Vanishing of Im J classes in the stunted quaternionic projective spaces

Mitsunori IMAOKA (Received March 26, 1990)

§1. Introduction

Let HP^n be the quaternionic projective space, and

$$i: S^{4m} \longrightarrow HP^l_m = HP^l/HP^{m-1} = S^{4m} \cup e^{4m+4} \cup \cdots \cup e^{4l}$$

be the inclusion to the bottom sphere in the stunted space. Then the purpose of this paper is to investigate the induced homomorphism

(1.1)
$$i_*: \pi^s_{4n-1}(S^{4(n-r)}) \longrightarrow \pi^s_{4n-1}(HP^l_{n-r}) \quad (n-r=m \leq l)$$

of *i* between the stable homotopy groups on $(\text{Im } J)_2$, where

(1.2) $(\text{Im } J)_2$ is the 2-primary component of the image of the stable J-homomorphism $J: \pi_{4r-1}(SO) \to \pi_{4r-1}(\Omega^{\infty}S^{\infty}) = \pi_{4n-1}^s(S^{4(n-r)})$ $(r \ge 1)$, and is the cyclic group of order $2^{3+\nu(r)}$ by Adams [1] and Quillen [7].

Here and throughout this paper $v(r) = v_2(r)$ denotes the exponent of 2 in the prime power decomposition of a positive integer r. Also, we put

(1.3)
$$a(n, r) = \binom{n+r}{r}, \quad b(n, r) = \binom{n+r-1}{r-1}.$$

The main result is stated as follows:

THEOREM A. The induced homomorphism i_* in (1.1) satisfies the following properties on $(\text{Im } J)_2$ in (1.2).

- (i) If l < n, then i_* is injective on $(\text{Im } J)_2$.
- (ii) Let l = n and r be $odd \ge 1$. Then $i_*((\operatorname{Im} J)_2)$ is 0 if a(n, r) is odd, Z/2 if b(r, r) is odd and $r + n \equiv 0 \mod 4$,
 - Z/4 if r > 1, b(n, r) is odd and $n \equiv r \equiv 1 \mod 8$,

Z/8 if r = 1 and $n \equiv 1 \mod 8$.

(iii) Let l = n and r be even ≥ 2 , and assume that b(n, r) is odd. Then $\operatorname{Ker}(i_*) \cap (\operatorname{Im} J)_2$ is

0 if
$$v(n) = v(r)$$
, $Z/2$ if $v(n) > v(r)$.

Mitsunori Імаока

The connecting homomorphism $\partial_*: \pi_i^s(HP_{m+1}^l) \to \pi_{i-1}^s(S^{4m})$ associated with the cofibering $S^{4m} \to HP_m^l \to HP_{m+1}^l$ often plays an important role in the study of the stunted projective spaces; and Theorem A yields a partial result on ∂_* .

Moreover, we have a similar result for the quaternionic quasi-projective space Q_n (cf. [5]) instead of HP^n . In this case, we have the inclusion

$$i: S^{4m+3} \longrightarrow Q_m^l = Q_{l+1}/Q_m = S^{4m+3} \cup e^{4m+7} \cup \cdots \cup e^{4l+3}$$

to the bottom sphere and the induced homomorphism

(1.4)
$$i_*: \pi^s_{4n+2}(S^{4(n-r)+3}) \longrightarrow \pi^s_{4n+2}(Q^l_{n-r}) \quad (r \ge 1, \ l \ge n-r).$$

THEOREM B. i_* in (1.4) satisfies (i) and (iii) in Theorem A and the following (iii)':

(ii)' Let l = n and r be odd ≥ 1 . Then $i_*((\operatorname{Im} J)_2)$ is 0 if a(n, r) is odd, 0 if a(n, r) is odd,

Z/2 if b(n, r) is odd and $n \equiv r \equiv 1 \mod 4$,

Z/4 if b(n, r) is odd, $n + r \equiv 4 \mod 8$ and $r \equiv 1$ or $3 \mod 8$.

These theorems are proved by applying the recent results given in [4]. To prove these theorems, we consider a finite CW-spectrum

(1.5)
$$X = S^0 \cup e^{4a_1} \cup \cdots \cup e^{4a_t} \cup e^{4r} \quad (1 \le a_1 \le \cdots \le a_t < r)$$

in general, by noticing that $\Sigma^{-4(n-r)}HP_{n-r}^n$ and $\Sigma^{-4(n-r)-3}Q_{n-r}^n$ are such ones. We define d(X) by

(1.6)
$$d(X) = v \text{ (the order of Coker } [h: \pi_{4r}(X) \longrightarrow H_{4r}(X; Z)]),$$

where h is the Hurewicz homomorphism. Then, by the theorem of Crabb and Knapp [2] on the maximal codegree, we have the inequality

(1.7)
$$d(X) \leq m(r)$$
, where $m(r)$ is $2r$ if r is even and $2r + 1$ if r is odd.

Now, consider the inclusion $i: S^0 \rightarrow X$ and the induced homomorphism

(1.8)
$$i_*: \pi_{4r-1}(S^0) \longrightarrow \pi_{4r-1}(X)$$
 for X in (1.5).

Then we have the following results which yield Theorems A and B of above as special cases, where

(1.9) j_r denotes the generator of $(\text{Im } J)_2 = Z/2^{3+\nu(r)}$ in (1.2).

THEOREM C. i_* in (1.8) satisfies the following properties:

(i) If r is odd and $d(X) = m(r) - \varepsilon$ for $0 \le \varepsilon \le 2$, then $2^{\varepsilon}i_*(j_r) = 0$.

(ii) If r is even and d(X) = m(r), then $2^{2+\nu(r)}i_{*}(j_{r}) = 0$.

(iii) Put $d = d(X) - d(X/S^0)$, where $d(X/S^0)$ is defined similarly

to d(X) in (1.6). If $d \leq 2 + v(r)$, then $2^{2+v(r)-d}i_*(j_r) \neq 0$.

344

We prepare in $\S2$ some necessary properties for the proof of the theorems, and prove Theorem C in $\S3$ and Theorems A and B in $\S4$.

§2. Preliminaries

To treat the spectrum X in (1.5) and its 4(r-1)-dimensional skeleton X' in the next section, we consider the following 4m-dimensional finite CW-spectrum in this section:

(2.1)
$$Y = S^0 \cup e^{4a_1} \cup \cdots \cup e^{4a_k} \quad \text{with} \ 1 \leq a_1 \leq \cdots \leq a_k = m.$$

For the spectrum V = Y or S^0 , we will consider the mod 2 Adams spectral sequence which has the E_2 -term

$$E_2^{s,t}(V) = \operatorname{Ext}_A^{s,t}(H^*(V; \mathbb{Z}/2), \mathbb{Z}/2)$$

and converges to $\pi_*(V)$, where A is the mod 2 Steenrod algebra. For $2 \leq u \leq \infty$, we denote by $E_u^{s,l}(V)$ the E_u -term of the spectral sequence. For the generator $j_r \in (\text{Im } J)_2 = Z/2^{3+\nu(r)}$ in (1.9), $2^{3+\nu(r)-i}j_r$ represents a unique element

(2.2)
$$\alpha_{2r/i} \in E_2^{q-i,q-i+4r-1}(S^0) \text{ for } 1 \leq i \leq 3$$

(cf. [6], [8]), where q = 2r + 2 or 2r + 1 if r is odd or even respectively. Furthermore, for the homomorphism $i_*: E_2^{s,t}(S^0) \to E_2^{s,t}(V)$ induced from the inclusion $i: S^0 \to V$ to the bottom sphere, we put $_0\alpha_{2r/i}$ $= i_*(\alpha_{2r/i})$. Then, by the similar way as in [3; Lemmas 3.6, 3.9], we have the following lemma for the spectrum Y in (2.1).

LEMMA 2.3. Assume that r > m.

(i) When r is odd, $E_2^{s,s+4r-1}(Y) = 0$ if $s \ge 2r+2$, and $= Z/2\{_0\alpha_{2r/i}\}$ if s = 2r+2-i and $1 \le i \le 3$. (ii) When r is even, $E_2^{s,s+4r-1}(Y) = 0$ if $s \ge 2r+1$, and $= Z/2\{_0\alpha_{2r/1}\}$ if s = 2r.

In fact, the elements $_{0}\alpha_{2r/i}$ in Lemma 2.3 are non zero permanent cycles, that is $_{0}\alpha_{2r/i} \neq 0$ in $E_{\infty}(Y)$, by the following lemma.

LEMMA 2.4. If r > m, then $i_*: \pi_{4r-1}(S^0) \to \pi_{4r-1}(Y)$ is injective on $(\operatorname{Im} J)_2$.

PROOF. Let $W = Y^*$ be the S-dual of Y with dim W = 4m, and $p: W \rightarrow S^{4m}$ the collapsing map to the top cell. Then by the same reason as in the proof of [3; Prop. 2.1], it suffices to show the following:

(*)
$$v(|p^*(l)|) = 3 + v(r)$$
 for $p^*(l) \in KO^{4(m-r)}(W)_{(2)}/\operatorname{Im}(\psi^3 - 1)$.

Here, $\iota \in KO^{4(m-r)}(S^{4m}) = Z$ is the generator, and $\psi^3 \colon KO^i(W)_{(2)} \to KO^i(W)_{(2)}$ is

Mitsunori Імаока

the stable Adams operation on the KO-cohomology groups localized at 2. But, by the cell structure of W, we have an isomorphism

$$KO^{4(m-r)}(W) \cong \sum_{i=0}^{m} H^{4i}(W; Z) \otimes KO^{4(m-r-i)}(S^{0}),$$

and we can take $p^*(i) \in KO^{4(m-r)}(W)$ as one element in a basis of the free part. Then we see that, for an integer c, $cp^*(i) \in Im(\psi^3 - 1)$ if and only if c is divisible by $9^r - 1$. This implies (*), and we have the desired result. Q.E.D.

Assume that a map $f: S^{k-1} \to Y$ with k > 4m is given for the spectrum Y in (2.1). We denote the cofiber of f by C(f) and the inclusion $S^0 \to C(f)$ by *i*, and we put $e = d(C(f)) - d(C(f)/S^0)$, where each $d(\)$ is defined similarly as in (1.6). Then we have the following lemma, in which all homotopy groups are assumed to be cocalized at 2.

LEMMA 2.5. If $i_*(2^e\gamma) \neq 0$ in $\pi_{k-1}(Y)$ for some $\gamma \in \pi_{k-1}(S^0)$, then $i_*(\gamma) \neq 0$ in $\pi_{k-1}(C(f))$.

PROOF. Consider the following commutative diagram:

Here the homotopy groups are all assumed to be localized at 2, the horizontal two sequences are the exact sequences associated with the respective cofiberings and each j_* is the homomorphism induced from the canonical inclusion. By the definition of e, we can take the generators x and y of the respective free parts of $\pi_k(C(f))$ and $\pi_k(C(f)/S^0)$ to satisfy

 $q_*(x) = 2^e y + v$ for some torsion element v.

Assume that $i_*(\gamma) = 0$ in $\pi_{k-1}(C(f))$. Then $\gamma = \partial(ty + w)$ for some integer t and some torsion element w, and thus $2^e \gamma = \partial(2^e w - tv)$. Since any torsion element of $\pi_k(C(f)/S^0)$ is in $\text{Im}(j_*)$, $i_*(2^e \gamma) = 0$ in $\pi_{k-1}(Y)$, and thus we have the desired result. Q.E.D.

§3. Proof of Theorem C

Let X be a CW-spectrum in (1.5). For a non zero element $y \in \pi_{t-s}(X)$, we put F(y) = s if y represents a non zero element of $E_{\infty}^{s,t}(X)$. That is, F(y) denotes the mod 2 Adams filtration of y. Consider the S-dual of X, and apply

Theorem 1 and Proposition 3.2 in [4] to it. Then we have the following proposition, where $h: \pi_{4r}(X) \to H_{4r}(X; Z)$ is the Hurewicz homomorphism and the image h(x) of an element $x \in \pi_{4r}(X)$ is regarded as an integer through the isomorphism $H_{4r}(X; Z) \cong Z$.

PROPOSITION 3.1. Let $\varepsilon(r) = 2$ or 4 for even or odd $r \ge 1$ respectively. If $d(X) \ge 2r - \varepsilon(r)$, then there is an element $x \in \pi_{4r}(X)$ satisfying v(h(x)) = F(x) = d(X).

Let X' be the 4(r-1)-skeleton of X. Then we have the exct sequence (3.2) $E_2^{s-1,t}(X) \xrightarrow{p_*} E_2^{s-1,t}(S^{4r}) \xrightarrow{\partial} E_2^{s,t}(X') \xrightarrow{i_*} E_2^{s,t}(X) \longrightarrow 0$

for t-s = 4r - 1, where each $E_2^{s,t}($) is the E_2 -term of the spectral sequence as in §2. Let $h_0 \in E_2^{1,1}(S^0) = Z/2$ be the generator. Then $E_2^{s-1,t}(S^{4r}) = E_2^{s-1,s-1}(S^0) = Z/2\{h_0^{s-1}\}$, and we have the following proposition, where m(r) is te integer in (1.7).

PROPOSITION 3.3. (i) If d(X) = m(r), then

$$\partial(h_0^i) \neq 0$$
 for $1 \leq i \leq m(r) - 1$.

- (ii) If r is odd and $d(X) = m(r) \varepsilon$ for $1 \le \varepsilon \le 2$, then
 - ${}_{0}\alpha_{2r/t} = 0 \in E_{3}^{2r-t+2,6r-t+1}(X) \text{ for } \varepsilon = 1 \text{ and } 1 \leq t \leq 2, \text{ and}$ ${}_{0}\alpha_{2r/1} = 0 \in E_{4}^{2r+1,6r}(X) \text{ for } \varepsilon = 2.$

PROOF. (i) We put M = m(r) - 1. Suppose that $\partial(h_0^i) = 0$ for some $1 \le i \le M$. Then there is an element $z \in E_2^{i,i+4r}(X)$ satisfying $p_*(z) = h_0^i$ by the exactness of (3.2), and we have $p_*(h_0^{M-i}z) = h_0^M$. We use Lemma 2.3 to the case of Y = X'. Then $E_2^{s,i}(X') = 0$ for $s \ge M + 2$ and t - s = 4r - 1, and we have $E_2^{s,i}(X) = 0$ for the same s and t by (3.2). Therefore we have $h_0^{M-i}z \ne 0 \in E_{\infty}(X)$, and $v(h(\gamma)) = M$ for an element $\gamma \in \pi_{4r}(X)$ which represents $h_0^{M-i}z$, where h is the Hurewicz homomorphism and we regard $h(\gamma)$ as an integer as in Proposition 3.1. But this contradicts the assumption d(X) = M + 1, and thus we have $\partial(h_0^i) \ne 0$ for any $1 \le i \le M$.

(ii) Since $d(X) = 2r - \varepsilon + 1$ for some $1 \le \varepsilon \le 2$ by the assumption, we have $h_0^{2r-\varepsilon+1} \in \text{Im}(p_*)$ by Proposition 3.1. Then, using (3.2), we have $_0\alpha_{2r/i} \ne 0$ in $E_2^{2r-i+2,6r-i+1}(X)$ for $1 \le i \le \varepsilon$. Suppose that $\partial(h_0^{2r-2}) \ne 0$. Then we have $\partial(h_0^{2r-2}) = _0\alpha_{2r/3}$ by Lemma 2.3. But it contradicts the above, since then $_0\alpha_{2r/1} = 0$ in $E_2^{2r+1,6r}(X)$. Hence we have $\partial(h_0^{2r-2}) = 0$, and so there is an element $y \in E_2^{2r-2,6r-2}(X)$ satisfying $p_*(y) = h_0^{2r-2}$ by (3.2).

Now consider the case of $\varepsilon = 1$. We get the first required equality if we show $d_2(y) \neq 0$, because $d_2(y) \in E_2^{2r,6r-1}(X) \cong Z/2\{_0\alpha_{2r/2}\}$ and then $d_2(h_0y)$

 $= {}_{0}\alpha_{2r/1}$. Suppose that $d_{2}(y) = 0$. Then we have $d_{2}(h_{0}y) = 0$ also, and $d_{u}(h_{0}y) = 0$ for any $u \ge 3$ since it is an element of 0-group by Lemma 2.3 and (3.2). Since $p_{*}(h_{0}y) = h_{0}^{2r-1}$, $h_{0}y$ cannot be the image of d_{u} for ay $u \ge 2$. Thus $h_{0}y$ is represented by an element $\beta \in \pi_{4r}(X)$ with $v(h(\beta)) = 2r - 1$, and this contradicts the assumption d(X) = 2r. Hence we have $d_{2}(y) \ne 0$, and the desired result. For the case of $\varepsilon = 2$, we have $d_{2}(y) = 0$ and $d_{3}(y) = {}_{0}\alpha_{2r/1}$ by the similar argument to $\varepsilon = 1$, and the second required equality. Q.E.D.

PROOF OF THEOREM C. (i) and (ii). Let $1 \le i \le 3$. Then the element $2^{3+\nu(r)-i}i_*(j_r) \in \pi_{4n-1}(X)$ represents the element $_0\alpha_{2r/i} \in E_2^{q-i,q-i+4r-1}(X)$, and $E_2^{s,s+4r-1}(X) = 0$ for any $s \ge q$, by Lemma 2.3 and (3.2), where q = 2r + 2 or 2r + 1 for odd or even r respectively. Thus to prove $2^{3+\nu(r)-i}i_*(j_r) = 0$ we may show that $_0\alpha_{2r/i} = 0$ for $1 \le t \le i$.

When $d(X) = m(r) - \varepsilon$ for odd r and $1 \le \varepsilon \le 2$, the assertion follows from Proposition 3.3 (ii). Now assume that d(X) = m(r). By Proposition 3.3 (i) and Lemma 2.3, we have

 $\partial(h_0^{2r-i+1}) = {}_0\alpha_{2r/i} \text{ for odd } r \text{ and } 1 \leq i \leq 3, \text{ and}$ $\partial(h_0^{2r-1}) = {}_0\alpha_{2r/1} \text{ for even } r,$

where ∂ is the homomorphism in (3.2). Therefore, ${}_{0}\alpha_{2r/i} = 0 \in E_{2}^{2r-i+2,6r-i+1}(X)$ for odd r and $1 \leq i \leq 3$, and ${}_{0}\alpha_{2r/1} = 0 \in E_{2}^{2r,6r-1}(X)$ for even r. Thus we have (i) and (ii).

(iii) We apply Lemmas 2.4 and 2.5 to the case of (C(f), Y, e) = (X, X', d), where $d = d(X) - d(X/S^0)$. Lemma 2.4 implies that $2^{2+\nu(r)}i_*(j_r) \neq 0$ in $\pi_{4r-1}(X')$, and thus we have the desired result by Lemma 2.5.

§4. Proof of Theorems A and B

We will apply Theorem C to the spectra $\Sigma^{-4(n-r)}HP_{n-r}^{n}$ and $\Sigma^{-4(n-r)-3}Q_{n-r}^{n}$. Recall the integers a(n, r) and b(n, r) defined for given integers n and $r \ge 1$ in (1.3). Also, we put $c(n, r) = \binom{n+r-2}{r-1}$. Then by [4; Th.2, 3] we have the following:

LEMMA 4.1. (i) $d(\Sigma^{-4(n-r)}HP_{n-r}^{n}) = m(r)$ if and only if a(n, r) is odd. (ii) Assume that $r \ge 3$ is odd. Then, $d(\Sigma^{-4(n-r)}HP_{n-r}^{n}) = m(r) - 1$ or m(r) - 2 if the following (1) or (2) holds respectively:

- (1) $a(n, r) + 1 \equiv (a(n, r)/2) + b(n, r) \equiv 1 \mod 2;$
- (2) $a(n, r) \equiv 2 \mod 4$, $b(n, r) \equiv 1 \mod 2$ and $(a(n, r)/2) + b(n, r) + 2c(n, r) \equiv 2 \mod 4$.

LEMMA 4.2. (i) $d(\Sigma^{-4(n-r)-3}Q_{n-r}^n) = m(r)$ if and only if a(n, r) is odd. (ii) Assume that $r \ge 1$ is odd. Then, $d(\Sigma^{-4(n-r)-3}Q_{n-r}^n) = m(r) - 1$ or m(r) - 2 if the following (1)' or (2)' holds respectively:

 $(1)' \quad a(n, r) \equiv 2 \mod 4;$

 $(2)' \quad a(n, r) \equiv 4(1 + (n+1)c(n, r)) \mod 8.$

Let $i_*: \pi_{4n-1}^s(S^{4(n-r)}) \to \pi_{4n-1}^s(HP_{n-r}^n)$ be the homomorphism in (1.1). Then, by Theorem C and Lemma 4.1, we have the following theorem.

THEOREM 4.3. (i) If a(n, r) is odd, then $i_*((\operatorname{Im} J)_2) = 0$ for odd $r \ge 1$, and $2^{2+\nu(r)}i_*(j_r) = 0$ for even $r \ge 2$.

(ii) For odd $r \ge 3$, $2i_*(j_r) = 0$ or $4i_*(j_r) = 0$ if (1) or (2) in Lemma 4.1 holds respectively.

Similarly, for the homomorphism $i_*: \pi_{4n+2}^s(S^{4(n-r)+3}) \to \pi_{4n+2}^s(Q_{n-r}^n)$ in (1.4), we have the following theorem by Theorem C and Lemma 4.2.

THEOREM 4.4. i_* satisfies (i) in Theorem 4.3 and the following (ii)':

(ii)' For odd $r \ge 1$, $2i_*(j_r) = 0$ or $4i_*(j_r) = 0$ if (1)' or (2)' in Lemma 4.2 holds respectively.

PROOF OF THEOREM A. (i) follows from Lemma 2.4 by applying it to the case of $Y = \Sigma^{-4(n-r)} HP_{n-r}^{l}$ and m = l - n + r for l < n.

(ii) Let $i_*: \pi_{4n-1}^s(S^{4(n-r)}) \to \pi_{4n-1}^s(HP_{n-r}^n)$ be the homomorphism in (1.1) for l = n, and $(\operatorname{Im} J)_2 \subset \pi_{4n-1}^s(S^{4(n-r)})$ as in (1.2). We put $P = \Sigma^{-4(n-r)}HP_{n-r}^n$ and $d = d(P) - d(P/S^0)$. Then, by the same reason to Lemma 4.1 (i), we have

(4.5)
$$d(P/S^0) = m(r-1) \text{ if and only if } b(n, r) \text{ is odd.}$$

Assume that r is odd. If a(n, r) is odd, then $i_*((\operatorname{Im} J)_2) = 0$ by Theorem 4.3 (i), and we have the first case of the required result. For the case of r = 1, since $\Sigma^{-4n+4}HP_{n-1}^n$ is homotopy equivalent to $S^0 \cup_{(n-1)v} e^4$, where $v \in \pi_3(S^0) = Z/24$ is the generator, $i_*((\operatorname{Im} J)_2)$ is a cyclic group of order g.c.m. $\{n-1, 8\}$. Hence we have the desired result for r = 1. Now we assume further that b(n, r) is odd and $r \ge 3$. Then we see that the condition (1) in Lemma 4.1 (ii) is equivalent to that $r + n \equiv 0 \mod 4$. Thus, if $r + n \equiv 0 \mod 4$, then $2i_*(j_r) = 0$ by Theorem 4.3 (ii), and $i_*(j_r) \neq 0$ by Theorem C (iii) since d = 2 by Lemma 4.1 (ii) and (4.5). Hence we have the second case of the desired result. Similarly, the condition (2) in Lemma 4.1 (ii) is equivalent to that $n \equiv r \equiv 1 \mod 8$. Then, under this condition, d = 1 by Lemma 4.1 (ii) and (4.5), and we have $i_*((\operatorname{Im} J)_2)$ = Z/4 by Theorem 4.3 (ii) and Theorem C (iii), which is the third case of the required result.

(ii) Assume that r is even. Then, b(n, r) is odd if and only if $d(P/S^0) = 2r - 1$ by (4.5), and under this assumption we have the following:

Mitsunori Імаока

$$v(n) > v(r)$$
 if and only if $a(n, r)$ is odd,
 $v(n) = v(r)$ if and only if $d(P) = 2r - 1$,

Hence, if b(n, r) is odd and v(n) = v(r), then $2^{2+v(r)}i_*(j_r) \neq 0$ by Theorem C (iii) since d = 0 in this case, and thus Ker $(i_*) \cap (\text{Im } J)_2 = 0$. If both a(n, r) and b(n, r) are odd, then $2^{2+v(r)}i_*(j_r) = 0$ by Theorem 4.3 (i), and Ker $(i_*) \cap (\text{Im } J)_2 = Z/2$ by Theorem C (iii) since d = 1 in this case. Thus we have completed the proof. Q.E.D.

The proof of Theorem B is similar to that of Theorem A, by using Lemma 4.2 and Theorem 4.4 instead of Lemma 4.1 and Theorem 4.3.

References

- [1] J. F. Adams, On the groups J(X) IV, Topology, 5 (1966), 21-71.
- [2] M. C. Crabb and K. Knapp, Vector bundles of maximal codegree, Math. Z., 193 (1986), 285-296.
- [3] M. Imaoka, On the Adams filtration of a generator of the free part of π^{*}_{*}(Q_n), Publ. RIMS, Kyoto Univ. 25 (1989), 647-658.
- [4] M. Imaoka, The maximal codegree of the quaternionic projective spaces, Hiroshima Math. J. 20 (1990), 351-363.
- [5] I. M. James, The topology of Stiefel manifolds, London Math. Soc. Lecture note series 24, 1976.
- [6] M. Mahowald, The order of the image of the J-homomorphism, Bull. Amer. Math. Soc., 76 (1970), 1310-1313.
- [7] D. G. Quillen, The Adams conjecture, Topology, 10 (1970), 67-80.
- [8] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Mathematics 121, Academic Press, 1986.

Department of Mathematics, Faculty of Education, Wakayama University