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Complete characterization of post-selected quantum statistics using weak measurement tomography
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The reconstruction of quantum states from a sufficient set of experimental data can be achieved with arbitrarily
weak measurement interactions. Since such weak measurements have negligible back action, the quantum state
reconstruction is also valid for the postselected subensembles usually considered in weak measurement paradoxes.
It is shown that postselection can then be identified with a statistical decomposition of the initial density matrix
into transient density matrices conditioned by the anticipated measurement outcomes. This result indicates that
it is possible to ascribe the properties determined by the final measurement outcome to each individual quantum
system before the measurement has taken place. The “collapse” of the pure state wave function in a measurement
can then be understood in terms of the classical “collapse” of a probability distribution as new information
becomes available.
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I. INTRODUCTION

As our ability to control individual quantum systems
increases, the seemingly paradoxical aspects of quantum
measurement theory take on a more practical relevance.
One recent example is the renewed interest in the quantum
statistics of postselected weak measurements, which seem to
suggest the presence of negative probabilities as the source
of quantum paradoxes [1–8]. These developments in the
field of weak measurement may be especially significant in
the context of new experimental possibilities pioneered by
quantum information related research [9–11]. However, there
seems to be a certain mismatch between the conventional
approach to weak measurements, which is based on the notion
of measurement interaction dynamics mediated by operator
observables [12–16], and the more general approach to mea-
surements based on the measurement operators widely used
in quantum information [17]. In particular, the conventional
analysis seems to overemphasize the exotic and surprising
aspects of the weak measurements, while the operator-based
approach shows more clearly how weak measurements fit
into the general framework of quantum physics [18]. As
experimental weak measurements become more and more
established, it may therefore be time to shift the focus away
from the oddities of specific cases, toward a complete and
consistent formulation of postselection effects in terms of their
experimentally observable properties.

From the experimental side, quantum states and processes
can be characterized by measuring their complete statisti-
cal properties, a procedure known as quantum tomography
[19,20]. A significant merit of quantum tomography is that it
establishes an operational approach to quantum states; that is,
it defines the quantum state in terms of the experimentally ac-
cessible data. By applying quantum tomography to generalized
weak measurements, it is possible to extend this operational
definition to postselected subensembles of a quantum state.
In the following, the general theory of quantum tomography
with measurements of variable strength is formulated. It is
shown that, in the limit of weak measurements, postselec-
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tion partitions the initial density matrix into subensembles
described by nonpositive transient density matrices. This result
divides the “collapse” of the wave function into two distinct
parts, one associated with the selection of the appropriate
subensemble, and the other related to the actual back action of
the measurement dynamics. Although the measurement back
action is necessary to cover up the negative eigenvalues of the
transient states, weak measurement tomography suggests that
the subensemble partition has a physical meaning even before
the measurement interaction takes place.

II. QUANTUM STATE TOMOGRAPHY WITH WEAK
MEASUREMENTS

The starting point for the following derivation of a complete
and consistent theory of weak measurement tomography is
the representation of general quantum measurements by a
set of operators {M̂m} acting only on the Hilbert space of
the system [17]. These operators summarize the relevant
effects associated with a measurement outcome m, separating
the essential properties of a quantum measurement from
the technical problem of its implementation by a specific
combination of system-meter interaction, meter preparation,
and meter readout. In the case of Hilbert space vectors
representing pure states, the application of a measurement
operator M̂m to a state vector changes both the length and the
direction of that vector. The new direction of the state vector
then represents the output state after the measurement, while
the squared length represents the probability p(m) of obtaining
the measurement outcome m. If the quantum state is expressed
in terms of the density matrix ρ̂i , the probability p(m) is given
by a product trace,

p(m) = Tr{M̂m ρ̂iM̂
†
m} = Tr{M̂†

mM̂m ρ̂i}. (1)

The set of squared operators {M̂†
mM̂m} is the positive operator-

valued measure (POVM) of the measurement probabilities.
Since all probabilities must add up to 1, the POVM fulfills the
completeness relation

∑
m

M̂†
mM̂m = 1̂. (2)
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The POVM formalism describes the general relation between
experimental data and the quantum state. Specifically, Eq. (1)
shows that the measurement probabilities p(m) are linear
combinations of the density matrix elements. If the set of
relations given by Eq. (1) is invertible, the complete density
matrix can be reconstructed from the available set of measure-
ment probabilities. In a d-dimensional Hilbert space, quantum
tomography can thus be performed using any combination of
d2 linearly independent measurement operators M̂

†
mM̂m.

Whether a POVM is invertible and therefore suitable
for quantum tomography does not depend on the precision
of the measurement. It is therefore possible to reconstruct
the quantum state from arbitrarily weak measurements. To
illustrate this point, it is useful to formulate the inversion
procedure for POVMs with variable strength ε. The strength
or weakness of a measurement can be quantified directly by
the closeness of the measurement operators to multiples of
the identity operator 1̂. A convenient way of representing a
variably measurement strength ε in the formalism is

M̂
†
mM̂m = wm(1̂ + εŜm)

with
∑
m

wm = 1

1 + ε
and

∑
m

wmŜm = 1̂

1 + ε
. (3)

The measurement probabilities in Eq. (1) can then be expressed
in terms of the expectation values of a set of self-adjoined
operators Ŝm that is independent of the measurement strength
ε. For quantum state reconstruction, a set of d2 linearly
independent operators {Ŝm} defines an operator expansion of
the density matrix in terms of the set of reciprocal operators
{�̂m} with Tr{Ŝn�̂m} = δn,m. The density matrix is then given
by

ρ̂i =
∑
m

Tr{Ŝmρ̂i}�̂m, (4)

where the coefficients of the expansion are related to the
measurement probabilities p(m) by

Tr{Ŝmρ̂i} = 1

εwm

[p(m) − wm]. (5)

Equations (4) and (5) express the density matrix in terms of
the experimentally obtained measurement probabilities p(m).
Thus, quantum tomography can provide a definition of the
density matrix that is based only on empirical properties of the
system.

III. QUANTUM STATES OF POSTSELECTED ENSEMBLES

Conventional quantum tomography is a one-way readout
process in which the quantum state is discarded after the
measurement. However, the measurement operators M̂m also
provide a description of the quantum state after the mea-
surement. It is therefore possible to consider the effects of
a subsequent measurement with outcomes f , described by
another POVM {�̂f }. The joint probability of obtaining first
m and then f in the measurements is given by

p(m, f |i) = Tr{�̂f M̂mρ̂iM̂
†
m}. (6)

Since the measurement operators M̂
†
m and M̂m are not directly

multiplied, the probability p(f |i) found by summing over

all m is different from the product trace of ρ̂i and �̂f . This
change in the probability of obtaining f from the initial state
ρ̂i is caused by the measurement back action associated with
the measurement of m. It is therefore impossible to know
whether the final result f was caused by the initial state of the
system or by interaction effects related to the measurement
outcome m. However, the theory of weak measurements
shows how this problem can be circumvented: For very small
measurement strengths ε, the effects of the quantum state on
the measurement probabilities is linear in ε while the mea-
surement back action is quadratic in ε. It is therefore possible
to realize quantum state tomography with negligible back
action.

In the limit of weak measurements (ε � 1), the measure-
ment operators M̂m are approximately given by the linearized
square root of the POVM,

M̂m ≈ √
wm

(
1̂ + ε

2
Ŝm

)
. (7)

In the joint probability p(m, f |i) given by Eq. (6), the terms
linear in ε are obtained by applying Ŝm either from the right
or from the left. If quadratic terms are neglected, this is
equivalent to applying the POVM from the right or from
the left. Therefore, the joint probability p(m, f |i) can be
approximately expressed by the weak measurement POVM,

p(m, f |i) ≈ Tr
{
�̂f

1
2 (ρ̂iM̂

†
mM̂m + M̂†

mM̂mρ̂i)
}
. (8)

Since the POVM fulfills the completeness relation given by
Eq. (2), the final measurement probabilities p(f |i) are not
changed by the measurement of m and

p(f |i) =
∑
m

p(m, f |i) = Tr{�̂f ρ̂i}. (9)

Hence the measurement back action is negligible and the
measurement results m merely identify the state conditioned by
both initial preparation and final measurement. The conditional
probability can then be written in terms of a transient density
matrix R̂if , such that

p(m|i, f ) = p(m, f |i)
p(f |i) = Tr{M̂†

mM̂mR̂if }. (10)

According to Eqs. (8) and (9), this transient density matrix is
given by

R̂if = 1

2Tr{ρ̂i�̂f } (ρ̂i�̂f + �̂f ρ̂i). (11)

Experimentally, the transient density matrix can be recon-
structed using the procedure outlined in the previous section
for conventional density matrices. In this case, Eq. (5) defines
the weak values of Ŝm, and R̂if is obtained from the operator
expansion given in Eq. (4), where the coefficients are now
given by these weak values. Significantly, the expectation
values of Ŝm are never obtained by strong measurements. Even
in the conventional nonpostselected case, the expectation value
of Ŝm is determined from small changes in the probability m.
Therefore, there is a fundamental similarity between the way
conventional quantum state tomography can obtain predictions
for strong measurements from sets of weak measurements
and the reconstruction of weak values from postselected
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measurements. If quantum tomography is accepted as an
unambiguous operational definition of the density matrix in
terms of the measurement statistics of m for any well-defined
ensemble of quantum systems, the consistency of quantum
measurement theory requires that the self-adjoint operator
R̂if is the proper statistical representation of the subensemble
defined by the conditions i and f .

IV. ANTICIPATORY DECOMPOSITION

The operator R̂if correctly predicts the outcomes of all
(real) weak values that can be obtained between i and f .
In this sense, it is similar to the two-state vector formalism of
weak measurements [21] and its extension to mixed states [22].
However, the derivation from tomography ensures that R̂if

is a self-adjoined operator with real eigenvalues and a trace
of one. It thus corresponds to a conventional density matrix,
except for the possibility of negative eigenvalues. Moreover,
the definition of R̂if applies equally well to projective
measurements of pure states and to noisy measurements of
mixed states. The present analysis therefore bridges the gap
between the classical limit and the extreme quantum limit,
revealing similarities of quantum and classical statistics that
tend to be obscured by the state vector formalism. Specifically,
the transient density matrix R̂if is the quantum mechanical
representation of conditional probabilities p(m|i, f ), just as
the density matrix ρ̂i is the quantum mechanical representation
of the probabilities p(m|i). The relation between the total
density matrix ρ̂i and the set of transient density matrices
conditioned by the final measurement outcomes f is therefore
given by the weighted sum over all possible outcomes f ,

ρ̂i =
∑
f

p(f |i) R̂if . (12)

This decomposition of the density matrix explains why the
weak measurement statistics can be measured before the final
measurement f has taken place: The measurement of f simply
identifies a subensemble R̂if that is already included in the
total ensemble ρ̂i . It is therefore possible to decompose ρ̂i

into R̂if in anticipation of the measurement of f . Such an
anticipatory decomposition indicates that the measurement
outcome f can already be ascribed to the quantum systems
before the measurement has taken place.

V. WAVE-FUNCTION COLLAPSE WITHOUT
MEASUREMENT BACK ACTION

In classical physics, the statistical rules for anticipatory
decompositions are straightforward, since the state ρ̂ is just
a conventional probability distribution over all microscopic
configurations of the system. In the quantum case, it is
usually assumed that the “collapse” of a pure state caused
by a projective measurement is fundamentally different from
such a probability update, because it includes the effects of
decoherence. However, weak measurement tomography shows
that the “collapse” can be divided into two parts, one associated
with a classical subensemble selection (that is, a Bayesian
probability update) and the second one associated with the
actual physical interaction that results in the decoherence. It
is therefore possible to identify the set of quantum systems

that produce a specific measurement result f with a uniquely
defined subensemble of the total density matrix ρ̂i .

To understand the significance of this result, it may be
useful to reconsider some of the paradoxes of quantum
mechanics in the light of these experimentally accessible facts.
For instance, it is now possible to resolve the problem of
double-slit interference by combining interference information
with which-path information. Specifically, the initial pure
state superposition |i〉 = (|1〉 + |2〉)/√2 of a particle passing
through slit 1 and a particle passing through slit 2 can be
decomposed into

R̂i1 = |1〉〈1| + 1
2 (|1〉〈2| + |2〉〈1|),

(13)
R̂i2 = |2〉〈2| + 1

2 (|1〉〈2| + |2〉〈1|)
in anticipation of a which-path measurement. Weak measure-
ments performed between the preparation of the superposition
|i〉 and the final which-path measurements show that the
path information coexists with the interference pattern of the
superposition. Therefore, the double-slit interference pattern
can be obtained from weak measurements even if the particle
has passed through only one of the slits. Equation (14) thus
shows that coherence between two alternatives does not imply
that both alternatives are simultaneously realized.

Essentially, weak measurement tomography is an analysis
of quantum statistics that reveals additional details about where
quantum information is located before it is measured. In
particular, it fills a gap left by the measurement postulate
by showing that the measurement result f corresponds to
properties of the system before the measurement and is not
just randomly generated by a role of the dice at the time of
measurement. Thus, we can solve the paradox of Schrödinger’s
cat by experimentally confirming that the cat already showed
signs of being dead before somebody opened the box to look.
In the simplified scenario where the death of the cat is either
caused or not caused by a superposition of unitary operations
at a well-defined instance, weak measurement tomography
would clearly show that the cat was already dead during the
time interval between that instance and the final measurement.
In the case of entanglement paradoxes, weak measurement
tomography indicates that the nonlocal collapse of entangled
states merely corresponds to a Bayesian probability update
in the remote system, providing a classical analogy that can
explain nonclassical properties of quantum mechanics such
as the impossibility of nonlocal signaling and the transfer
of quantum information by classical channels in quantum
teleportation [23,24].

VI. EXPERIMENTALLY OBSERVABLE NEGATIVE
PROBABILITIES

As explained earlier, weak measurement tomography iden-
tifies the quantum statistics of systems with well-defined
initial and final properties. This means that the available
information about each system can be more precise than
the uncertainty limit allows. Such super-certain information
finds its quantum statistical expression in the nonpositive
transient density matrices R̂if that summarize the results of all
possible weak measurements between i and f . The negative
eigenvalues of R̂if represent weak values that exceed the
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eigenvalue bounds of positive density matrices, providing a
consistent framework for the resolution of quantum paradoxes
by weak measurements [4–8].

Quantitative descriptions of quantum paradoxes such as
Bell’s inequalities [25], Leggett-Garg inequalities [4–6], or
contextuality inequalities [26] are usually formulated in
terms of precise measurements performed on different rep-
resentatives of the same state. To connect this conventional
formulation with weak measurements, it is necessary to show
that the joint probabilities determined in weak measurements
provide a unique and measurement-independent definition of
joint probabilities in quantum systems. In particular, the joint
probabilities should not depend on the order in which the result
is obtained [27]. For a pair of strong measurements {�̂f } and
{�̂g}, the joint probability from a weak measurement of g

followed by a strong measurement of f should therefore be
equal to the joint probability of a weak measurement of f

followed by a strong measurement of g,

p(f, g|i) = p(f |i) Tr{�̂gR̂if }
= p(g|i) Tr{�̂f R̂ig}. (14)

Weak measurement tomography can confirm that these two
results are indeed equal. This means that the transient density
matrices R̂if and R̂ig describe the same statistical correlations
between the measurement of f and the measurement of g. We
can therefore conclude that weak measurement tomography
provides a consistent definition of joint probabilities for
measurements that cannot be performed jointly. In terms of
the POVMs, this joint probability reads

p(f, g|i) = Tr
{

1
2 (�̂g�̂f + �̂f �̂g) ρ̂i

}
. (15)

It should be emphasized that each of these joint probabilities
can be measured directly in an appropriate weak measurement.
Equation (15) thus provides a consistent definition of joint
probability based directly on the measurement operators
for a pair of well-defined strong measurements. This is
different from the assumptions used in the construction of
quasi-probabilities such as the Wigner function, where the
probabilities are defined in terms of observables and not in
terms of the measurement operators. This means that the
Wigner function and other quasi-probabilities should not be
interpreted directly as a joint probability of the projections
on position and momentum eigenstates. Instead, all quasi-
probabilities represent specific assumptions about the uncer-
tainty statistics involved in finite-resolution measurements
of the observables [28,29]. The present results indicate that
such assumptions may not provide a consistent description
of joint probabilities for pairs of precisely defined strong
measurements. It is therefore important to distinguish carefully
between the mathematical construction of quasi-probabilities
and their actual empirically valid meaning [30]. On the other
hand, the negative probabilities predicted by Eq. (15) are a
natural consequence of quantum statistics, required by the
consistency of weak and strong results. Thus, the validity of
the results with respect to the specific pair of measurement
operators is not a matter of interpretation, even though the
precise meaning of negative joint probabilities for outcomes
that never occur jointly may be difficult to understand.

VII. IMPLICATIONS OF UNCERTAINTY FOR
INDIVIDUAL QUANTUM SYSTEMS

Obviously, negative probabilities cannot be interpreted as
relative frequencies of actual measurements. Nevertheless,
they can be derived from the relative frequencies of weak
measurements that consistently give the same results as
the corresponding strong measurements. To reconcile the
strangeness of negative probabilities with the empirical sense
of reality justified by reproducible measurement results, it is
important to remember that the validity of an anticipatory
decomposition depends on the performance of the actual
measurement. If an alternative measurement is performed
instead, the subensembles need to be “reshuffled” before
the correct decomposition is applied. For practical purposes,
contradictions are avoided because the reality of an individual
system is determined by only one of the possible measure-
ments. The resolution of quantum paradoxes by negative
probabilities is therefore based on the difference between the
total statistical ensemble and its individual representatives. The
reality of the representative is given by precise values of i and
f (or i and g), while the ensemble properties are described
by the transient density matrix. In the case of the subensemble
defined by i and f , this transient density matrix is given by
R̂if , which may have negative eigenvalues since it can only
be observed in weak measurements. Equations (14) and (15)
show that the joint negative probabilities predicted by weak
measurement tomography of i and f are consistent with the
joint negative probabilities obtained from i and g. The result
can therefore be summarized in terms of a uniquely defined
joint probability (15) that expresses the relation between
strong measurements of f and of g directly in terms of
their POVM operators. However, the negative eigenvalues of
this operator clearly indicate that individual realities must
be restricted to the actual measurement outcomes caused
by the respective system. Weak measurement tomography
thus decides quantum paradoxes in favor of locality and
causality but against the notion of a nonempirical realism
that attempts to provide a description of individual quantum
objects beyond the uncertainty limited reality of its individual
effects.

VIII. CONCLUSIONS

In conclusion, weak measurement tomography reveals a
striking consistency of the quantum measurement formal-
ism with classical statistics by defining an unambiguous
partition of the total ensemble described by ρ̂i into well-
defined subensembles R̂if representing the future measure-
ment outcomes f . The reconstruction of quantum states
by weak measurements thus provides empirical evidence
that the selection of a measurement outcome f does not
eliminate the coherences between f and other outcomes.
In particular, weak measurements can show that particles
moving only through slit 1 of a double-slit experiment carry
the complete interference pattern of the initial state with
them until the physical interaction of the final measurement
randomizes the phase relation. Empirical evidence thus favors
a statistical interpretation of quantum mechanics that assigns
reality to individual measurement outcomes even before the
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measurement is performed. Quantum paradoxes can then be
explained in terms of the negative probabilities described
by the nonpositive transient density matrices R̂if . As was
shown here, these transient density matrices uniquely define
the joint probabilities between the measurement results f

and the possible outcomes of other measurements g. The
negative values of such joint probabilities demonstrate that
no consistent simultaneous assignment of both g and f

is possible. Weak measurements can thus provide experi-
mental proof that quantum paradoxes arise from the falla-
cious imposition of nonempirical realities beyond the uncer-

tainty limits restricting the observable effects of individual
systems.
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