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ABSTRACT. In this paper we show that all the global solutions for some semilinear 
parabolic equations naturally contain a Palais-Smale sequence as a subsequence and 
then we apply a global compactness result due to Struwe [16] to the Palais-Smale 
sequence. Furthermore, the finite-time blowup problems are discussed. 

1. Introduction 

In this paper, we are concerned with the following mixed problem to 
semilinear parabolic equation: 

Ut(t,x) - Ju(t,x) = lu(t,x)IP-lu(t,x), (t,x) E (0, T) x Q, (1) 

u(O,x) = uo(x), x E Q, (2) 

ulcQ = 0, t E (0, T). (3) 

Here 1 < p ~ (N + 2)/(N - 2) and Q c RN (N ~ 3) is a bounded domain with 
smooth boundary aQ. In the case when 1 < p < (N + 2)/(N - 2) we can treat 
the lower dimensional case N = 1,2, but for simplicity we restrict our attention 
to the above mentioned case. For large initial data Uo in some sense, it is well
known that the solution u(t,x) to the problem (1)-(3) blows up in a finite time 
(see Ikehata-Suzuki [9], Ishii [10], Levine [11], Otani [13], Tsutsumi [18], and 
Payne-Sattinger [14]), meanwhile for small initial data, exponentially decaying 
solutions are obtained (see [9] and the references therein). In this paper, we 
are interested in the solutions to (1)-(3) which neither blowup nor decay. We 
proceed our argument based on the following local well-posedness theorem due 
to [9] (see also Hoshino-Yamada [7]). In the following, II· Ilq (l ~ q ~ 00) 
means the usual real Lq(Q)-norm. 

2000 Mathematics Subject Classification. 35K55 

Key Il'Ords and phrases. Parabolic equation, Palais-Smale sequence, Global compactness result. 



118 Ryo lKEHATA 

PROPOSITION 1.1. For each Uo E HJ(Q), there exists a maximal existence 
time Tm > 0 (possibly Tm = +(0) such that the problem (1)-(3) has a unique 
solution u E C([O, Tm); HJ (Q)) which becomes classical on (0, Tm).· Furthermore, 
if Tm < +00, then 

lim Ilu(t, ·)1100 = +00, 
tTTm 

and in particular, in the case when 1 < p < (N + 2)/(N - 2) one also has 

lim IIVu(t, ·)112 = +00. 
tTTm 

Set 

x = HJ(Q), 

1 2 1 p+l 
J(u) = 2:IIVuI12 - P + 1 Ilullp+1 ' 

I(u) = IIVulli - Ilull;::, 

.;V = {v E X\{O} I I(v) = O}, 

dp = inf J(v) = inf{suP J(Av) I v E X\{O}}. 
VE.#" }.:2:0 

It is easy to show that the potential depth dp is positive (see Sattinger [15]) 
using the Sobolev continuous embedding X ~ U+1 (Q). The stable and 
unstable sets are defined as usual: 

W = {u E X I J(u) < dp,I(u) > O} U {O}, 

V = {u E X I J(u) < dp,I(u) < O}. 

Furthermore, for later use we define the following notation. 

E={UEXI-L1u=luIP
-

1u in Q,uI8Q=0}, 

E' = {u E ~1,2(RN) 1-L1u = lulp-1u in R N}, 

E~={UEE'lu~O in RN}, 

J.(u) = -2
1 f IVu(x)1 2dx - _1-1 f lu(x)lp+1dx. 

RN p + RN 

Here ~1,2(RN) denotes the closure of CO(RN) with respect to the norm 
IIVuIIU(RN). In the case when p = (N + 2)/(N - 2), because of the Sobolev 
embedding Sllullv+I(RN) ~ IIVullu(RN) for u E ~1,2(RN), one also has 
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REMARK 1.1. In the case when p = (N + 2)/(N - 2), it is weI/-known 
(Struwe [16]) that the family {u;(xn defined by 

[N(N - 2)e2](N-2)/4 
u*(x)- e>O 

e - [e 2 + IxI 2](N-2)/2 ' 

satisfies 

(4) 

so that E~\{O} =I- 0. 

We start with the following result which we showed quite recently in [9] 
with regard to the singularity of a global solution to the problem (1)-(3) under 
the assumptions below: let u(t,x) be a solution to (1)-(3) as in Proposition 
1.1. Furthermore, one assumes that 
(A.l) Uo ~ O. 
(A.2) P = (N + 2)/(N - 2). 
(A.3) Q = {x E RN Ilxl < I}. 
(A.4) u(t, x) = u(t, Ix!), u,(t, r) < 0 on 0 < r :s; 1 with r = Ix!
Finally, assume Tm = +00. For 1 < p :s; (N + 2)/(N - 2) set 

2(p+ I) . 
Co = ( I) hm J(u(t, .)). p - 1-'+00 

(5) 

Note that Co ~ 0 if Tm = +00 (see [11]). Then, our results in [9] read as 
follows. 

THEOREM 1.1 ([9]). Assume (A.l)-(A.4). Let u(t,x) be a solution to (1)
(3) on [0, Tm) as in Proposition 1.1. Suppose Tm = +00 and Co> o. Then, 
there exists a sequence {tn} with tn -+ +00 as n -+ +00 such that 
(i) IVu(tn,x)1 2 

-+ CoJo (weakly*) in Co(Qr, 
(ii) U(tn,xy+l -+ CoJo (weakly*) in Co(Qr, 
as n -+ +00. Here, 150 stands for the usual Dirac measure having a unit mass at 
the origin. 

Since Co > 0 if and only if u( t, .) if (W U V) for all t ~ 0, this theorem 
states that a global orbit u(t,·) which neither decays nor blowups has a strong 
singularity at the origin if this kind of solution can be constructed. 

In connection with this result, we notice that such a sequence {tn } 

constructed in Theorem 1.1, {u(tn,·n becomes a Palais-Smale sequence so 
that the global compactness result due to Struwe [17] can be applied to this 
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functional sequence. So, our first result reads as follows (see also Cerami, 
Solimini and Struwe [4]): 

THEOREM 1.2. Let {u(tn,·)} c HJ(Q) c !0 1,2(RN) be a sequence as in 
Theorem 1.1. Then there exist a subsequence of {u(tn' .)}, relabelled again as 
{u(tn' .)}, an integer kEN, a sequence of radii {R~} with lim R~ = +00 

n---.+co 
(1 :::;; i:::;; k) such that 

lim IIV(U(tn,.) - tu~)11 = 0, 
n--->+oo ;=1 L2(RN) 

lim J(u(t, .)) = lim J(u(tn' .)) = kJ.(w) = 2(P - 11) Co> 0, 
/--->+00 n--->+oo p + 

where 

n = 1,2, ... 

together with w(x) = uj(x) defined in Remark 1.1. 

REMARK 1.2. It is easy to see that J.(w) = d* (least energy level) follows. 

p - 1 * 
Therefore, one has 2(p + 1) Co = kd so that if, in particular, k = 1, then 

lim J(u(t, .)) = dO, i.e., the energy J(u(t, .)) for a solution u(t,·) of (1)-(3) 
/--->+00 
may attain its least energy level as in the subcritical case. Similarly, since 
IIVwll;)(RN) = SN in the present case, from Lemma 2.1 below it follows that 
Co = kSN. 

REMARK 1.3. Under the assumptions Q = star-shaped and uo(x) ~ 0, one 
can get the similar results as in the radial case above with a slight modification. 
In the case when Uo changes sign, however, even if Q is star-shaped, one needs to 
modify the results above in accordance with the results in [16] (for more general 
case, see the proof of Proposition 2.1). 

The next result is concerned with the case when 1 < p < (N + 2)/(N - 2). 
It seems unknown that any global solutions to (1)-(3) naturally contain a 
subsequence which is relatively compact in X in the subcritical case. Our 
second result reads as follows: 

THEOREM 1.3. Let 1 < p < (N + 2)/(N - 2) and u(t, x) be a solution on 
[0, Tm) as in Proposition 1.1. If Tm = +00, then there exists a sequence {tn} 
with tn ---> +00 as n ---> +00 such that {U(tn,·)} becomes relatively compact in X 
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so that there exists an element Uoo E E such that u(tn ,·) ---+ Uoo in X as n ---+ +00 
along a subsequence. 

REMARK 1.4. If Co> 0, then one has Uoo E E\{O} in Theorem 1.3. 
Moreover, such a sequence {tn } is constructed in the same way as in Theorem 
1.2. On the other hand, unfortunately, the results in Theorem 1.3 are weaker 
than that of [3] or [13] in the sense that their results state the relative COl}1-

pactness in HJ(fl) of the trajectory {u(t, .)}. 

2. Palais-Smale sequence 

Reviewing some results concerning Theorem 1.1 due to [9] we shall 
construct some Palais-Smale sequences of a global solution to the problem (1)
(3), and then we will prove Theorems 1.2 and 1.3. 

First, suppose 1 < p.::; (N + 2)/(N - 2) and Tm = +00 in Proposition 1.1. 
Since its solution satisfies the energy identity: 

J(u(t, .)) + t Ilut(s, ')llids = J(uo) all t ~ 0, (6) 

this implies that the function t f-+ J(u(t, .)) is monotone decreasing so that 
Co ~ 0 (see (5)) is meaningfull. Letting t ---+ +00 in (6), the improper integral 
fooo IIUt(s, ')llids is finitely determined. Therefore, there exists a sequence {In} 
with In ---+ +00 as n ---+ +00 such that 

In fact this sequence {In} is given in [9] for the proof of Theorem 1.1. 
Next, multiplying the both sides of (1) by u(t,x) and integrating it over 

fl, we have 

(Ut(t, .), u(t, .)) = -I(u(t, .)), (7) 

where (f,g) = fQf(x)g(x)dx. Due to [3], it is true that Ilu(t, ,)112'::; C for all 
t ~ 0 for some constant C > O. Therefore, one has 

for all n E N. 

Letting n ---+ +00, it follows that 

(8) 

On the other hand, the identity holds: 

p - 1 2 1 
J(u) = 2(p + 1) IIVul1 2 + p + l I (u). (9) 

So, from (9) with u = u(tn ,·) and (7)-(8) we find that 
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LEMMA 2.1. Let u(t,·) be as in Proposition 1.1. If Tm = +00, then there 
exists a sequence {tn} with tn --> +00 as n --> +00 such that 

lim IIVu(tn, ·)II~ = Co, 
n~+oo 

From this lemma, one obtains the next one: 

LEMMA 2.2. Let u(t,·) be a local solution constructed in Proposition 1.1. 
If Tm = +00, then there exists a Palais-Smale sequence to the problem (1)-(3). 

PROOF. Let {tn } be as in Lemma 2.1. Then, it follows that 

p-l 
J(uo) ;:::: J(u(tn' .)) --> 2(p + 1) Co;:::: 0 as n --> +00. (10) 

Furthermore, for such a sequence, since J E C1(X,R), by equation (1) we have 

for each v E X, where J'(u) E X' means the usual Frechet-derivative of J at 
u E X. By this equality and the Schwarz inequality together with the Poincare 
inequality one gets: 

which implies 

(n --> +00), (11) 

where C1 > 0 is a Poincare constant. We find that {u(tn,·n is a Palais-Smale 
sequence because of (10) and (11). 0 

In particular, in the case when 1 < p < (N + 2)/(N - 2) one gets the 
following compactness result. 

LEMMA 2.3. Suppose 1 < p < (N + 2)/(N - 2). Let u(t,·) be a global 
(i.e., Tm = +(0) solution to (1)-(3) as in Proposition 1.1. Then, the sequence 
{u(tn,·n constructed in Lemma 2.1 becomes relatively compact in X 

PROOF. For simplicity, one sets Un = u(tn, -). Multiplying the both sides 
of (1) by v E X and integrating it over Q, we have 
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where f(v)(x) = Iv(x)IP-1v(x)_ From Lemma 2.1 it follows that for an 
arbitrary e > 0, there exists a natural number No such that for all n ~ No, 

e 
IIUt(tn, ')11 2 < C

1
' 

Because of (12) and (13), we have 

2 1 2 
I(Vun, Vv) - (f(Un) , v)1 :s; ellVvl12 :s; e + 411Vv112' 

On the other hand, it follows from the Holder inequality that 

l(f(un), v)1 :s; Ilunll:+11Ivllp+1' 

( 13) 

. 
(14) 

(15) 

By takin as v = Un - Urn in (14) and (15), we can proceed the following 
estimates: 

IIVun - VUrnili = L[VUnV(Un - urn) - f(un)(un - urn)]dx 

- L[VUrnV(Un - urn) - f(urn) (un - urn)]dx 

+ L (f(un) - f(urn)) (Un - urn)dx 

:s; ~ IIVun - VUrnili + 2e
2 + (1Iunll:+1 + Ilurnll:+1)llun - urnllp+l 

for all m, n ~ No. This implies 

for all 111, n ~ No. 
Now, since {un} is bounded in X, by the compact embedding of X '-+ 

LP+l (Q) we can assume that Un -+ U:o in LP+l (Q) for some Uoo as n -+ +00. 

Together with (16), we find that {un} becomes a Cauchy sequence in X. 0 

Now, we are in a position to prove Theorems 1.2 and 1.3. 

PROOF OF THEOREM 1.2. Basically, this is a direct consequence of [16] 
(Theorem 3.1, p. 184) and Lemma 2.2. Under the framework of Theorem 1.1, 
however, one has E = {O}, x~ = ° (1 :s; i :s; k) in use of [16] and note that the 
solution u(x) for the equation (4) is uniquely determined (up to scaling and 
translation) such as u(x) = uj(x) = w(x). 

We shall state the outline of its proof. Indeed, set 

Qn(t) = J (IVu(tn,x)1 2 + lu(tn,x)lp+1)dx. 
Ixl<t 
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Then, for each v E (0, SN), we can find a real number Rn = Rn(v) > 1 such that 

Qn (~J = v. Set un(x) = R;;(N-2)/2U(tn, xl Rn). Then, since the embedding 

~:~J(RN) <-> L
oo ({~ ~ Ixi ~ R}) (17) 

is compact for each R>l, it will follow that un~wEE~\{O} (weakly) 
in ~:~J(RN) as n --> +00 along a subsequence (c.f., [9] or [12]). Here, 
~:~J(RN) = {v E ~!,2(RN) I v(x) = v(lxl)}. 

In fact, if W:=: 0, then it follows from Lemma 2.1 and the compact 
embedding (17) that 

(weakly') in Co(RN
)' 

as n --> +00. On the other hand, if we choose ifJ E CO(RN ), with ifJ = 1 on 
B!(O) and 0 ~ ifJ ~ 1 on RN , then one can estimate as follows: 

as n --> +00. This implies Co ~ v which contradicts the fact v E (0, SN) and 
Co ~ SN. 

Next, set vn(x) = u(tn,x) - R~N-2)/2W(Rnx). By iterating this procedure 
for the sequence {vn} C ~:~J(RN), one can prove Theorem 1.2 similarly to the 
usual global compactness argument (c.f. [16] or [17]). D 

PROOF OF THEOREM 1.3. The first half is a direct consequence of Lemma 
2.3. In order to prove Uoo E E, note the following estimates: 

for all u, v E LP+! (Q), 

and 

for each ifJ E Co(Q), 

where {u(tn")} is a sequence constructed in the first half. By combining these 
estimates with Lemma 2.1 and the Sobolev embedding X <-> U+!(Q), one 
obtains the desired result. D 

From the view point of the Palais-Smale condition, we have the following 
result. 
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COROLLARY 2.1. Let 1 < p ~ (N + 2)/(N - 2) and u(t,x) be a global 
solution constructed in Proposition 1.1, i.e., Tm = +00. If Co = 0, then the 
sequence {U(tn,·)} given in Lemma 2.1 becomes relatively compact, and in fact, 

u(t,·) ---. ° in X as t ---. +00. 

PROOF. If Co = 0, then, from Lemma 2.1 it follows that 
lim IIVu(tn, ')112 = 0. On the other hand, it is well- known that the stable set 

n---++oo 
W is a bounded neighbourhood of ° in X. Thus, u(tno ,') E W for some tno' 

This implies that IIVu(t, ')112 = O(e-rxt
) as t ---. +00 (see [9]). 0 

From Theorem 1.1 and corollary 2.1 with p = (N + 2)/(N - 2), one can 
say that it depends on the least energy level (p - I)Co/2(p + 1) whether the 
Pal ai-Smale condition holds or not to the sequence {u(tn ,·)} in Lemma 2.1. 

Now, we apply Theorem 1.3 and Lemma 2.2 for the finite time blowup 
problem concerning (1)-(3). First, as a consequence of [16] one obtains the 
following lemma. 

LEMMA 2.4. Let Q be a bounded smooth domain and p = (N + 2)/(N - 2). 
Then, for all VEE, one has J(v)E{O}U(d*,+oo), and also, for each WE 

E*\{O}, one has J*(w)E{d*}U(2d*,+00). 

The following result gives a kind of alternative proof of [13] concerning 
blowup problem. 

PROPOSITION 2.1. Let l<p~(N+2)/(N-2) and u(t,x) be a local 
solution of (1)-(3) on [0, Tm) constructed in Proposition 1.1. If u(to,') E V for 

some to E [0, Tm), then Tm < +00. 

PROOF. First, we shall deal with the case when 1 < p < (N + 2)/(N - 2). 
Suppose Tm = +00'. Then, it follows from Theorem 1.3 that there exists 
a Palais-Smale sequence {u(tn ,·)} to the problem (1)-(3) and Uoo E E such 
that u(tn,·) ---. Uoo in X. On the other hand, it is well-known (see [8]) that 
u(t,·) E V for all t E [to, (0). If Uoo = 0, then u(tm,') E W with some tm since 
W is a neighbourhood of ° in X and this contradicts the fact that W n 
V = 0. Thus, Uoo E E\ {O}. Since the function t 1--+ J (u( t, .)) is monotone, 
one obtains J(u(tn, .)) ~ J(u oo ) ~ dp which contradicts u(tn,·) E V with large tn. 

Next, we are concerned with the critical case p = 
(N + 2)/(N - 2). Suppose Tm = +00. Obviously, Co > 0. Then, from 
Lemma 2.2 and Theorem 3.1 of [16], p. 184 there exist a Palais-Smale sequence 
{u(tn, .)}, kEN, uO E E, and u i E E*\{O} (1 ~ i ~ k) such that 

k 

lim J(u(tn, .)) = lim J(u(t, .)) = J(uo) + " J*(u i
). 

n---++oc 1---++00 ~ 
i=1 
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By Lemma 2.4 and the monotone decreasingness of a function t f--+ l(u(t, .)), 
one finds that 

l(u(t, .)) ~ d* for all t ~ O. 

This contradicts also u(t,·) E V for all t ~ to. D 
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