (1)(B). Choosing

(0.8, 1.2) as one of ß, it is easy to check that ß´C(1)＝

0 and H0 is true for Case (1), (1*), (2) and (2*). On the

other hand, ß´C(1)＝ß´C(1)(1)＝0 for Case (3), (3*),

(4) and (4*), implying that H0 is false for these cases

owing to a relation on higher order cointegration (d＝

1 and b＝2 in Engle and Granger's (1987) definition).

The expression for the second group is the

following one.

The cases considered here are as follows: Case (5) as

g4＝g＝0, Case (6) as g4＝－0.2, g＝0 and Case (i*)

corresponding to Case (i) replaced by g＝1, i＝5, 6,

respectively, similar to in the first group case. All the

DGPs in the second group are cointegrated systems

with ß´＝( 0.8, 1.2 ) as the cointegrating matrix and

can be converted into some VMA representations

formulated as (1), letting

in view of Lemma 1, it is obvious that H0 is true for

both cases.

The third group is expressed by

The cases considered are as follows: Case (7) as g5＝

g＝0, Case (8) as g5＝－0.2, g＝0 and Case (i*) added

a deterministic trend to Case (i), i＝7, 8, respectively,

as in the first or second group case. All the DGPs in

this group are included into ones expressed by (5), and

(1) can be also derived with

where f (z) is (1－0.447213iz)(1＋0.447213iz) for

Example (7) and {1－(0.134025－0.259804i) z}{1＋

(0.134025－ 0 .259804i) z}(1＋ 0 .468051z) for

Example (8) with i denoting the imaginary, indicating

that H0 is false under any DGP here. 

Throughout all of DGPs, we ran 10000 replications

of experiments under 100, 250 and 500 as the sample

size T, and pseudo normal random variables for εit,

i＝1, 2, were adopted to produce P̂ in each experiment.

ß̂ and γ̂(and S11 as a basis for those) are obtained as

p＝4, and this paper confines k (n/ST) to Bartlett

Kernel with ST＝4, 6. 

The aim of the experiments is to obtain the relative

frequency (the probability) for the test based on P̂ to

make a correct decision on H 0 among 10000

replications under each DGP, T, ST and critical point,

using 5% and 1% critical points as the upper

percentage points of Ψk ; s reported in Table 1 (the case

k＝2, s＝1). We will provide it in two ways. One is

the relative frequency of the events in which H0 is
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the test under the level of significance set at 5% seems

to be sufficiently supportable as long as T is as many

as 250 and ST＝4 is chosen. However, as T＝250, we

may find many cases which yield extremely poor

results in the case that the 1% level of significance or

ST＝6 is used. We will note that the results for T＝100

excluded in Table 3 are far more undesirable than

those for T＝250, as expected from the results

reported above on the power. As T attains about 500,

we will see that the relative frequency of a correct

decision in association with P̃ (0) sufficiently becomes

close to one, reflecting strongly the asymptotics of P̂

and the consistency of P̃(0). 

５　CONCLUDING REMARKS

As has been discussed above, the valid derivation of

the conventional I (1) VECM representation is not

always ensured even if the vector time series system

considered is cointegrated with I (1) components. The

interest of this paper is put not in formulating concrete

relations on multicointegration or higher order

cointegration to make the derivation invalid but in

finding a method to check whether or not the

derivation is possible, stimulated by that it has not

been checked empirically. As one of useful methods,

this paper proposed the test based on P̂ .

The null hypothesis of the test formulates the

situation in which the derivation is achieved, whereas

the details of the situation under the alternative are out

of consideration. Theorem 1 (¡) in this paper provides

the limiting distribution of the test statistic under the

null as an available form for the critical values, in the

sense that it is normalization-free, free of nuisance

parameters and constructed based on standard

Brownian motions. We also show that the test is

consistent, although the convergence of the power to 1

(as the limit) is rather slow, as verified by the order of

P̂in Theorem 1 (™).

Such slow convergence will be also reflected in the

experimental results for T＝100 or 250 in the previous

section, resulting in poor performances of the test in

most cases. In particular, the experiments revealed that

the sample size as many as 100 was completely

rejected as the empirical size or power of the test and

follows automatically from r＝1 given. Another is the

relative frequency of the events in which a correct

decision on H0 is made provided that the events that P̃

(h) test as k＝2 and h＝0 accepts r＝0 are excluded.6

Table 2 provides the empirical sizes and powers of the

test P̂ using the 5% and 1% critical values in Table 1.

On the other hand, the results on the relative frequency

of a correct decision in association with P̃ (0) are in

Table 3. Note that the figures in Table 2 and 3 are

percentiles.

The experimental results in Table 2 show that the

performance of the test is not so undesirable under the

level of significance set at 5%, T which is as many as

250 and ST＝4. However, it may be observed that as

T＝250, the convergence of the empirical size/power

to theoretical one is not generaally prominent. In

particular, such a sample size yields unsatisfactory

results on the power. We will find that such power

distortion is noticeably deteriorated as the 1% level of

significance is used or ST＝6, suggesting that there is

great deviation of the empirical distribution of P̂ from

the limiting one in the part of the tail more. Moreover,

we may recognize severer size/power distortion in the

VECM cases such as Case (5), (6), (5´) and (6´).

The results for T＝100 are surprisingly favorable

for H0 through all the cases and consequently it was

revealed that the test was extremely powerless under

such a sample size. We will note that such powerless

performances were recognized similarly in the results

on P̃(0), although not provided in this paper.

On the other hand,  the results for T equal to 500

reflect the asymptotics considerably. As T＝500, the

greater value of ST (ST＝6) tends to lead to more

favorable results for H0. However, we will report that

the test showed noticeable deterioration in the power

in contrast to small improvement in the size as ST

attains 8, although not provided in this paper.

The relative frequency of a correct decision in

association with P̃ (0) generally shows a similarity

with its corresponding empirical size/power, based on

that the performance of P̃ (0) as the test for r＝0 was

similar to of P̂ . although the difference between both

was not necessarily slight for all the cases. In general,
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insufficient to distinguish H1 from H0. However, as

long as T is as many as 250, the results under the level

of significance of 5% and ST＝4 were not so

undesirable through all the cases.  It should be also

emphasized that T attaining about 500 improved the

test performances noticeably.

This paper has not sufficiently dealt with the

experiments on how the performance of the test P̂ is

improved by a selection from various kernel functions

or band-width parameters under finite samples. It may

be plausible that some kernel exhibits superiority with

a value of the band with parameter under some DGPs

as T＝250, following the experiments of this paper.

We will only state that in the DGPs adopted for the

experiments, a smaller value of the band-width

parameter, i.e., ST＝4, led to better results.

The test proposed in this paper will be easily

extended to one for a DGP taking account not only

tC(1) µ but also higher-order deterministic trends into

account, based on replacement of Z2t, Z4 ; t－n, Z5 ; t－n and

Z6 ; t－n with ones arranged in order to remove such

trends, although we have a view that it is not so

necessary or crucial for I (1) formulation.

Our test is nonparametric in the sense that P̂ is

constructed without being dependent on any

parametric model, similar to in Phillips and Oulialis

(1990) or Shintani (2001) and was not necessarily

satisfactory under some specific DGPs and finite

samples, as seen in the experimental results. The test

will be nevertheless appreciated as a unified and wide-

range method, although supposing some parametric

model such as the I (2) VECM may lead to more

powerful tests. 
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(5) becomes the familiar VECM form for I (2) given in

Johansen (1995, p. 57 and p. 132). 
５ R̃ ij are constructed in order to remove the stochastic trends

in Σt
h＝1γ̂́yh as well. We note that it is required to make

the limiting distribution of the test statistic stated in

Theorem 1 later be free of nuisance parameters. 
６ P̃ (h) here corresponds to the demeaned and detrended

version of Shintani's P(n, s) with the Bartlett Kernel under

each of ST here and therefore Phillips and Ouliaris's (1990)

Table IVc is utilized for the critical values. 

Appendix

Proof of Lemma 1 It is trivial that

(A.1)

The sufficiency will be proved immediately by putting

and multiplying both sides of (2) by A(B). 

Next, suppose that there exists a A(z) satisfying the

requirements for (4). Noting that (4) is written as

A(B) yt＝εt＋µ－A(1)η0 (1)

with C(z)＝Ik＋Σj＝1
t－1 Cjz j＋o (1) and multiplying both

sides of the above relation by Ik＋Σj＝1
t－1 CjB j, we attain

to

C(B) A(B) yt＝C(B)εt＋C(1) µ＋op(1), ∀t ≥ 1. 

(A.2)

Equating the left-hand side of (1) with that of (A.2) as

t → ∞, it must be asserted that C(z) A(z)＝(1－z), Ik.

Consequently, 

(A.3)

On the other hand, by the supposition, det A(z)＝(1－

z) s, g(z) with a power series g(z)＝1＋Σ∞
j＝1 g j z j such

that g j satisfy a convergence condition similar to one

for Cj. This, together with (A.3), requires Condition

(A).
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FOOTNOTES

１ The VMAs in the d-th differences with an integer d

greater than 1 are allowable for our consideration, since

those can be interpreted as (1) by regarding ∆d－1yt as yt, as

mentioned in Introduction. 
２ As another one required to derive the VECM

representation,  we refer to Assumption B3 in Banerjee et

al. (1993, p. 258), which is equivalent to our Condition

(A) as easily checked. 
３ Condition (A) holds if and only if any linear combination

of  (y t́ ß, ∆´γ) is invertible, noting the supposition of det

C(z). 
４ Regarding ∆yt, Σt－1

h＝1 yh and yt－1 as ∆2yt, yt－1 and ∆yt－1 in

connection with stated in our introduction or footnote 1,
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Proof of Lemma 2 In view of (2) and (3), it is

obvious that ((Σt
h＝1 yh)´ ß, yt́γ)´ is expressed as

Noting that rank γ´C(1)＝s, the result desired is

derived immediately. 

Proof of Lemma 3 Using an argument similar to

used in the proof of Lemma 1, it is shown that the

derivation of (1) requires C(z) A(z)＝(1－z)2 Ik,

therefore, A(z) C(z)＝(1－z)2 Ik, where A(z) is in the

statement following this lemma and C(z) is on (1).

This in turn leads to

α1 ß 1́C(1)＝0, α1 ß 1́C(1)(1)＋α2 ß 2́C(1)＝0, (A.4)

noting that the terms multiplied by (1－z) j, j＝0, 1, in

A(z) C(z) must be zero. In view of the definitions of

C(1) and ß, it is trivial to see that there exists a

suitable matrix b1 such that ß 1́＝b 1́ ß´ and rank b1＝

rank ß1＝rankα1. Since [ ß,γ] is full rank, we can let

ß 2́＝b 2́1 ß´＋b 2́2γ´

with suitable matrices b2i, i＝1, 2, such that rank [b 2́1,

b 2́2]＝rank ß2＝rankα2. Then it is obvious that 

α2 ß 2́C(1)＝α2b 2́2γ́C(1).

In view of these results, it follows from the second

equation of (A.4) that 

b
＿

1́ ß´C(1)(1)＋b
＿

2́γ´C(1)＝0

with a suitable matrix [b
＿

1́, b
＿

2́] whose rank is equal to

either rankα1 or rankα2, implying that Condition (A)

does not hold.

Proof of Lemma 4 By combining the well-known

asymptotic theory for I (0) and I (1) series, which are

given in numerous literatures (e.g., Hamilton (1994, p.

548)), and its simple application with the suppositions

on ß and γ,  we see that DT
－1γ´S11γDT

－1＝Op(T), (DT
－1

γ́S11γ/TDT
－1)－1＝Op(1), ß´S11ß＝Op(1) and DT

－1γ

´S11ß＝Op(1). It is also obvious from the suppositions

of ß and γ that there exist random matrices x̂ , ŷ , û

and v̂ such that ß̂＝ßx̂＋γŷ and γ̂＝γû＋ßv̂. Since ß̂

corresponds to the r smallest eigenvalues of S11, it

follows that ß̂ ´S11ß̂＝Op(1), which in turn requires x̂＝

Op(1), x̂－1＝Op(1) and DTŷ＝Op(νT) withνT such that

lim T→∞νT＝0 and T－1/2 ≤νT > 0. Similarly, û＝Op(1)

and û－1＝Op(1) since DT
－1γ̂́S11γ̂DT

－1＝Op(1). Then it is

derived from 0＝ß̂´γ̂ and the results derived already

that DTv̂＝Op(νT). Moreover, 0＝ß̂ Ś11γ̂ implies  

0 ＝ û´DT(DT
－1γ´S11γ/TDT

－1) DTTŷ

0 ＝＋û´DT(DT
－1γ́ S11ß) x̂＋v̂´ß´S11ßx̂

0 ＝＋v̂´(ß´S11γDT
－1) DT ŷ .

Evaluating the orders of the terms in the right-hand

side of the above equation, we must conclude thatνT＝

T－1 to cancel out the order of û´DT(DT
－1γ´S11γ/TDT

－1)

DTTŷ .

The following lemma states the consistency

property of the kernel estimator for weakly stationary

series in a general form and is needed to prove

Theorem 1.

Lemma A.1 For ξt given as ξt＝Σ∞
j＝0 Djεt－j , where

Dj are n × k constant matrices with n ≤ k and Σ∞j＝1 jν̌,

|| Dj || < ∞ for some real number ν̌≥ 1, let

where D(1)＝Σ́j＝0 Dj and R̂ξ(n)＝ΣT
t＝n+2ξtξ́t－n/T with

R̂ξ(－n)＝R̂ξ(n)´. Then, Λ̂＝Λ＋Π̂, with Π̂ such that

(T 1/2/ST
1/2)Π̂＝Op(1) and {(T 1/2/ST

1/2)Π̂}－1＝Op(1).

This lemma is established by evaluating the

covariance matrix of (T 1/2/ST
1/2)Λ̂ in the same way as

for Theorem 9 in Hannan (1970,  p. 280) or

Proposition 1 (a) in Andrews (1991). It should be

noted that the row full rank property of D(1) is not

necessary to be assumed.

Lemma A.2 Letηt beΣ∞
j＝0 Dj;ηεt－j and suppose that

w(x; h－1) is defined and rank Dξ(1)＝mξ,ξ＝η,ζ.

Then, for fixed positive integer h and nonnegtaive

integers i
_

and j
_
, we have:

(¡) Putting
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Moreover, we have  

since w((n－i
_
)/ST; h－1)＝w(0 ; h－1) (1＋O(MT/ST))

for any |n| ≤ MT－1.

Putting these results together and noting that

it is easy to derive the required relation.

We note that Lemma A.2 (™)corresponds to

Theorem 10 of Hannan (1970, p. 283) except that the

assumption on the Kernel function is different from

ours.

Lemma A.3 Let ηt be Σ t
h＝1εh and suppose that

w(x ; h－1) is defined and rank Dζ(1)＝mζ. Then, for

h, i
_

and j
_

in Lemma A.2,  we have:

where w
_

(h－1)＝＝∫－11 w (x ; h－1)dx.

Proof For any n＝1,…, ST－1, put 

Ψ̃η(n)＝R̂ηη(n)/T－R̂ηη(0)/T, 

Ψ̃η(－n)＝R̂ηη(－n)/T－R̂ηη(0)/T,

Ψ̃ηζ(n)＝R̂ηζ(n)－R̂ηζ(0),

Ψ̃ηζ(－n)＝R̂ηζ(－n)－R̂ηζ(0) 

with the notice Ψ̃η(－n)＝Ψ̃ή(n). Then we have

(A.5)

Ψ̃ (ηζ)＝Op(ST
1/2/T 1/2) and {T 1/2/ST

1/2Ψ̃ (ηη)}－1＝

Op(1) or {T 1/2/ST
1/2Ψ̃(ζζ)－1＝Op(1).

(™)

Proof (¡) can be regarded as exactly the same as

Theorem 9 of Hannan (1970, p. 280) or Proposition 1

(a) of Andrews (1991), evaluating a submatrix of the

Kernel estimator in the theroem/proposition, regarding

w((n－i
_
)/ST;h－1) as w(n/ST; 0) and noting that

R̂ηζ(n)－ER̂ηζ(n)＝Op(T－1/2) ∀integer n,

based on the standard theory for I (0) series. 

For (™), it is trivial that

Letting {MT} denote a series of positive integers such

that limT→∞ST
1/ν̄/MT＝0 and limT→∞MT /ST＝0, it is

asserted by the condition on Dj;ξ that 

Rηη(MT)＝O (MT
－ν̄), Rηζ(－MT＋1)＝O (MT

－ν̄).

It is also easy to see 
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(A.6) 

The well-known theory on Brownian motions (e.g.,

Hamilton (1994, p. 548)) states  

ηt /T 1/2 Ω1/2
00 Wk (t /T),

which, together with the asymptotics for I (0) and I (1)

used in the proof of Lemma 4, leads to

(A.7)

(A.8)

Since Σj＝0
ST－2εt－j＝Op (ST

1/2), it is also easy to see that 

for any n＝1,…, ST－1. In view of these results, we

can find suitable positive definite matrices Mi whose

components are of O (1) with quantities O (ST /T) and

O (1) so that    

Eθ̃iθ̃í < w
_
2 (h－1) O (ST /T ) Mi, i＝1, 2,

Eθ̃3 θ̃3́ < w
_
2 (h－1) O (1) M3, (A.9)

where

Evaluating (A.7) or (A.8) with (A.9) in (A.5) or (A.6),

we obtain the desired result for the lemma.

We note that such asymptotics as in Lemma A.2 are

provided as well in Shintani (2001), although our

kernel function w(x ; h－1) is more general in

construction. Now, for any nonnegative integers h, n,

hi, m2, i
_

and j
_

such that hi ≥ n (i＝1, 2),  put

Lemma A.4 For h, i
_

and j
_

in Lemma A.2, let ηt be

Σ∞
j＝0 Dj ;ηεt－j and suppose that w (x ; h＋n－1) is

defined and rank Dξ(1)＝mξ, ξ＝η, ζ. Then:

where q̌ is 1 if h＋n－2＝0 and Assumption KL (b) is
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if w (x ; h) is defined and is constant over [－1, 1].

Proof Noting that

for n such that ST－1－j
_
≥ n ≥ 1, it follows that

Note that

above is zero if w (x ; h－1) is constant over [－1, 1]. It

is also trivial that

if it is not so. These results immediately leads to the

first relation of (¡).  Similarly, noting that

for n such that ST－1－i
_
≥ n ≥ 1,  

satisfied and is 0 otherwise.

The following results will be needed to establish

asymptotics for the kernel estimator constructed

overdifferenced series.

Lemma A.5 Suppose that w (x ; h－1) is defined.

Then, for h, i
_

and j
_

in Lemma A.2, we have:

(¡)

if w (x ; h－1) is not constant over [－1, 1 ], and

otherwise,

(™)

if w (x ; h) is defined and is not constant over [－1, 1 ],

and
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Thus the second relation of (¡) can be derived in the

same way as for the first relation of (¡). 

Turn to the proof for (™). By the first relation of (¡)

in which ζ is replaced by ∆ζ,

noting that Σ2
i＝1ψ̃i ; T (h ; 1 ; 1 ; 0 ; i

_
; j

_
) must be also

replaced by Σ2
i＝1ψ̃i ; T (h ; 1 ; 1 ; 1 ; i

_
; j

_
). The required

result is led to by the second relation of (¡), regarding

h in the above relation as h－1.

We will find the probability order of the kernel

estimator constructed based on I (－1) series by

combining Lemma A.5 with A.2 and note that the

essentials of this lemma is obtained in the course of

the proof of Lemma 8.1 of Phillips (1995)

or by some application of the argument used there.

Proof of Theorem 1 First, let MZZ and Ω̌ denote the

quantities obtained by replacing ß̂ and γ̂ with ß and γ

in M̂ZZ and Ω̂ respectively, noting that γ̂ in R̃ ij is also

replaced with γ. It follows from Lemmas A.1 to A.5

and the essential results above that  

(A.10)

with Π̃ in the statement of the theorem. Next, let α

denote a k×r column full rank constant matrix such

that C (1)α＝0. 

If s
_

＝k (i.e., Condition (A) holds), we can let

with a k × k full rank matrix P. Note that {άΩ 00
－1εt}

and {γ´C (1)εt´} are independent. Based on the well-

known results on Brownian motions (e.g., Hamilton

(1994, p. 548)),  we have

with Ω in Section 2, noting that   

and that Wr (t / T) and Ws (t / T) are independent.

Similarly,

where

regardless of whether or not s
_
＝k holds. Note that

We shall now state several essential results for I (2),

I (1) and I (0) series with deterministic trends, not

depended upon whether or not s
_
＝k. Letting Rξ＝Eξt

ξt́  with ξt in Lemma A.1,

and M
_

ij ; n ; n＝ΣT
t＝n +2 Z

_
i ; t Z

_
j́ ; t /T, i, j＝1, 2, 3, 4, n＝0, 1,

…, ST, with
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provided that the terms on the initial vectors or

deterministic trends are out of consideration. By a

similar argument to one used for the case s
_
＝k,

with Ω̌ 
2＝P2´ΩP2. It follows from these results with

the essential ones stated above that

with

Noting that P1́Ω＝0, it is easy to see from (A.10) that

Consequently,

which are included essentially in the asymptotics on

I (1) established in past papers or shown by a simple

application of those, e.g., Park and Phillips (1988,

1989) or Hamilton (1994, p. 548). It is also obvious in

view of Lemma 4 that

putting

In view of the expression for ((Σt
h＝1 yh)´ß, yt́γ)´ in the

proof of Lemma 2, the limiting behaviors based on

Brownian motions above, together with the essential

results, lead to

(A.11)

It is also easy to find [P1, P2] claimed in the

statement of the theorem for the case s
_

< k. Then the

expression for ((Σt
h＝1 yh)´ß, yt́γ)´becomes

with u
_

t in the statement of Theorem 1 (™) and
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Noting that Π̃ ＝Op(ST
1/2/T 1/2) in view of the statement

of the thereom, it is established that

(A.12)

On the other hand, using the essential results and

Lemma 4 with the expression for ((Σt
h＝1yh)´ß, yt́γ)´,

(A.13)

regardless of whether or not s
_

< k. Similarly,

(A.14)

recalling thatΣT－2
h＝－T+2 in Ω̂ actually becomes summation

over －ST ≤ t ≤ ST. 

Putting (A.10) to (A.14) together, the results

required for the theorem are established.

Proof of Theorem 2 We will chcek that this

theorem can be proved essentially along the course of

the proof of Shintani's Theorem 3.1 and using its

related arguments except for the minor points stated

below. First, P̃(h) is constructed based on demeaning

and detrending unlike Shintani's P (n, s). 

However, it does not make much difference to the

result. A similar matter is applied to our band-width

parameter ST given in a more general form than

Shintani's one. We also note in (™) that the order of ß´

Π̌ß is established by arguments, similar to of P1́Π̃ P1

in Theorem 1 (™). This term may be expressed in a

more specific form if rank ß´C (1)(1)＝r holds, which is

necessary for Condition (A), as in Shintani (see (5) in

p. 341 and p. 356). However, it is not assumed in this

paper and it should be emphasized that Condition (A)

is not needed for Shintani's Theorem 3.1 except for

this matter. The important matter is that the

degeneracy property of ΣT－2
n＝－T+2 k (n/ST) R̂ 00(n) or R̂ 11/T

is caused by only ß (or a matrix spanned by ß) and that

P1 in Theorem 1 never affect it.

Table 1

5% and 1% Percentage Points of Ψk ; s

k＝2, s＝1 k＝3, s＝1 k＝3, s＝2 k＝4, s＝1

5% 1% 5% 1% 5% 1% 5% 1%

116.79 140.256 179.233 136.544 145.03 160.671 134.521 165.341

k＝4, s＝2 k＝4, s＝3 k＝5, s＝1 k＝5, s＝2

5% 1% 5% 1% 5% 1% 5% 1%

116.79 140.256 179.233 136.544 145.03 160.671 134.521 165.341

k＝5, s＝3 k＝5, s＝4 k＝6, s＝1 k＝6, s＝2

5% 1% 5% 1% 5% 1% 5% 1%

116.79 140.256 179.233 136.544 145.03 160.671 134.521 165.341

k＝6, s＝3 k＝6, s＝4 k＝6, s＝5 k＝7, s＝1

5% 1% 5% 1% 5% 1% 5% 1%

116.79 140.256 179.233 136.544 145.03 160.671 134.521 165.341

k＝7, s＝2 k＝7, s＝3 k＝7, s＝4 k＝7, s＝5

5% 1% 5% 1% 5% 1% 5% 1%

116.79 140.256 179.233 136.544 145.03 160.671 134.521 165.341

k＝7, s＝6 k＝8, s＝1 k＝8, s＝2 k＝8, s＝3

5% 1% 5% 1% 5% 1% 5% 1%

116.79 140.256 179.233 136.544 145.03 160.671 134.521 165.341

k＝8, s＝4 k＝8, s＝5 k＝8, s＝6 k＝8, s＝7

5% 1% 5% 1% 5% 1% 5% ⌒ 5%

116.79 140.256 179.233 136.544 145.03 160.671 210,344 221.556
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Theoretical T＝100 T＝250 T＝500

Size ST＝4 ST＝6 ST＝4 ST＝6 ST＝4 ST＝6

Case 1 (H0 is true.)

5% 0.08 0 1.89 0.59 6.36 3.16

1% 0.01 0 0.18 0.04 0.8 0.32
Case 2 (H0 is true.)

5% 0.09 0.09 1.33 0.45 3.31 2.1

1% 0.01 0.01 0.06 0.01 0.49 0.15
Case 3 (H0 is false.)

5% 0.32 0.17 95.37 25.98 100.0 100.0

1% 0.08 0.09 47.76 1.79 100.0 99.99
Case 4 (H0 is false.)

5% 0.22 0.11 90.02 16.25 100.0 100.0

1% 0.04 0.04 30.0 0.83 100.0 99.97
Case 5 (H0 is true.)

5% 0.5 0.54 3.49 1.34 10.98 5.46

1% 0.04 0.07 0.24 0.04 1.91 0.69
Case 6 (H0 is true.)

5% 0.16 0.14 3.57 0.94 11.19 5.4

1% 0.02 0.03 0.24 0.07 2.14 0.55
Case 7(H0 is false.)

5% 0.03 0.01 91.95 19.12 100.0 100.0

1% 0 0 35.9 0.94 100.0 100.0
Case 8 (H0 is false.)

5% 0.09 0.01 92.21 17.28 100.0 100.0

1% 0 0 34.16 0.35 100.0 99.96
Case 1* (H0 is true.)

5% 1.96 0.03 2.4 0.75 6.42 3.55

1% 0.01 0 0.1 0.01 0.96 0.29
Case 2* (H0 is true.)

5% 0.19 0.22 1.36 0.49 3.45 2.12

1% 0 0 0.05 0.01 0.3 0.14
Case 3* (H0 is false.)

5% 0.05 0.01 95.68 25.71 100.0 100.0

1% 0 0 46.33 1.42 100.0 100.0
Case 4* (H0 is false.)

5% 0.08 0.03 89.8 15.69 100.0 100.0

1% 0.01 0.01 30.38 0.31 100.0 99.97
Case 5* (H0 is true.)

5% 0.58 0.76 3.76 1.36 10.93 5.43

1% 0.04 0.08 0.38 0.1 2.09 0.72
Case 6* (H0 is true.)

5% 0.26 0.21 3.86 1.3 11.73 6.03

1% 0.01 0 0.39 0.07 2.45 0.87
Case 7* (H0 is false.)

5% 0.03 0 91.55 18.82 100.0 100.0

1% 0 0 35.72 0.46 100.0 99.99
Case 8* (H0 is false.)

5% 0.1 0.01 92.34 17.93 100.0 100.0

1% 0 0 34.82 0.42 100.0 99.96

Table 2

Empirical Size and Power
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Table 3

Relative Frequency of a Correct Decision in association with ～P̃(0)

Significance Level : 5% Significance Level : 1%

T＝250 T＝500 T＝250 T＝500
ST＝4 ST＝6 ST＝4 ST＝6 ST＝4 ST＝6 ST＝4 ST＝6

Case 1 (H0 is true.)

99.11 86.71 93.64 96.84 96.83 17.38 99.2 99.68
Case 2 (H0 is true.)

78.88 21.59 96.69 99.9 28.51 3.58 99.51 99.85
Case 3 (H0 is false.)

95.37 24.81 100.0 100.0 47.41 1.01 100.0 99.99
Case 4 (H0 is false.)

90.02 15.11 100.0 100.0 29.52 0.32 100.0 99.98
Case 5 (H0 is true.)

96.51 85.58 89.02 94.54 96.08 17.49 98.09 99.31
Case 6 (H0 is true.)

96.43 87.1 88.81 94.6 96.88 18.5 97.86 99.45
Case 7 (H0 is false.)

91.95 18.2 100.0 100.0 35.69 0.48 100.0 100.0
Case 8 (H0 is false.)

92.21 17.28 100.0 100.0 33.8 0.35 100.0 99.96
Case 1* (H0 is true.)

97.6 96.71 93.58 96.45 87.03 17.24 99.04 99.71
Case 2* (H0 is true.)

78.0 21.46 96.55 97.88 21.46 3.2 99.7 99.86
Case 3* (H0 is false.)

95.68 45.99 100.0 100.0 24.78 0.8 100.0 100.0
Case 4* (H0 is false.)

89.79 30.0 100.0 100.0 15.69 0.31 100.0 99.97
Case 5* (H0 is true.)

96.24 85.87 89.07 94.57 96.09 17.78 97.91 99.28
Case 6* (H0 is true.)

96.14 86.89 88.27 93.97 96.62 18.71 97.55 99.13
Case 7* (H0 is false.)

91.55 17.87 100.0 100.0 35.72 0.46 100.0 99.99
Case 8* (H0 is false.)

92.34 16.83 100.0 100.0 34.56 0.42 100.0 99.96
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