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ABSTRACT. The Bernoulli number defined on the generalized cohomology theory is 
studied, mainly focusing it on complex unoriented theories. We give a concrete for­
mula about it on the KO-theory for the stunted quaternionic quasi-projective space, 
and apply the formula to represent a factorization of the double transfer map concern­
ing such projective spaces. 

Introduction 

In this paper, I study the Bernoulli numbers defined on the generalized 
cohomology theory, and represent some concrete formulas of them concerning 
the quaternionic quasi-projective spaces. Significant combination of the geom­
etry with the classical Bernoulli numbers has been shown by Bott [6] and 
Adams [1] in the study of the J-theory. Extendending such utility, Miller 
[8] has introduced a generalized sense of Bernoulli numbers by giving them 
for each formal group law over a complex oriented theory, and Ray [10] 
has discussed some related articles. Our purpose here is to make such treat­
ment of the Bernoulli numbers applicable also to complex unoriented theories. 
We pick up a typical case of the real KO-theory, and show effectiveness of 
our definition. 

In § 1, we prepare some characteristic classes of vector bundles and give 
our definition of the Bernoulli numbers. In § 2, we describe the KO-theoretical 
Bernoulli numbers for the vector bundles which define the quaternionic quasi­
projective spaces. The result is summarized in Proposition 2.5. In § 3, we 
apply the result of § 2 to a factorization of the double transfer maps combined 
with the quaternionic quasi-projective spaces. The contents of this section 
are related to [7], and our main result is Theorem 3.8. 
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1. Bernoulli numbers of vector bundles 

We refer to [2] on the concepts of the stable homotopy category and 
the generalized cohomology theories, and make the conventional use of nota­
tions about them. Let E be a ring spectrum with the unit I: SO -+ E. We 
denote by E* = Li Ei the coefficient ring 1t*(E) of E. Now, assume that a 
vector bundle rx over a finite complex B is orientable and E-orientable. Then, 
the orient ability of rx gives a Thorn class U: E Ha(B~; Z), which is uniquely 
determined up to sign, for the ordinary integral cohomology theory HZ, and 
the E-orientability means that there is a Thorn class U; E Ea(B~) in the E­
cohomology theory. Here, B~ denotes the Thorn space of rx, and a is the 
fiber dimension of rx. For the maps rJR: E = SO A E ~ HZ A E and rJL: 
HZ = HZ A SO ~ HZ A E induced from the respective units, both images 
(rJR)*(U;) and (rJL)*(U:) of U; and U: in (HZ A E)a(B~) are Thorn classes 
of rx in the HZ A E-cohomology theory. . 

DEFINITION 1.1. ShE(rx) E (HZ A E)O(B+) is an element defined by the rela­
tion (rJR)*(U;) = (rJL)*(U:)shE(rx), where the right hand side of the equality 
is the image of shE(rx) under the Thorn isomorphism (HZ A E)O(B+)-+ 
(HZ.A E)a(B~) defined by (rJL)*(U:). 

By definition, ShE(rx) is in 1 + (HZ A E)O(B), and ShE is multiplicative in 
the sense that ShE(rxl EB rx2) = ShE(rxdshE(rx2). Later, we will treat the case that 
E is the real K-theory KO, where we will see that shKO(rx) corresponds to 
the characteristic class sh(rx) as in [1]. 

Assume that H*(B+; Q) has a basis {ukh as a vector space, where Q 
is the field of the rational numbers. Then, using this basis, we define the 
Bernoulli numbers Bf(rx) E E1ukl ® Q of rx to be the elements satisfying 

(1.2) ShE(rx) = L Bf(rx)uk . 
k 

When E = K, the complex K-theory, and rx = -I' for the canonical com­
plex line bundle I' over the complex projective space CP", we get Bf( - 1') = 
tiB;/i! up to sign for the classical Bernoulli numbers Bi and the Bott class 
t E K 2. Here, we take U~ = t-1(y - 1) E K 2(CP"+1), which determines ShK(y) 
and hence shK(-y) = shK(yr1, and the basis {uili~O} of H*(CP";Q) for the 
Euler class u = e(y) E H 2 (CP"; Z) of y. 

In [8], it is effectively used the concept of the Bernoulli numbers with 
respect to each formal group law over a complex oriented ring spectrum 
E. The above example on the K-theory is a typical one which corresponds 
to the multiplicative formal group law, and such Bernoulli numbers defined 
for a formal group law are included in our definition by taking the following 
way: the bundle -I', the Thorn class UJ which is associated with the Euler 
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class determined by the formal group law, and the basis {uil i ;::: O} of 
H*(cpn; Q). 

By our definition of the Bernoulli numbers, it is also possible to consider 
the case of the complex unoriented theories, like KO. The following is 
obvious from the properties of shE (a). 

LEMMA 1.3. 
(1) Let a be as above, and f: D -+ B a map between finite complexes. 

Then, by taking f*(U;) as the Thom class of the induced vector 
bundle f*(a) and a basis {vm}m of H*(D+; Q), we have the relation 
B!(f*(a)) = Af(Bt(a))m between the matrices, where Af is the matrix 
representing f*: H*(B; Q) -+ H*(D; Q) with respect to the given bases. 

(2) When a = al EB a2 over B, we have Bt(al EEl a2) = Lk,.k, ak.(klok,)Bt, (a l ) 
Bt,(a2) if Uk, Uk, = Lk ak.(k,.k,)Uk· 

2. Quaternionic quasi-projective spaces 

Let H be the skew field of the quaternionic numbers, and ~ the canonical 
quaternionic line bundle over the quaternionic projective space Hpk for each 
non-negative integer k. Let x = e(~) E H4(Hpk; Z) be the Euler class of ~, 
and take X = ~ - Hl E K04(HPOO) as the KO-Euler class of~. Then, it holds 
that H*(Hpk; Z);; Z[X]/(Xk+l) and KO*(Hpk);; Z[X]/(Xk+l). 

Now, the tensor product ~ ® H ~ of ~ and its quaternionic conjugate 
bundle ~ has a non-zero section, and thus it is isomorphic to 'EB El for a 
3-dimensional real vector bundle C. The quaternionic quasi-projective space 
Qn is defined to be the Thorn space (Hpn-l)~ of C. Since Hpn-l is 3-connected, 
C is orientable and KO-orientable. Let U E H3(Qn; Z) and UKO E K03(Qn) 
be the respective Thorn class of C. Then, through the Thorn isomorphisms, 
H*(Qn; Z) and KO*(Qn) are the free H*(Hpn-l; Z) and KO*(Hpn-l) modules 
with generators U and UKO, respectively. We assume that, for a KO­
orient able vector bundle a, like C, we take the Thorn class Ua

KO as the one 
of the Atiyah-Bott-Shapiro's sense [4]. 

Let gi E K04i be the Bott generator, and put a(i) = 1 or 2 according as 
i is even or odd. Then, gJa(i) = (gl/2)i holds in KO* ® Q. Let ph = ch 0 c: 
KO -+ K -+ HQ be the Pontrjagin character. The classical characteristic class 
shea) for a KO-orientable vector bundle a is defined by ph(U:O) = U:sh(a) 
(cf. [6], [1]). (IJR)*(U KO ) corresponds to ph(UKo ) under the isomorphism 
(HZ 1\ KO)3(Qn) -+ H*(Qn; Q), and, if shea) = Li tixi for ti E Q, then shKO(rx) = 
Li (gJa(i))tix i. Now, for a power series g(z) = (2 sinh (Jz/2))2 = Li~O rizi+l 

for ri E Q, we put 
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(2.1) G() "gi i+1 2 (g1 ) X = L... -. rix = -g -x 
i~O a(z) g1 2 

where (HZ 1\ KO)*(Hpn- 1) ~ (KO* ® Q)[x]/(xn). Since ph(UfO) = ph(X) = 

g(x) = Uf1 (g (x)jx), we have sh(e) = g(x)/x, and thus 

(2.2) shKO(e) = G(x) . 
x 

Also, we have the following, where dG(x)/dx is the derivative of G(x): 

LEMMA 2.3. 

PROOF. It is enough to prove that 

(2.4) sh(e ®H e) = i~O (2i ~ 1)!x
i
, 

since the right hand side of the equation is equal to dg(x)/dx and sh(O = 
Sh(e®He). Let I<::Hpn-1--+BSO(4) be the classifying map of e®He, and 
BT2 ~ BU(2) ~ BSO(4) the canonical maps, where T2 is the maximal torus 
of U(2) and we have H*(BT2; Z) ~ Z[X1' x2]. Then, 

SH = (sinh (xt/2)/(xt/2))(sinh (x2/2)/(x2/2)) 

is in the image of the monomorphism (ri)*: H*(BSO(4); Q) --+ H*(BT2; Q), and 
by [1] it follows that sh(e ®H e) = K*((ri)*fl(SH). Let Pi e H4i(BSO(4)) be 
the Pontrjagin class. Then, we see that K*(Pd = 4x and K*(Pi) = 0 for i ~ 2. 
Also, we have (ri)*(Pl) = xi + x~ and (ri)*(P2) = (X1X2)2. Then, it is straight­
forward to obtain (2.4) from these data. 

By (2.2) and Lemma 2.3, shKO(( + (m - l)e) = (G(x)/x)m-1dG(x)/dx, and 
thus we have the following by (1.2): 

PROPOSITION 2.5. As for the Bernoulli numbers BfO(( + (m - l)e), we have 
the relation 

(
G(x))m-l dG(x) = L BfO(( + (m - l)e)x i 

x dx i~O 
for any m eZ. 

Before we apply Proposition 2.5 in the next section, it is convenient to 
prepare the next notation for the Thorn class of (EE> (m - l)e. For an integer 
m, we denote by QP,;:+m the Thorn space (Hpn){$(m-l)~, which is called a 
stunted quaternionic quasi-projective space. For a positive integer m, it is 
homeomorphic to Qn+m/Qm-l (cf. [3]). Then, we have the canonical maps 



Generalized Bernoulli numbers on the KO-theory 185 

q: Qn+m -+ QP~+m and q: QP~+m -+ Qn+m according as m > 0 and m ~ O. Let 
U!O be the KO-Thom class of 'EB (m - 1)~. Then, the following is easily 
shown by taking the Pontrjagin character on the both sides of the equations. 

LEMMA 2.6. q*(U!O) = UKOXm- 1 if m > 0, and q*(UKO ) = U!OX 1- m if 
m~O. 

By this lemma, it is possible that, with the notation UKoXi for any 
j ~ m - 1, we should regard uKOxi+m-1 as U!OX i for any i ~ 0 and mE Z, 
as in [8]. Then, KO*(QP~+m) is a free KO*(Hpn)-module with a generator 
UK0-Xm- 1 for any m E Z. 

3. Application 

In [8], [5] and [7], some factorizations of transfer maps are discussed. 
Such factorization certainly exists for the transfer map combined with the 
quaternionic quasi-projective space, and we describe it by applying Proposi­
tion 2.5. 

From the S3-principal bundle p: s4n-1 -+ Hpn-l, a stable map T: QP~~T-+ 

s4m called the S3-transfer map is constructed by a transfer construction. Our 
necessary knowledge about T is not the construction of it but the fact that 
its fiber spectrum is QP~+m and that it is compatible with n. Therefore, by 
omitting n, we denote QP~+m simply by QPm, and then we have the cofibering 

(3.1) S4m-1 i QP i QP t s4m -+ m -+ m+1 -+ . 

Since the Thorn class U:: E H 4m-1(QPm; Z) of , + (m - 1)~ can be con­
sidered as an element of the stable cohomotopy group n4m- 1(QPm; Q) with 
Q-coefficient through the Hurewicz isomorphism hH

: n4m- 1(QPm; Q)-+ 
H4m- 1(QPm; Q), we get the following diagram which is stably homotopy com­
mutative up to sign: 

QP ~ s4m 
m+1 

(3.2) ,.j 
. where the lower sequence is the cofibering of the Moore spectra associated 

with the exact sequence 0 -+ Z -+ Q -+ Q/Z -+ O. 
Henceforce, we assume that the matter we discuss is all localized at 

2. By (3.2), T factors through S4m-1Q/Z which is equal to ,E4m-1 N1 for the 
first state £>1: N1 -+ Sl of the chromatic filtration by [9]. Let hKO; n*( -; A)-+ 
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KO*( -; A) be the KO-Hurewicz homomorphism. Since j*: K04m - 1(QPm+1; Q) 
~ K04m- 1 (QPm; Q) is a monomorphism, hKO(U1) E K04m-1(QPm+1; Q/Z) is 
determined by Pz(hKO(U,:{)), where pz denotes the mod Z reduction in the 
KO-cohomology groups. First, we describe the formula of hKO(U,:{). 

We put J(z) = (2 sinh-1(Jz/2))2 = Lj~o Sjzj+1 for Sj E Q, and define 

(3.3) F(X) = L gj. SjXj+1 = ~ J(91 x) 
j~O a(j) gl 2 

as an element of K04(Hpn; Q). Then we have 

LEMMA 3.4. 

hKO(UH ) = UKO (F(x))m-1 dF(X) 
m m X dX' 

PROOF. By the same way as the notation U!O = UKO Xm
-

1, we can write 
U,:{ = Ux m- 1 for any mE Z. Recall that g(x) = (2 sinh (Jx/2))2 and then 
ph(X) = g(x). Thus, ph(F(X)) = J(g(x)) = x. Since sh(O = dg(x)/dx as in the 
proof of Lemma 2.3, ph(UKO ) = Udg(x)/dx, and thus ph(UKOdF(X)/dX) = U. 
Hence, 

(3.5) Ph( UKOF(X)kd~i)) = Uxk = U,:{X k- m+1 

for any k;?: m - 1. Since (pht1(U,:{) = hKO(U,:{), by taking k = m - 1 in (3.5), 
we get the required result. 

Before proceeding to a factorization of the double transfer map, we 
remark that hKO(U,:{) - U!O E Ker (i*) = 1m (j*) for the maps i and j in (3.1). 
Thus, there is an element Vm E K04m- 1(QPm+1; Q) with j*(Vm) = hKO(U,:{)­
U!o. Since j* is injective, Vm is uniquely determined by the given relation, 
and we can denote Vm = hKO(U,:{) - U!o. We notice that hKO(u1) = PZ(Vm), 
and the following is clear from Lemma 3.4: 

COROLLARY 3.6. 

v. = UKO ((F(x))m-1 dF(X) _ 1) 
m m X dX . 

The double transfer map t2 of t is defined to be t /\ t = (t /\ 1)(1 /\ t): 

QPm+1 /\ QPn+1 ~ s4(m+n) for any m, n E Z. Let N2 ~ IN1 ~ S2 be the first 
two stages of the chromatic filtration (cf. [9]). Then, by [7; Th. 2.8], the 
double transfer map t2 factors through N2 as follows: 

THEOREM 3.7. There is a map U2: QPm+1 /\ QPn+1 ~ I 4(m+n)-2 N2 which 
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makes the following diagram stably homotopy commutative up to sign: 

QP S4n tAl 
m+l /\ ~ 

,.j 
~, 
~ s4(m+n) . 

187 

In this paper, we omit the details of this factorization, and refer to [7] 
on its application to the transfer images. Here, we only remark that the 
map u2 is well described by an element U E Ko4(m+n)-2(QPm+l /\ QPn; Q), by 
[7; § 2], and we show in the next theorem that u can be represented by the 
Bernoulli numbers. 

THEOREM 3.8. 

u = UKO ((F(x))m-l dF(X) _ 1) 'X' UKO + " r. UKoh (X) tV. UKoh (X) 
m X dX \01 n ~ k,l m m,k ICJ n n,l , k,I>O 

where I;.,I = (91 
- 1)/(9k+1 - 1) and hi,iX) is given by 

hi,iX) = Br(, + (i - 1)~)F(Xy(Ff)y-l d~f) . 

PROOF. We put Bk' = BfO(' + (m - 19) for brevity. By the proof of [7; 
Prop. 2.4], u is given by 

(3.9) u = Vm® U:o - L I;.,IAk®B1· 
k,I>O 

Here, Vm is the element of Corollary 3.6, and Ak and BI are given respectively 
by the relations Vm = Li>O Ai with tfJ3 Ai = 9iAi and U:o = Lj~o Bj with tfJ3 Bj = 
9jBj for the stable Adams operation tfJ3. The first term on the right hand 
side of the required equality follows from Corollary 3.6, and thus we have 
only to check that Ai and Bj are given by the required formulas. We can 
regard the equation of Proposition 2.5 as the one with variable x, and thus, 
replacing x by F(X) and using that G(F(X)) = X, we have 

X m - l 

---=:-:-::-:::-= L Bk'F(X)k. 
F(x)m-l dF(X) k~O 

dX 

He~ce, U!O = UKOXm- l = Lk~O UKoBk'F(Xt+k-l(dF(X)/dX). On the other 
hand, by (3.5), we have ph(UKOF(x)m+k-l(dF(X)/dX)) = UXm+k-l. Thus, by 
these equations, 

(3.10) ph(U!O) = L Uph(Bk')xm+k-l. 
k~O 
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Then, ph(Vm) = ph(hKO(U:) - U!O) = U: - ph(U!O) = - Lk>O Uph(B;:')x m+k-l. 
Hence, it follows that ph(Ak) = - Uph(B::,)x m+k-l, and thus 

(3.11) A = _ UKOBmF(x)m+k-l dF(X) 
k k dX . 

Using (3.10) for n instead of m, and just by the same reason as above, we have 

(3.12) B, = UKOBFF(x)n+l-l dF(X) 
dX . 

Thus we complete the proof by (3.9), (3.11) and (3.12). 
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