
Reconstruction of B-spline skinning surface from generalized

cylinder mesh

Ken Yano
Graduate School of Engineering

Hiroshima University
1-4-1 Kagamiyama

Higashi Hiroshima, Hiroshima, Japan
email: d064016@hiroshima-u.ac.jp

Koichi Harada
Graduate School of Engineering

Hiroshima University
1-4-1 Kagamiyama

Higashi Hiroshima, Hiroshima, Japan
email: harada@mis.hiroshima-u.ac.jp

Abstract

We propose a novel method to reconstruct B-spline surfaces from generalized cylin-
drical meshes by skinning. Skinning is a well known surface creation technique and has
been used in CAD and CG modeling. However there are few papers which address the
issue of automated creation and preparation of sectional curves for skinning. Although
our method is only applicable to generalized cylindrical meshes, there are many real
world objects which can be created or reconstructed by skinning. The proposed sur-
face reconstruction method is fully automated with minimal user interventions. We
have evaluated the validity of this method by reconstructing B-spline surfaces from
various polygonal meshes varying in shapes and geometries. The final results show
the effectiveness of our proposed method.

1 Introduction

Reconstruction of free-form spline surfaces from other formats such as point sets, polygonal
meshes, etc has been studied by many researchers. Especially in CAD modeling, measuring
point coordinates from existing objects then generating a smooth free-form surface which
interpolates or approximates these points is called ”reverse engineering” and many papers
have dealt with this issue [2] [3] [12] [13] [15] [22] .

[22] describes the two-step approach to construct a NURBS surface from a point set.
This paper is one of a few papers which deal with the calculation of the weights of control
points using symmetric eigenvalue decomposition. [2] deals with the important issue of
how to avoid the explosion of control points by using knot-control method. [13] presents a
technique to assign parameter values to randomly measured points. The parameterization
is first realized by projecting the measured points to a base surface and later is refined by
reducing fitting error from the base surface. [12] presents an approach to update a local
area of a B-spline surface based on a set of locally distributed and unorganized points. The
region of the original surface to be updated is first identified and then the control points
affecting these area are updated by modifying part or all of the control points through a
local fitting process. [8] presents a system for converting a dense irregular polygon mesh
of arbitrary topology into tensor product B-spline surface patches with accompanying
displacement maps. Skinning is simply a newer term for lofting and is a widely used
technique in the shipbuilding, automotive, and aircraft industries as well as the sweep
surface construction techniques. The details of such surface construction methods can be

1

found in [16]. Readers are referred to [3] about the general issues pertaining to skinning
especially when the sectional curves are rational B-spline curves.

This paper tries to automate the construction of sectional curves on a triangle mesh in
order to convert the mesh into a skinning surface. Defining or drawing a smooth curve on
a mesh is not trivial and there are several papers addressing this issue [17]. For example,
Dijkstra’s algorithm is known to be a good algorithm to find a shortest path on a mesh,
however the path will not be a smooth curve. [17] computes geodesic paths on a mesh
by solving the Eikonal equation by Fast Marching Method. Geodesic path may not be
used for the sectional curve since the path would skirt around humps on the mesh which
are important surface features. Our method to generate sectional curves for skinning is
motivated by the work [18]. They generate a smooth scalar field on mesh by solving
Laplacian equation, then create a set of gradient flows by tracing the field from a selected
point on the mesh. The gradient flows are used for quadrilateral remeshing.

This paper is organized as following. In section 2, the details of generation of gradient
flows are descried. Although our method mostly follows the work [18], we restate it for
clarity. In section 3, the gradient flows are sorted then converted to a set of B-spline
sectional curves. In order to prevent ”explosion of control points” by skinning, each
sectional curve is parameterized by adopting the candidate knots which are fully described
in [2]. In section 4, a skinning surface is made from the sectional curves. The total number
of control points of the skinning surface is suppressed as much as possible. We also discuss
some issues of known surface parameterization and show a solution for them. In section
6, we apply our method to various mesh objects and the resulting skinning surfaces are
presented with the timing analysis. Section 6 concludes our work and states some future
works.

2 Gradient flows on triangulated mesh

We assume that we are given a triangular polygonal mesh M = (V, F), composed of a
set of vertices V and a set of triangles F . Each vertex v is assigned a position p in 3D
Euclidean space. We also restrict that the mesh M need to be a generalized cylinder. The
mesh M might have a boundary at each end.

First we define a smooth scalar field s which assign a scalar value to each vertex. Within
each triangle, the scalar values are linearly interpolated. The scalar field is defined as a
solution of harmonic function satisfying the Laplace equation 4s = 0 (4 = ∂2/∂x2 +
∂2/∂y2 + ∂2/∂z2) subject to the Dirichlet boundary conditions. Secondly gradient flows
on the mesh are generated. We adopts the method proposed by [18]. The method is
efficient in terms of computational time and robust since the generated scalar field is
smooth everywhere we are less likely to have accumulated errors when tracing flow lines.

The details of each step are described in the following.

step0 : initialization At initialization a octree enclosing the mesh is defined by recur-
sively subdividing a octant until one side length of the octant becomes user defined size.
This octree is later used to speed up searching for neighboring points on the mesh.

step1 : setting of boundary conditions In this step, users define vertices with
minimum and maximum scalar values. If the mesh has no boundary, select one vertex as
minima where the scalar value is 0, and one vertex as maxima where the scalar value is
1. If the mesh has boundary at either end, a set of vertices belonging to the boundary to

2

be either minima or maxima. Those vertices defined as minima or maxima become the
boundary conditions when solving the Laplacian equation.

step2: generate smooth scalar field The smooth scalar field s is defined as the
solution of

4s = 0 (1)

where 4 is the Laplacian operator subject to the Dirichlet boundary conditions described
above.

A function s satisfying the constrained Laplace equation is known to generate a discrete
harmonic function. An important consequence of the harmonics of s is that it will have
no local extrema other than at constrained vertices. This is important as it implies that
the flows of gradient will converge precisely at the specified constrained points and flow
smoothly everywhere else.

On a triangulated manifold, the usual discretization of Laplacian operator is defined
as a umbrella operator with cotangent weight. We have used the method described in [5].

step3: generate gradient vector field Having computed the scalar field s, the gra-
dient vector field g is defined such that,

g = ∇s (∇ = ∂/∂xi + ∂/∂yj + ∂/∂zk) (2)

Given a triangle T = (p1, p2, p3 ∈ R3) with scalar values s1, s2, s3 associated with each
vertex, the gradient of scalar field is defined by interpolating scalar values si over a triangle
T . The component is a linear combination of scalar values (s1, s2, s3) and the coordinate
(see [10]).

step4: tracing of flow line Given an arbitrary seed point on the mesh, we trace a
flow line in both the positive and negative gradient direction separately until we encounter
the maximum or minimum point, respectively. In order to trace the flow line, we need to
consider three cases (see Figure 1). These three cases need to be carefully checked and
be correctly handled otherwise we might end up with zigzag flow lines or two flows might
cross over. Readers are also referred to [18] about the details of implementation.

Every time when the flow line intersects an edge or a vertex, we place two new seed
points at both sides of the flow line (see Figure 1). The spacing of the seed and the
incident flow point is controlled by a user defined spacing function h = θ × (dx + dy +
dz) θ ∈ R, where dx, dy, and dz is the average distance between neighboring vertices for
each coordinate. θ is adjusted to control the total number of generated flows. As the new
seed is generated, it is registered into the octree. The seed is also registered into a priority
queue with associated distance to the closest flow node by querying in the octree.

step4: selection of next seed point By getting a next element off the priority queue,
the next seed is obtained. The seed is again checked whether there is no flow nodes within
the user specified distance h around it. If it is false, another element is taken from the
queue. This checking is necessary since newly generated flow nodes might invalidate the
closest distance when the seed is first registered into the priority queue.

We continue the process from step3 and step4 until no valid seed can be taken from
the queue.

3

(a) (b) (c) (d)

Figure 1: Tracing a gradient flow; (a) regular case (b) vertex case (c) edge case (d)
generated seed points along a gradient flow

3 Sectional curves for skinning

In the preceding steps, we have obtained a set of gradient flows and every adjacent flows
are mutually at least h, e.g., the user defined distance, away. Since each gradient flow
is generated by taking a seed point from the priority queue described above, generated
gradient flows may not be sequenced around the mesh. And also, the maximum distance
between every two adjacent flows may not be exactly equal. In order to create sectional
curves, first the gradient flows have to be sorted. Secondly a set of gradient flows have to
be selected to generate sectional curves. The detail of the method is described as follows.

3.1 Sorting of gradient flows

We first sort the gradient flows around the mesh to make sectional curves. We can manu-
ally define the order of generated flows by selecting each flow one by one, however manual
sorting is cumbersome and takes long time for complicated objects. We propose an auto-
matic sorting. The method automatically sort gradient flows by projecting selected point
of each flow to a plane and sort the flows by the order of projected points in that plane.

Figure 2 illustrates this algorithm for two cases (a) a generalized cylinder with no
boundaries (b) a generalized cylinder with boundaries. The flows are sorted by the angle
Θ defined on the projecting plane. In case (a), the normal of projecting plane is given by
the normal of the extrema point p0. In case (b), the projecting plane is defined as the
plane approximating the boundary points.

Let c0 be the center of the boundary points {p0}, we define the covariance matrix C
as follows

C = Σi(pi
0 − c0)(pi

0 − c0)T (3)

The eigen vector corresponding to the smallest eigen value gives the normal of the
plane.

The projected flow points {p′} can be computed as

p′ = pk − c0 − dot(pk − c0, N) ∗N (4)

for case (a)
p′ = p0 − c0 − dot(p0 − c0, N) ∗N (5)

for case (b), where N is the normal of the projecting plane defined above.
The optimal index k can not be chosen in general, however for most meshes predefined

index should be fine. In our test cases, k = 5 is chosen. Moreover in case (b), the sorting
method does not work when the shape of boundary is not convex. In such cases, we need
to resort to some other methods. An intuitive solution uses the fact that the points {p0}

4

are on the boundary edges of the original mesh. As we trace the boundary edges of the
original mesh, record the order of time whenever encountering boundary flow nodes. The
flows are then sorted by the time. In order to accelerate this method, each flow node needs
to record the information on which edge of the original mesh it resides.

(a) without boundaries (b) with boundaries

Figure 2: Sorting of gradient flows. In case (a), c0(= p0) is the common extrema point.
In case (b), c0 is the center of boundary points {p0}. P O is the projection of c0 onto the
projecting plane. Points in blue are extrema points {p0} and points in orange are the flow
nodes {pk} with index k

3.2 Selection of gradient flows

Given the sorted gradient flows {fi : i = 0..M}, we select a set of candidate flows to make
sectional curves {Cj : j = 0..K}(K >= 4) for skinning. Since the generated flows might
be overly generated, only a subset of them is required for skinning. A simple method is to
uniformly sample the flows without regarding the shape of the mesh. If K is too small, the
skinning surface will just approximate the original object. If K is too large, the skinning
surface will contains many unnecessary control points and might causes artifacts on the
surface.

The following code snippet is to sample K flows uniformly from M flows. Since the
spacing between each of original neighboring flows is not exactly equal, we call it semi-
uniform selection.

int S[K]; // selected flows

// M; total num of flows

// K; num of flows for sectional curves

void Semiuniform_selection(int M, int K)

{

float err;

float r=(float)M/(float)K;

err = 0;

U = 0;

S[0]=U;

for (int i = 1; i < K; i++){

u = U + r;

U = (int)floor(u);

err += u - U;

if (err > 1.0){

U++;

err -= 1.0;

}

5

S[i] = U;

}

Semi-uniform selection does not consider the shape inherent in the mesh. The more
optimal sampling is to adopt an adaptive method. The adaptive selection samples the flows
with respect to local curvature of the boundary curve, which results in a more efficient
approximation. The strategy of this method is described as

1. choose a criterion for refining samples.

2. evaluate the criterion at the middle of the interval flow points.

3. if the boundary curve of the flow points is almost flat in the interval, then the sample
is given by its two extremes

4. otherwise, divide the interval into two parts and recursively sample two parts.

The following code snippet implements the algorithm. For the criterion above, we
choose the angle 6 amb for checking of flatness. Note that the method generates flow index
in exact order they occur along the boundary, as the recursive implementation performs
a depth-first search of the interval. After the adaptive selection is done, duplicated flow
indexes in S need to be removed.

p0[M]; // sorted boundary points

int S[]; // selected flows

void adaptive_selection(int a,int b)

{

int m;

m = (a+b)/2;

if (flat(p0[a],p0[m],p0[b])) {

add_flow(a);

add_flow(b);

}else{

adaptive_selection(a,m);

adaptive_selection(m,b);

}

}

Figure 3 illustrates the result of two different sampling methods for a simple object.
The above adaptive selection method only considers the boundary shape of the mesh

so it may not be an optimal sampling for other parts if the mesh is more complicated. In
those cases, semi-uniform sampling method can be used.

3.3 Least squares curve fitting

For each flow, a non-rational B-spline curve is fitted by least square approximation. Let
Qk(k = 0..n) be flow points, the B-spline curve C(u) is defined as

C(u) = Σn
i=0Ni,p(u)Pi u ∈ [0, 1] (6)

where Ni,p is the B-spline basis function and Pi is the control points [16].

• Q0 = C(0) and Qn = C(1)

• the remaining Qk are approximated in the least squares sense, i.e.

6

(a) gradient flows (b) semi-uniform sampling (c) adaptive sampling

Figure 3: Selection of gradient flows

Σn−1
k=1 |Qk − C(uk)|2 (7)

is a minimum with respect to the control points Pi. The uk are the precomputed
parameter values. We have computed uk using chord length parameterization with candi-
date knot [2]. Knot vector for each sectional curve have to be defined with special care,
since these curves are later to be changed to be compatible by knot merging. When each
sectional curve is parameterized disregarding to other curves, the number of control points
will explode by knot merging. We avoid this issue by adopting the method described in [2].
To briefly explain their method, although the choice of the knot vector is crucial in curve
fitting, each knot has some flexibility locally. That is, the position of the knots can be
perturbed without causing either numerical problems or creating curves of unacceptable
shape.

The idea is to define an interval in which each internal knot can freely be moved.
Denoting the knot vector for degree p approximation by up, these intervals are defined as

up−1
k−1 ≤ up

k ≤ up−1
k (8)

That is, the knot for a degree p approximation is bracketed into an interval defined
by knots used for a degree p− 1 approximation. Introducing a percentage parameter per,
one can control the width of each interval. In other words, per = 0% gives no flexibility,
whereas for per = 100%, any value within (up−1

k−1, u
p−1
k) may be chosen [2]. The algorithm

accepts the data points and a knot vector as input. It then sees if the given knots can be
used to approximate the data. To do that, it sets up an ”ideal” knot vector for degree
p and another one for degree p − 1. If there are input knots in a flexibility interval, the
algorithm selects the one closest to the ideal knot. If no input knot is present in the
interval, the ideal knot is used. After curve approximation is achieved, the input knot
vector is updated by adding the ideal knots whose flexibility intervals did not contain
input knots.

Following is the algorithm to obtain B-spline sectional curve fitted to a gradient flow.

Input:

N : number of flow points;

P[N] : flow points;

7

P_s[N] : scalar values;

nU : number of control points in U;

K_in[] : candidate knot vector;

eps : fitting error tolerance;

per : knot control (percentage of interval use)

Output:

C_s(u) : sectional curve;

K_in[] : updated candidate knot vector;

Algorithm:

U[N] : parameter of flow points;

K[] : knot vector;

deg : degree of curve (=3)

f_err : fitting error;

// Chord length parameterization

for (i=0;i<N;i++) {

U[i] := Chord_Length_Param(P);

}

while(1) {

// compute knot vector using candidate

K = compute_knot_with_candidate(U,nU,deg,K_in,per);

C_s(u) = LeastSquaresFitting(P,U,deg,nU,K,f_err);

if (f_err > eps) {

nU := nU + 1;

continue;

} else {

K_in = K;

done;

}

}

4 Surface skinning

Let Cj(u), j = 0, . . . , K be a set of section curves defined as

Cj(u) = Σn
i=0Ni,pPi,j j = 0, . . . , K (9)

In order to make a skinning surface from these sectional curves, Cj(u) need to meet
the three conditions,

• All Cj(u) need to be defined on the same knot vector U .

• The degree of each Cj(u) is the same (3).

• All Cj(u) are defined on the same parameter range.

The second and the third condition are met in the above procedures. In order to make
Cj(u) defined on the same knot vector, knot merging method is used. In general, when
knots are merged for all Cj(u), the number of control points grows rapidly. If the average
number of control points of the cross sections is n, and there are K section curves, then
after knot merging the total number of control points can be as high as O(K2n), instead
of O(Kn) [2]. By adopting the method described in previous section, we can minimize the
number of control points since the most of the knot vector of each sectional curves have
many common knots across them. Figure 4 and Table 1 show the effect of knot control
by varying the parameter per from 0.0 to 1.0.

When the Cj(u) are converted such that three conditions are met, we interpolate each
control points of Cj(u) along the V parameter direction. The degree in the V direction
are set as 3 as default and the parameter v̄l, l = 0, . . . , K are computed by chord length
parameterization and knot vector V are computed by averaging method [16].

8

(a) (b) (c) (d)

Figure 4: Knot control; per: percentage of interval described in [2] (a) per = 0 (b)
per = 0.2 (c) per = 0.5 (d) per = 1.0

per 0 0.2 0.5 1.0
U 244 89 55 30
V 16 16 16 16

Min fitting err 4.4e− 6 3.9e− 6 3.6e− 6 1.5e− 6
Max fitting err 9.9e− 4 9.6e− 4 9.7e− 4 9.7e− 4

Table 1: The number of control points after skinning in V parameter direction by setting
per as 0, 0.2, 0.5, 1.0. When the per is equal 1.0. The number of control points in U
parameter is reduced by 1/8 compared with the skinning surface when no candidate knots
are applied.

4.1 Some issues of parameterization

For a generalized clynderical mesh which is smooth and almost symmetric about the axis
of the clynder such as the capsule in Figure 4, chord length parameterization usually
generate a smooth skinning surface. However, our results show that the parameterization
may not produce a good result when the mesh is complicated and not symmetric about
the axis. We propose a solution for this issue.

Since the scalar field defined on the mesh is smooth, the parameter value along the
sectional curve should reflect the scalar value along the curve. In other words, the param-
eter values u of different sectional curves should be the same if the scalar values at the
corresponding flow points are the same.

The scalar value can not be directly used for parameterization since its characteristic
curve is not linear near the extreme points for some meshes as shown in Figure 5 (b),
which results in a singular system of equation 6. Figure 5 (a) shows the scalar value near
the minimum point.

The proposed method chooses one arbitrary gradient flow as a reference and obtain
its chord length parameterization. Then a mapping table Φ from the scalar values to its
chord length parameters is created. The other flows obtain its parameter at each flow
node by querying into the parameter table Φ. If the scalar value is not exactly on the
table Φ, the parameter u is obtained by linearly interpolating nearest two parameters on
the table. Let we call this method guided chord length parameterization. The figure 6
shows the effect of this guided parameterization for an asymmetric object.

The Figure 7 shows the difference of the skinning surfaces of a human head model
for the two different parameterization methods. In chord length parameterization severe
wrinkles appear around the nose and ears. In those area, iso-parameter curves are bended

9

(a) scalar field near the extreme (b) scalar value and chord length parameter

Figure 5: Scalar field and chord length parameterization

(a) chord length parameterization (b) guided chord length parameterization

Figure 6: Two different parameterization for an asymmetric object. (a) Iso-parameter
curves in orange are not aligned with the scalar field represented by the texture color. (b)
Iso-parameter curves are aligned with the scalar field

10

in undesired way. These unwanted wrinkles are remedied by the guided chord length
parameterization. Note that there are still wrinkles near the extrema point. This is the
limitation of the proposed method near the extrema without boundaries. Because all the
sectional curves meet at one extrema point, some overlapping phenomenon of those curves
can not be avoided unless removing too close sectional curves.

(a) chord length parameterization (b) guided chord length parameterization

Figure 7: Two different parameterizations of a human head. (a) undesired wrinkles appear
around the nose and ears. (b) undesired wrinkles are alleviated

5 Results and Discussion

The proposed method is tested with various mesh objects. Maximum and minimum
extrema points are selected manually by the user. All the reconstruction steps are done
automatically once that the surface fitting criteria, such as the desired number of sectional
curves and the fitting error tolerances of the sectional curves and that of the skinning
surface are fixed.

Figure 8 shows the results when the generalized cylinder have boundary at both ends
and in Figure 9 shows the case with no boundaries or one boundary at either end. In
both figures, first row of the figure shows the original polygonal mesh. Maximum extrema
points are colored in red and minimum extrema points are colored in blue. Second row
of the figure shows the smooth scalar field defined on the mesh. Third row shows the
iso-parameter curves of the skinning surface and in fourth row the shading results of the

11

skinning surface are shown.
For moai and head examples in Figure 9, the guided chord length parameterization is

used, for the other examples chord length parameterization is used. We use the uniform
sampling method to select gradient flows for skinning for all examples except for the object
1 which is generated by adaptive sampling.

In Table 2, the geometry of each object and the results of generated B-spline surfaces
are described. The minimum and maximum fitting errors are obtained by calculating
the distance between the skinning surface and each vertex of the original mesh by using
Newton iteration method (see [16]).

Table 3 shows timing results for the examples. Time is measured for each step of the
procedures. We use a PC based on Pentium 4(1.60 GHz) with 1.0GB RAM. The generation
of gradient flows takes most of the time especially for large complicated meshes. So the
spacing between the gradient flows affect the total time quite directly.

object name glass object 1 object 2 tube moai head
vertex 1004 1500 360 1082 5000 6743
face 1932 2872 672 2160 9996 13424
g-flows 62 72 31 15 98 196
U 113 119 88 74 132 156
V 30 30 15 9 48 60
Min fitting err 4.9e− 6 5.7e− 6 1.3e− 5 4.6e− 7 8.8e− 9 7.3e− 8
Max fitting err 2.3e− 1 3.2e− 3 2.4e− 3 1.7e− 2 1.7e− 3 4.8e− 3

Table 2: The geometry of each test objects and the results of surface fitting. The g-flows is
the number of gradient flows generated. U is the number of control points in U direction.
V is the number of control points in V direction. Skinning is done in V direction.

object name glass object 1 object 2 tube moai head
Step 1 2.3s 2.6s 1.1s 1.3s 32.1s 73.9s
Step 2 0.4s 0.8s 0.3s 0.4s 0.9s 11.1s
Step 3 0.7s 0.8s 0.3s 0.1s 1.7s 2.9s

Table 3: Time took for each steps. Step1: the generation of the smooth scalar field then
tracing of all gradient flows. Step2: the sorting of gradient flows and sectional curve fitting
to the selected flows. Step3: the generation of skinning surface from the sectional curves

To stabilize the proposed method, the source mesh may need to undergo remeshing
steps depending on the quality of the mesh before generating gradient flows. Existing
remeshing techniques such as decimation [7], smoothing [19] [20], and hole filling [11] [14]
can be used. If only the point set is available such as the digitized coordinates from 3D
scanners, they need to be converted to a polygonal mesh using existing techniques [1] [4]
[21] before being fed into the proposed method.

12

glass object 1 object 2

Figure 8: Generalized cylinder objects with boundary at both ends

13

tube moai head

Figure 9: Generalized cylinder objects with no boundaries or with one boundary at either
end

14

6 Conclusion and future works

Surface modeling by skinning is an often used modeling technique. In CAD, modeling
from existing objects is called reverse engineering and the skinning is one of the tech-
niques. There are many papers which deal with this topic but there are few discussing
how the desired sectional curves can be defined and created [3] . Although the proposed
skinning method is limited to the generalized cylinder mesh object, many real-world ob-
jects can be reconstructed using this techniques from very simple to more complicated
objects as shown in our test cases. The effectiveness of the proposed method is demon-
strated by converting various generalized cylinder meshes with or without boundaries to
smooth B-spline surfaces. Object format conversion especially from a polygonal mesh
to a spline surface is an important modeling methodology. As the results indicate, the
proposed method is efficient in time and requires minimum user interventions. The main
contribution of this paper is a novel method of skinning from a polygonal mesh especially
the data preparation of sectional curves.

There are some possible future works. The first is the optimal generation of the
sectional curves for skinning. Although the adaptive sampling is one technique, it might
miss important features such as the ridge lines of the surface. The other direction is to
adopt a hierarchical method proposed by [9] [6] to our skinning method. As the test
results indicate, if the original mesh is large and complicated, the time to generate the
gradient flows can not be ignored, so more optimized algorithms to speed up the process
are required.

References

[1] A.Hilton and A.J. Stoddartand J.Illingworth. Reliable surface reconstruction from
multiple range images. Computer Vision ECCV, 1064:117–126, 1996.

[2] Les A.Piegl and Wayne Tiller. Surface approximation to scanned data. Visual Com-
puter, 16(4):386–395, 2000.

[3] Les A.Piegl and Wayne Tiller. Surface skinning revisited. Visual Computer,
18(4):273–283, 2002.

[4] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. In Proceedings of 23rd conference on Computer graphics and
interactive techniques, 1996.

[5] Mathieu Desbrun, Mark Meyer, Peter Schrder, and Alan H. Barr. Discrete differential-
geometry operators for triangulated 2-manifolds. In Proceedings of Visualization and
Mathematics, pages 35–57. Springer-Verlag, 2002.

[6] D.Forsey and R.Bartles. Surface fitting with hierarchical splines. ACM Transaction
on Graphics, 14(2):134–161, 1995.

[7] C Gotsman, S Gumhold, and L Kobbelt. Simplification and compression of 3d-meshes.
In Proceedings of the European Summer School on Principles of Multiresolution in
Geometric Modelling, pages 319–361. Springer, 2002.

[8] Venkat Krishnamurthy and Mark Levoy. Fitting smooth surfaces to dense polygon
meshes. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques. ACM Press, 1996.

15

[9] S Lee, G Wolberg, and S Y Shin. Scattered data interpolation with multilevel b-
splines. IEEE Transactions on Visualization and Computer Graphics, 3(3):228–244,
1997.

[10] Bruno Levy. Constrained texture mapping for polygonal meshes. In Proceedings of the
28th annual conference on Computer graphics and interactive techniques, volume 16,
pages 12–17, 2001.

[11] Peter Liepa. Filling holes in meshes. In Proceedings of the 2003 Eurographics/ACM
SIGGRAPH symposium on Geometry processing. ACM Press, 2003.

[12] Weiyin Ma and Periren He. B-spline surface local updating with unorganized points.
Computer-Aided Design, 30(11):853–862, 1998.

[13] Weiyin Ma and J P Kruth. Parameterization of randomly measured points for least
squares fitting of b-spline curves and surfaces. Computer-Aided Design, 27:663–675,
1995.

[14] F S Nooruddin and Greg Turk. Simplification and repair of polygonal models using
volumetric techniques. Technical report, Georgia Institute of Technology, 1999.

[15] L.A. Piegl and W. Tiller. Parameterization for surface fitting in reverse engineering.
Computer-Aided Design, 33(9):593–603, 2001.

[16] Les Piegl and Wayne Tiller. The NURBS Book. Springer, 1997.

[17] R.Kimmel and J.A.Sethian. Computing geodesic paths on manifolds. In Proceedings
of Natl. Aca. Sci. USA, pages 8431–8435. Applied Mathmatics, 1998.

[18] S.Dong and S.Kircher. Harmonic functions for quadrilateral remeshing of arbitray
manifolds. Computer-Aided Geometric Design, 22:392–423, 2005.

[19] G. Taubin. Geometric signal processing on polygonal meshes. EUROGRAPHICS
f2000 STAR, 2000.

[20] Gabriel Taubin. A signal processing approach to fair surface design. In Proceeding of
the 22nd annual conference on Computer graphics and interactive techniques, pages
351 – 358, 1995.

[21] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Pro-
ceedings of 24rd conference on Computer graphics and interactive techniques. ACM,
1994.

[22] W.Ma and J.P.Kruth. Nurbs curve and surface fitting for reverse engineering. Ad-
vanced Manufacturing Technology, 14(4):918–927, 1998.

16

