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Abstract 

 

The deformation behavior and strain rate sensitivity of an epoxy resin structural adhesive and a 

CTBN (carboxyl-terminated butadiene-acrylonitrile) - modified epoxy resin adhesive are experimentally investigated 

using an INSTRON-type material testing machine and a split Hopkinson pressure bar apparatus. The experimental 

results show some fundamental features of a typical compressive stress-strain behavior of amorphous glassy polymers 

with linear elastic and nonlinear inelastic deformation stages. In the inelastic deformation, a peak stress and a 

strain-softening stage after the peak can be observed in the entire range of strain rate from 10-4 to 103 s-1. In addition, it 

can be found that the relationship between the peak stress and strain rate on a semi-logarithmic plot is linear in the range 

of low strain rate. However, the slope of the curve changes at a high strain rate, and the nonlinear behavior of the peak 

stress can be obtained against the strain rate. In order to describe such a nonlinear peak stress - strain rate relationship 

and the deformation behavior of the structural adhesives in a wide range of strain rate on the basis of the experimental 

results, a plastic shear strain rate is formulated. Then, a three - dimensional constitutive model is derived based on a four 

- elements model with an elastic series element by considering the adhesive to be a glassy polymer. The plastic 

deformation rate tensor is expressed by the effective stress, which is the difference between the total stress and back 

stress, and the plastic shear strain rate proposed here. The stress tensor can be obtained by solving nonlinear 
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simultaneous equation. The formulated constitutive model is implemented into the commercial FE code, 

ABAQUS/Explicit, and then a computational simulation is performed. As a result, the validity of the proposed model is 

shown by comparing the experimental result.  
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1. INTRODUCTION 

                 With the development of polymer science in recent years, the use of adhesive bonding has been 

expanding in mechanical structures and electronic devices (Fay, 2005). In accordance with a demand for these usages, it 

is very important to increase its performance against deformation and their adhesive strength. To improve the 

performance, fundamental research work based on polymer science and engineering is necessary, as well as applied 

research work such as the evaluation of adhesive joint strength (Yokoyama and Shimizu, 1998; Sato and Ikegami, 1999, 

2001). 

                 In automobiles and other transportation industries, the use of adhesive bonding for important parts 

is being actively considered to decrease carbon emission and to realize a lightweight structure. In such a case, a detailed 

study of the stress distribution in such adhesive joints under impact loading is essential since the adhesive joints undergo 

impact loading (Yokoyama and Shimizu, 1998; Sato and Ikegami, 1999, 2001). In an adhesive joint, there are three 

fracture modes namely the interfacial fracture from the interface between an adhesive and adherend, the cohesive 

fracture in the adhesive and a mixed fracture as a combination of these fractures. There are many reports that the mixed 

fracture mode is dominant under an impact load (Yokoyama and Shimizu, 1998; Sato and Ikegami, 1999) and an 

evaluation of the deformation behavior of its bulk materials, which becomes part of the fracture behavior in the adhesive 

joint, will be crucial. Consequently, there have been some research works on the deformation behavior of bulk adhesive 

material (Yu et al., 2001; Goglio et al., 2008), but it is difficult to conclude whether the elasto-viscoplastic deformation 

behavior of the polymers was sufficiently considered. 

                 The adhesive after solidification is a polymeric material such as a polycarbonate (PC) and poly 

methyl methacrylate (PMMA). For amorphous polymers other than the adhesives, a variety of fundamental studies can 

be found, such as on the rapid increase of yield stress at very high strain rate and it has been known to show a nonlinear 

behavior against increasing strain rate (Mulliken and Boyce, 2006; Nishida et al., 2009). This is believed to be due to a 

secondary relaxation. Generally speaking, the material hardens and becomes brittle owing to this relaxation (Hutchinson, 

1973). For the mechanism behind the secondary relaxation, Jones (1985) proposed a theory of structural change caused 

by a flip rotation of the phenyl ring in the main molecular chain for a bisphenol A - PC. Ree and Eyring (1955) 
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formulated a relationship between the stress and strain rate for a polymer, using a hyperbolic sine function and proposed 

to represent the total stress as the sum of the stress in each relaxation process. By adding the effect of temperature on 

yield stress to this theory, Bauwens (1972) explained changes in the yield stress and loss tangent within the range of 

temperature and strain rate at which secondary relaxation occurs. Mulliken and Boyce (2006) formulated a 

three-dimensional constitutive model for secondary relaxation by embedding the previously proposed model, which can 

express the strain softening behavior of polymers, into the five-elements parallel model, and then tried to explain the 

nonlinear relationship between the yield stress and strain rate of PC obtained in experiments. However, the formulation 

of the plastic shear strain rate was used in different forms of the high-precision formulation by Argon (1973), and it can 

be said that such a theoretical basis is poor. 

                 In this study, a bulk specimen made of two types of commercial epoxy resin structural adhesives 

is manufactured after solidification. Using this specimen, a compressive test using an INSTRON-type material testing 

machine and a split Hopkinson pressure bar method (Kolsky, 1949; Nemat-Nasser et al., 1991;Yokoyama and Shimizu, 

1998; Sato and Ikegami, 1999, 2001; Nakai and Yokoyama, 2008) is carried out to investigate the stress - strain curve in 

a wide range of strain rate. After that, the nonlinear relationship between the yield stress and strain rate is shown. Since it 

is assumed that the yield stress at a high strain rate is dominated by secondary relaxation and the mechanism of this 

secondary relaxation is the presence of rotational degrees of freedom, on the basis of Jones' explanation (Jones, 1985), 

the plastic shear strain rate for the secondary relaxation is formulated on the basis of an expansion of Argon's formalism 

(Argon, 1973) using an idea presented by Li and Gilman (1970). In addition, total shear stress is expressed using the 

parallel two-elements model, as was done by Ree and Eyring (1955), with the proposed model and using the 

generalized model of Argon's formula (Argon, 1973; Boyce et al., 1988).  

                 Taking into account that the amorphous glassy polymer after solidification of the adhesive, a rate 

form of the three-dimensional constitutive equation is formulated on the basis of a four-elements model including an 

elastic series element. First, the plastic deformation rate tensor for each relaxation process is formulated by using the 

effective stress, which represents the difference between total stress, back stress and the stress at each relaxation process, 

and the formulated plastic shear strain rate. The back stress, which represents the resistance against the orientation of the 
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molecular chain network, can be calculated using a previously proposed model (Haward and Thackray, 1968; Boyce et 

al., 1988; Arruda and Boyce, 1991; Tomita, 2000). Under the assumption that the plastic deformation rate tensors in 

individual relaxation processes are the same, a nonlinear simultaneous equation for the stress tensor in each relaxation 

process can be obtained. When a generalized Hooke's law is included, the rate form of a three-dimensional constitutive 

equation can be derived. The proposed constitutive equation is implemented into the commercial finite element code 

ABAQUS / Explicit and then a finite element simulation is performed. Finally, the validity of the formulated model is 

shown by comparison with the experimental result. 

 

2. EXPERIMENTAL PROCEDURES 

2.1 Preparation of Specimen 

                 The structural adhesives used in this study are an epoxy resin thermosetting adhesive 

(Scotch-Weld 1838 by 3M, hereafter abbreviated to SW1838) and a CTBN-modified epoxy resin adhesive (DP-460 by 

3M). Here, CTBN stands for carboxyl-terminated butadiene-acrylonitrile rubber, and the ductile phase is formed by a 

microscopic phase separation of CTBN incorporated into the epoxy structural adhesive during solidification to provide 

toughness and ductility. Actually, this adhesive is superior in ductility and toughness compared with SW1838 from the 

catalog. The appropriate weights of base and accelerator resins are mixed and injected into a clear syringe (PSY - 10E 

manufactured by Musashi Engineering, Inc.). After a defoaming procedure of the syringe filled of adhesive using the 

defoaming machine (THINKY Corporation, AR-100), the syringe is placed into a vacuum desiccator and cured at 

room temperature for 24 hs. The specimen is machined into a solid cylinder 14 mm in diameter and 7 mm in thickness 

from the cured syringe. In addition, a postcuring procedure in an electric furnace at 338 K for 2 hs in the case of 

SW1838 and 322 K for 3 hs in the case of DP - 460 is applied and then both edges of the specimen are polished with 

abrasive paper with a grit number of 2000#.  

                 To verify the amorphous state of a specimen obtained as described above, a differential scanning 

calorimeter (DSC-220C manufactured by SEIKO Instruments Inc.) is used for thermal analysis of the adhesive. Figure 

1 represents the relationships between the heat flow and temperature of (a) SW1838 and (b) DP - 460 obtained by DSC 
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analysis. The different lines correspond to the number of trials. As shown in this figure, it can be seen that the negative 

peaks are at about 345 K for both adhesives and the reproducibility with respect to the peaks is good. Since the glass 

transition temperatures of SW1838 and DP-460 are 328 and 333 K from the catalog, it can be confirmed that this DSC 

analysis is valid. As the result, the specimens are in the amorphous glassy state below this temperature with the negative 

peak of heat flow. At a lower temperature from the peak, sudden decreases in heat flow near 280 K for SW1838 and 

260 K for DP-460 appear. This phenomenon is related to a secondary relaxation known as β -relaxation. Again, the 

prepared specimen, which will be used in the experiment at room temperature, is in the glassy state and undergoes 

secondary relaxation.  

 

2.2 Quasi-static and Impact Compressive Experiments 

                 The quasi-static to dynamic compressive tests in the strain rate range from 10-4 to 1 s-1 are carried 

out using an INSTRON-type material testing machine (Autograph AG-1 250kN manufactured by Shimadzu 

Corporation) at room temperature. To avoid a beer-barreled deformation due to the effect of friction between a surface 

of the die and the two ends of the specimen, commercial graphite grease is applied to the surface.  

                 Impact tests in the strain rate range from 102 to 103 s-1 are carried out using a split Hopkinson 

pressure bar apparatus at room temperature. Figure 2 shows a schematic illustration of the split Hopkinson pressure bar 

apparatus used here. In consideration of a lower mechanical impedance of the specimen, extra super duralumin 

A7075-T6511 (JIS) is chosen as the material for the striker, and input and output stress bars. Four semiconductor strain 

gauges (Kyowa Electric instruments Co., Ltd., KSP-2-120-E4) are glued at the middle position on the input and output 

rods in order to eliminate flexural strain. The specimen for the impact compressive test is placed between input and 

output bars through graphite grease and commercial molybdenum disulfide to avoid beer-barreled deformation. The 

striker is launched using compressed air and hits the left side of input bar. The specimen undergoes an impact 

compressive load indirectly by the incident strain wave )(tiε . The generated incident wave propagates from left to 

right in the input bar, some of the incident wave is reflected )(trε  at the interface between the specimen and the input 

bar, and the rest of the wave is transmitted )(ttε  to the output bar. On the basis of the theory of elastic wave 
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propagation in one dimension, assuming dynamic stress equilibrium in the specimen, nominal stress ( )tnσ  and 

nominal strain ( )tnε  of the specimen can be calculated by using a time series of the recorded strain signals, as in the  

( ) ( ) ( ) ( ){ }ttt
a

AEt trin εεεσ ++=
2

, ( ) ( ) ( ) ( ){ }ttt
c

t trin εεεε −−=
l

& 0 , ( ) ( ) ''
0

dttt
t

nn ∫= εε & ,               (1) 

where E , 0c  and A  are the Young's modulus, the wave velocity and the cross-sectional area of the stress bars, 

respectively. a  and l  are the cross-sectional area and the length of the specimen. True stress ( )tσ  can be 

calculated from ( )tnσ  and ( )tnε  by the conventional way under an assumption of a constant volume during 

deformation. Of course, the increase of cross section in the specimen cannot be measured during the impact 

deformation. The polymeric materials might introduce the volume change during deformation. From this point of view, 

it is noted that true stress calculated such a way is not correct. Generally speaking, the duration of the transmitted and 

reflected strain waves becomes longer than that of the incident wave as the result of a long relaxation time for the 

polymeric material. In the impact testing of polymeric materials, it is well known that the time taken to reach dynamic 

stress equilibrium at the ends of the specimen also becomes longer than the time required for metallic materials, because 

of the inclusion of relaxation time. In this study, the incident wave is controlled by attaching a thin disk (5 mm in 

diameter and 0.5 mm in thickness) made of pure copper C1100 (JIS) as a buffer to the left side of the input bar; i.e. this 

is the pulse shaping technique (Nemat-Nasser et al., 1991; Nakai and Yokoyama, 2008), and is necessary to lengthen the 

rise time of the incident wave.  

 

3. EXPERIMENTAL RESULTS 

                 To confirm the effectiveness of the pulse shaping technique, Figure 3 shows the output signal 

from the strain gauges glued on to the input and output stress bars (a) without a pulse shaper and (b) with a pulse shaper. 

In this figure, the rise time of the incident wave becomes longer, and extra oscillation can be removed by introducing the 

pulse shaper. The reflected wave can be smoothed and the initial peak of the reflected wave can be reduced. As a result, 

the wave becomes almost constant. This means that a constant nominal strain rate can be realized during the impact 

compression test. The transmitted wave remains almost the same after introducing the pulse shaper. Figure 4 shows a 
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comparison of the time series of the loads acting on the two sides of the specimen during impact compression test (a) 

with the pulse shaper and (b) without the pulse shaper. According to the propagation theory of the one-dimensional 

elastic wave, the loads can be calculated using the following equation with the measured strain waves.  

( ) ( ) ( ){ }ttAEtP ri εε +=1 , ( ) ( )tAEtP tε=2                                                       (2) 

As shown in Fig. 4(a), the difference between the loads at the two ends of the specimen can be observed, and the 

equilibrium state cannot be reached if there is no pulse shaper. However, once the pulse shaper is introduced, the 

equilibrium state is maintained during the deformation because the loads are similar, as shown in Fig. 4 (b). As a result, 

the validity and necessity of the pulse shaping technique can be confirmed. 

                 Figure 5 shows true stress - true strain curve obtained from the quasi-static impact and 

compression tests for (a) SW1838 and (b) DP-460. The two kinds of epoxy structural adhesives used in this study show 

a linear elastic region at first, then a maximum stress similar to the yield point, and finally a strain softening behavior. 

Ultimately, the strain hardening behavior can be observed. When the maximum stress (hereafter called the yield stress) 

is focused on, the increase in it is constant with increasing strain rate in the region from quasi-static to dynamic 

deformation. However, the yield stress increases rapidly against the increase of the strain rate under impact deformation. 

In our experiment for quasi-static case, no clear instability like neck propagation in tension can be observed from the 

surface of specimen. However, the instability might be occurred because the strain-softening region was captured in the 

stress-strain curve. 

                 To visualize the above-described characteristics clearly, Fig. 6 shows the semi-logarithmic 

relationship between the yield stress and strain rate obtained from the experiments and analysis described later. In the 

figure, open circles represent the experimental results. In the experimental results, yield stress increases linearly with 

increasing strain rate from the quasi-static to dynamic range, as described above. However, the slope of the linear region 

at a low strain rate is not inherited at a high strain rate; the curve is expressed by different relatively steep lines. Overall, 

nonlinearity of the yield stress - strain rate curve can be observed. As a result, stress - strain relationship shown in Fig. 5 

and the yield stress - strain rate relationship shown in Fig. 6 can be also seen in other amorphous glassy polymers such 

as the PC and PMMA. The results suggest that the constitutive model of other glassy polymers can be applied to 
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describe the deformation behavior of the bulk epoxy adhesive material after solidification. 

                 Meanwhile, Argon (1973) formulated the activated free energy of the intermolecular resistance 

caused by a rotation in segments of the molecular chain, using the analytical results obtained by Li and Gilman (1970), 

when a shear stress *τ  was applied to a molecular chain with a double kink, as shown in Fig. 7. As a result, the 

relationship between the plastic shear strain rate pγ&  and *τ  was determined from the change in the activated free 

energy considering the effect of pressure, using the following equation, 
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Here, )(TG  and )(Tν  are the shear modulus and Poisson's ratio as a function of the absolute temperature T , ω  

is the rotational angle in the activated configurations from the initial state, a  is the mean radius of the molecular chain, 

p  is the hydrostatic pressure, Bk  is the Boltzmann constant, and 0γ&  and cω  are constants. Boyce et al. (1988) 

expanded the above formula by arranging these parameters and vanishing the term containing p , as in the following 

equation,  
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The analytical results obtained for SW1838 and DP-460 using Eq. (4) are shown as solid and dashed lines on Fig. 6. In 

this figure, experimental and analytical results show good correspondence at low strain rates. However, it is extremely 

difficult to represent this phenomenon by using Eq. (4) since Eq. (4) does not fit at all the results at high strain rate. 

 

4. CONSITUTIVE FORMULATION 

4.1 Plastic Shear Strain Rate for Secondary Relaxation 

                 Here, the plastic shear strain rate is formulated by considering that the deformation of the 

polymeric material at a high strain rate will be dominated by a secondary relaxation called the β -relaxation 

(Hutchinson, 1973) and the adhesives used in this research work show the β -relaxation as mentioned above. First, the 

mechanism for secondary relaxation proposed by Jones (1985), i.e., the relaxation caused by the existence of rotational 
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degrees of freedom in the main molecular chain, is supported and the formulation of the plastic shear strain rate in the 

case of only secondary relaxation is given. Now, let us consider that a molecular chain with average molecular radius 

a , constant rotation angle ω  and chain length z  of a segment in the equilibrium configuration, as shown on Fig. 7, 

undergoes the torsional degrees of freedom θ , as shown in Fig. 8, as in Argon's interpretation (Argon, 1973). Of course, 

Argon (1973) represents the rotation of the main molecular chain by ω . However, it can be expressed by θ  since 

structural changes during the β -relaxation due to a flip motion of a phenyl ring shown by Jones (1985) is likely to be 

caused by twisting, not the bending degree of freedom ω . 

                 Li and Gilman (1970) derived the following free energy of the molecular chain, which undergoes 

torsion, including the interaction between the chains 

( )
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A shear stress βτ  is applied to a rectangular region of an aggregate of chains, similar to Argon (1973), as shown in Fig. 

8. In this case, normal strain 22ε  in the vertical direction (direction 2 in the figure) can be expressed as 

( )θωε cos1sin2
22 −−= z

LA
al ,                                                                (6) 

where L  and A  are the length and the cross-sectional area of the region, respectively, and l  is the average length 

of the chain along direction 1 in the figure. Assuming plane strain, normal strain in the horizontal direction (direction 3 

in Fig. 8) 33ε  for a constant volume during plastic deformation can be expressed as 
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2233 −=−= z
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al .                                                            (7) 

The work WΔ  by applied shear stress βτ  can be written as 

( )[ ] βτθω cos1sin4 −=Δ zaW l .                                                               (8) 

From Eqs. (1) and (8), free energy GΔ  can be expressed as 
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In addition, since a change in θ  from -π /2 to π /2 should be considered, θcos  in the above equation can be 

expressed approximately as 
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Thus, GΔ  can be rewritten under the above approximation as 
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Now, the degree of freedom to be considered here is only θ , and hence the extremal problem of GΔ  on θ  is 

considered. Therefore, eqθ  in the activated configuration is obtained as 
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Since eqθ  = 0 will be a saddle point, free energy at the stable configuration *
βGΔ  can be formulated as 
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The plastic shear strain rate in the secondary relaxation process can be derived from the same procedure as used by 

Argon (1973) and Boyce et al. (1988) as 
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By an arrangement of parameters in the above equation similar to that adopted by Boyce et al. (1988), the following 

simplified equation can be obtained: 
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It is noted that the expressions given by Mulliken and Boyce (2006) are different from Eqs. (4) and (15) if they are 
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employed to express the primary and the secondary relaxation process, respectively. In addition, if ατ  is assumed to be 

the shear stress driving the plastic shear strain rate p
αγ&  during the primary relaxation, total shear stress τ  can be 

expressed, following Ree and Eyring (1955), as 

βα τττ += .                                                                               (16) 

In this case, p
αγ&  = p

βγ&  = pγ&  is assumed because the above equation is based on a parallel two-elements model. 

Equations (4) and (15) are solved for ατ  and βτ , and then τ  can be calculated as the sum of the shear stresses, as 

described by Eq. (16), as 
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In this case, seven parameters, 0αs , 0βs , 1βs , αA , βA , p
0αγ&  and p

0βγ& , must be identified from the experimental 

results. However, the total number of parameters is reduced to six since 0αs  can be expressed by Eq. (4).  

                 In order to check the validity of Eq. (17), Figure 9 shows the semi-logarithmic relationship 

between the yield stress and strain rate obtained experimentally and using Eq. (17). In the figure, the open circles and 

triangles indicate experimental results. A trial and error procedure is required to fit the experimental data by operating six 

parameters as mentioned above. The solid and dashed lines indicate the analytical results obtained using Eq. (17). For 

the calculation of the analytical result using Eq. (17), the elastic shear strain is assumed to be negligibly small. The shear 

stress and shear strain rate are converted to normal stress and normal strain rate using the relationships τσ 3=  and 

3/γε && = , respectively. In this figure, a fairly good agreement can be observed for the two adhesives. 

 

4.2 Kinetics of Polymeric Materials Given by Boyce et al. (1998) 

                 This section describes the kinetics of polymeric materials obeying the description by Boyce et a. 

(1998). Let us consider that the initial isotropic glassy polymers are deformed following the deformation gradient ijF  

at a time defined by  

j

i
ij X

x
F

∂
∂

= ,                                                                                (18) 
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where iX  is the reference configuration, and ix  represents the current configuration. At the reference configuration, 

the glassy polymeric material is in an isotropic state in which molecular chains are randomly oriented. ijF  can be 

multiplicatively decomposed into the elastic component e
ijF  and plastic component p

ijF , as shown by the equation 

below: 

p
kj

e
ikij FFF = .                                                                               (19) 

p
ijF  represents the stress-free configuration under the complete unloading condition and a permanent degree of 

molecular orientation in the material is indicated physically. ijF  is expressed in the form of the following equation 

using elastic stretch e
ijV , rotation ijR  and plastic stretch p

ijU : 

p
ljkl

e
ikij URVF = .                                                                             (20) 

ijR  is assumed to be divided into an elastic part and a plastic part, similarly to ijF , as 

p
kj

e
ikij RRR = .                                                                               (21) 

The following equation can be obtained by polar decomposition and using Eq. (21). 

e
kj

e
ik

e
kj

e
ik

e
ij URRVF ==  and p

kj
p

ik
p
kj

p
ik

p
ij URRVF == .                                                (22) 

In reality, we cannot specify whether rotation is elastic or plastic. However, the next equations are assumed here. 

ij
e
ijR δ=  and p

ijij RR = .                                                                      (23) 

As a result, we can derive 

p
kjikkj

p
ik

p
ij URRVF == .                                                                       (24) 

The above equation expresses the stress-free configuration obtained after unloading without rotation, and e
ji

e
ij FF =  

can be satisfied. Next, the velocity gradient ijL  can be obtained as 

1111 −−−− +==+=
∂
∂

= e
mj

p
lm

p
kl

e
ik

e
kj

e
ikkjikijij

j

i
ij FFFFFFFFd

x
v

L &&&ω ,                                       (25) 

where iv  is the velocity, ijd  is the deformation rate tensor which is a symmetric part of ijL  and ijω  is the spin 

tensor which is an antisymmetric part of ijL . In addition, the following equations are obtained by assuming that ijd  

and ijω  are the sum of the elastic and plastic components. 

p
ij

e
ijij ddd += , p

ij
e
ijij ωωω += ,                                                               (26) 
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1−
=+ e

kj
e

ik
e
ij

e
ij FFd &ω  and 11 −−

=+ e
mj

p
lm

p
kl

e
ik

p
ij

p
ij FFFFd &ω .                                             (27) 

The velocity gradient in the stress-free configuration p
ijL  is given by 

p
ij

p
ij

p
kj

p
ik

p
ij dFFL ω~~1

+==
−& .                                                                   (28) 

Strictly speaking, the plastic deformation rate tensors in the loading and unloading configurations can be expressed as 

( )11

2
1 −− += e

li
p
kl

e
jk

e
lj

p
kl

e
ik

p
ij FLFFLFd  and ( )p

ji
p
ij

p
ij LLd +=

2
1~ .                                       (29) 

They are different only in e
ijF ; however, the magnitude of each component in e

ijF  is equivalent to the elastic strain, and 

here, the following equation can be satisfied since e
ijF  is negligibly small 

p
ij

p
ij

p
ij ddd ˆ~

≡≡ .                                                                             (30) 

Also, by ignoring the elastic deformation gradient, we can approximate p
ijF  and p

ijω  as 

ij
p

ij ωω =  and ij
p

ij FF = .                                                                     (31) 

Plastic deformation rate tensor p
ijd̂  can be expressed generally in each case of a loading or unloading configuration as 

ij
pp

ij Nd γ&=ˆ ,                                                                               (32) 

where pγ&  is the equivalent plastic shear strain rate and ijN  is the tensor indicating the direction. Generally speaking, 

since there are an associative and a non-associative cases for ijN . Our choice is descried later. 

 

4.2 Rate Form of Three-dimensional Constitutive Equation 

                 The resistance to a plastic flow of glassy polymeric materials is assumed to be divided into two 

different physical resistances, the intermolecular resistance related to the rotation of the chain segments and the 

resistance of the molecular orientation (Boyce et al, 1988; Tomita, 2000). Figure 10 shows the four-elements model 

with three parallel elements and one elastic series element used in this study. Here, the intermolecular resistance at each 

relaxation process represented using the subscript α  or β  is expressed by a nonlinear dashpot. The eight-chain 

model proposed by Arruda and Boyce (1991) is used for the resistance of the molecular orientation. In the previous 

section, the intermolecular resistance in the primary and secondary relaxations, as shown in Figure 8, can be considered 

to be caused by the rotational deformation of the double-kinked molecular chain, including bending and twisting. Then, 
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the relationship between the shear stress and the plastic shear strain rate is formulated. To describe the two effects of 

strain softening and pressure in the model proposed in the previous section, the parameters 0αs  and 0βs  in Eqs. (4) 

and (15) are replaced, as was done by Boyce et al. (1988), as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎪⎭

⎪
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⎪⎩

⎪
⎨
⎧

⎟⎟
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⎞
⎜⎜
⎝

⎛
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−
Δ

−=
6
5
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0

0 1exp
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αα α

τ
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⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
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⎝
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−
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β
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ββ
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ββ τ

α
α
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γγ
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psT
Gpp 1

0

*
0

0

ˆ
1exp&& ,   (33) 

where αα  and βα  are the pressure coefficients in each relaxation process, and *
0αGΔ = 0αs αA  and *

0βGΔ  = 

0βs βA are the constants resulting from the rearrangement of the parameters. αs , βs  and βŝ  are new state variables 

that represent the current structure with their initial values being 0αs , 0βs  and 1βs . Similar to the work of Boyce et 

al. (1988), their evolution equations are assumed to be written as 

( )
p

p
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s
hs α
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α
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γ
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&
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p
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⎪
⎬
⎫
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⎪
⎨
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.        (34) 

αh , βh  and βĥ  are the positive constants. α,sss , β,sss  and β,ˆsss  are the values of αs , βs  and βŝ  in the 

equilibrium state and have values less than 0αs , 0βs  and 1βs , respectively. Since it is sufficient that the strain 

softening behavior and pressure effect in the secondary relaxation can be expressed using only βs , βŝ  is dealt with as 

a constant here. 

                 With continuing plastic deformation, the molecular chain becomes oriented in the direction of 

plastic stretch and a back stress is generated in the network structure, which consists of molecular chains (Haward and 

Thackray, 1968). This back stress becomes a kind of resistance to further plastic deformation. Using the eight-springs 

molecular chain model (Arruda and Boyce, 1991), in which molecular chains are fixed to each other at both ends, the 

principal component of back stress (Boyce et al., 1988; Arruda and Boyce, 1991; Tomita, 2000) is expressed as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
= −

N
L

V
NCb c

c

c
p

iR
i

λ
λ

λ 1
22

3
1 .                                                           (35) 

Here, RC = TnkB , n  is the number of chains per unit volume, N  is a number of rigid chain links between 

entanglements and its root is a limit stretch of the chain, and cλ  is the principal plastic stretch that can be expressed by 
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( )2
3

2
2

2
1

2

3
1 ppp

c VVV ++=λ .                                                                   (36) 

( ) cc NL βλ =− /1  is the inverse of the Langevin function defined as 

( )
N

L c

c
cc

λ
β

ββ =−=
1coth .                                                                (37) 

Since back stress ijb  is defined in the unloading configuration and develops with plastic stretch, it can be calculated as 

being coaxial with plastic left stretch p
ijV  obtained by polar decomposition of the plastic deformation gradient: 

( )ijcij
c

c

R
ij B

N
LNCb δλ

λ
λ

21

3
1

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − ,                                                        (38) 

where jkikij FFB =  and iic B
3
12 =λ . In the above equation, the following is used under an assumption that the elastic 

deformation is negligibly small. 

2/1
ij

p
ij BV ≈                                                                                  (39) 

The back stress tensor at the current configuration B
ijσ  can be written as 

e
ljkl

e
ike

ij

B
ij FbF

Fdet
1

=σ .                                                                      (40) 

                 Following the work of Boyce et al. (1988), the plastic deformation rate tensor at each relaxation 

process can be expressed from Eq. (32) with the associated flow rule, by using the back stress tensor and the plastic 

shear strain rate, as 

α

α

α
α

τ

σ
γ

2

'
d ijpp

ij &= , 
β

β

β
β

τ

σ
γ

2

'
d ijpp

ij &= ,                                                           (41) 

where ')(  means the deviatoric tensor, and ασ ij  and βσ ij  are the driving stress for each relaxation process, which 

can be calculated as 

B
ijijijij σσσσ βα ++= ,                                                                        (42) 

where ijσ  is the total Cauchy stress. ατ  and βτ  can be calculated using 'ij
ασ  and 'ij

βσ  as 
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'' ijij
αα

α σστ
2
1

= , '' ijij
ββ

β σστ
2
1

= .                                                          (43) 

On the basis of Fig. 10, the total deformation rate tensor can be decomposed into three parts: 

h
ij

p
ij

e
ijij dddd ++= ,                                                                         (44) 

where h
ijd  is the thermal part of the deformation rate tensor defined as 

TAd ij
h
ij

&= , ijhij vA δΔ= ,                                                                    (45) 

where hvΔ  is the thermal expansion coefficient. From Hooke's law, the following constitutive equation for elastic 

deformation can be satisfied. 

e
kl

e
ijklij dCS =

o

, ( ) ( ) ⎭
⎬
⎫

⎩
⎨
⎧

−
++= klijjkiljlik

e
ijkl GC δδ

ν
νδδδδ

212
12 .                                      (46) 

Here, ijS
o

 is an objective rate of the Kirchhoff stress tensor. In this study, the Green-Nagdhi rate defined as follows is 

chosen. 

kjikkjikijij SSSS Ω+Ω−≡ &
o

                                                                   (47) 

Here, jkikij RR&=Ω . Assuming αp
ijd  = βp

ijd  = p
ijd , the following rate form of the constitutive equation can be 

obtained: 

TBPdDS e
ijij

p
kl

e
ijklij &&

o

−−= α
αγ ,                                                                 (48) 

where α
ijP  can be calculated as 

'G'CP klkl
e
ijklij

α

α

α

α

α σ
τ

σ
τ

2
2
1

== .                                                             (49) 

In the constitutive equation, 'ij
ασ  and 'ij

βσ  become undetermined variables; however, the unknown variables can be 

calculated by the solution of the following equation derived from Eqs. (41) and (42), and αp
ijd  = βp

ijd  = p
ijd . 

''' B
ijijijp

p

σσσ
τ
τ

γ
γ α

α

β

β

α −=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+
&

&
1 .                                                                 (50) 

Actually, Eq. (50) is not a single equation and contains six equations by considering symmetry of the deviatoric stress 

tensor. Additionally, Eq. (50) with Eqs. (33) and (43) becomes a nonlinear simultaneous equation of 'ij
ασ . 'ij

βσ  can 
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be calculated from Eq. (42). This nonlinear equation can be solved numerically by the Newton-Raphson method. 

                  

5. COMPUTATIONAL CONDITION, RESULTS AND DISCUSSION 

                 The commercial finite element code ABAQUS / Explicit Ver. 6.8 is employed for numerical 

simulation. After the above constitutive equation is implemented into a user subroutine, VUMAT, which is one of the 

customized features of ABAQUS / Explicit, the numerical simulation is performed. Figure 11 shows the computational 

model that has the same size and shape as the cylindrical specimen used in the experiment. The computational region is 

discretized using a six-node axisymmetric triangular element with a reduced integration. Under the computational 

conditions, the vertical displacement of nodes on the bottom is fixed and the shear-free condition is applied. The 

environmental temperature is set to 296 K. The displacement rate on the upper end is the same as that in the experiment. 

The crosshead speed of the testing machine in the cases of low strain rate and the time series of strain signals measured 

from the stress bars of the split Hopkinson pressure bar apparatus for the case of impact testing are given. The 

displacement rate for the impact test can be calculated using (Yokoyama and Shimizu, 1998) 

( ) ( ) ( ) ( ){ }tttct tri εεεδ −−= 0
& .                                                           (52) 

Table 1 shows the identified material parameters for (a) SW1838 and (b) DP-460. Paramaters 0αs , αA , p
0αγ& , 

0βs , βA , p
0βγ&  and 1βs  are identified using Eq. (17) and Fig. 9. Other material parameters are determined by 

referring to other research works (Boyce et al., 1988; Arruda and Boyce, 1991; Tomita, 2000; Mulliken and Boyce, 

2006). From our experimental observation as described previously, the deformation behavior is dealt with as a uniform. 

This means that no imperfection is introduced and the mesh independency is confirmed. 

                 Figure 12 shows the true stress - true strain diagram obtained by the compression test and by 

computation under quasi-static to impact loading for (a) SW1838 and (b) DP-460. Figure 12 (a) shows that the model 

proposed in this study can successfully express the basic features of the curves, such as the linear elastic, strain softening 

and strain hardening stages, observed for the solidified bulk material of structural adhesives. Almost quantitative 

correspondence can be observed, and the validity of the proposed model is confirmed. The computational and 

experimental results also show good agreement in Fig. 12 (b), similarly to Fig. 12 (a). Thus, our model can be widely 
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applied to structural epoxy adhesive, and the capability of this model can be confirmed. 

 

6. CONCLUDING REMARKS 

                 In this study, a bulk specimen made of two types of epoxy resin structural adhesives employed 

frequently in a mechanical structure was manufactured after solidification. Using the specimen, a compressive test was 

carried out using an INSTRON-type material testing machine and a split Hopkinson pressure bar method to investigate 

the stress - strain curve in a wide range of strain rate. As a result, a nonlinear relationship between the yield stress and 

strain rate was shown. Since it was assumed that the yield stress at a high strain rate is dominated by a secondary 

relaxation and the mechanism behind secondary relaxation is the presence of rotational degrees of freedom, on the basis 

of Jones' explanation (Jones, 1985), the plastic shear strain rate in the secondary relaxation was formulated on the basis 

of an expansion of Argon's formalism (Argon, 1973) using an idea of Li and Gilman (1970). In addition, total shear 

stress was expressed on the basis of the parallel two-elements model, as was done by Ree and Eyring (1955), using the 

proposed model and the generalized model of Argon's formula (Argon, 1973).  

                 Taking into account the amorphous glassy polymer after solidification of the adhesive, a rate form 

of the three-dimensional constitutive equation was formulated on the basis of the four-elements model including an 

elastic series element, as follows. First, the plastic deformation rate tensor for each relaxation process was formulated by 

using the effective stress, which represents the difference between total stress, back stress and the stress at each 

relaxation process, and the formulated plastic shear strain rate. Under the assumption that the plastic deformation rate 

tensors in the two relaxation processes are the same, a nonlinear simultaneous equation for the stress tensor in each 

relaxation process was obtained. Including a generalized Hooke's law, a rate form of the three-dimensional constitutive 

equation can be derived. The proposed constitutive equation was implemented into the commercial finite element code 

ABAQUS / Explicit and then a finite element simulation was performed. Finally, the validity of the formulated model 

was shown by comparison with the experimental result. 

                 Two points should be described for unsolved problems. First, the instability can be captured in the 

stress-strain curve; however, the clear change on the surface cannot be observed like a neck propagation for the tension. 
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It is valuable to explain this paradox. Second, the fracture can be evaluated by a tension basically. Therefore, tensile 

behavior of adhesive should be clarified. These points will be discussed in near future. 
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FIGURE CAPTIONS 

Figure 1. Measurement result of differential scanning calorimetry against environmental temperature for the structural 

adhesives (a) SW1838 and (b) DP - 460 

Figure 2. Schematic illustration of the split Hopkinson bar apparatus used here 

Figure 3. Output signals from the strain gauges glued on the input and output stress bars (a) without pulse shaper and (b) 

with pulse shaper. 

Figure 4. Time history of compressive force of adhesive bulk material during impact compressive test (a) without and 

(b) with pulse shaper 

Figure 5. True stress-true strain curves of structural adhesives (a) SW1838 and (b) DP - 460 obtained by quasi-static to 

impact compressive tests 

Figure 6. Yield behavior in uniaxial compression as a function of strain rate for structural adhesives SW1838 and DP - 

460 

Figure 7. Schematic illustrations of folded molecular chain with an angle of kink ω  and a chain length of segment z 

given by Argon (1973). 

Figure 8. Schematic illustrations of folded molecular chain with an angle of kink ω  and twist rotation θ  

Figure 9. Comparison of a compressive yield stress - strain rate relationship obtained by the experiment and the 

formulated model 

Figure 10. Four elements elasto-viscoplastic model including each relaxation process 

Figure 11. Finite element model for compressive specimen 

Figure 12. Comparison of stress - strain curve for the structural adhesive (a) SW1838 and (b) DP - 460 obtained by the 

experiment and the computation 

 

TABLE CAPTIONS 

Table 1. Material parameters for (a) SW1838 and (b) DP-460. 
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TABLES 

 

Table 1. Material parameters for (a) SW1838 and (b) DP-460. 

 

(a)                                        (b) 

     

 



 25

FIGURES 

 

 

 

                    (a)                                      (b) 

Figure 1. Measurement result of differential scanning calorimetry against environmental temperature for the structural 

adhesives (a) SW1838 and (b) DP - 460. 
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Figure 2. Schematic illustration of the split Hopkinson bar apparatus used here. 
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Figure 3. Output signals from the strain gauges glued on the input and output stress bars (a) without pulse shaper and (b) 

with pulse shaper. 
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(a)                                       (b)  

Figure 4. Time history of compressive force of adhesive bulk material during impact compressive test (a) without and 

(b) with pulse shaper. 
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(a)                                       (b) 

Figure 5. True stress-true strain curves of structural adhesives (a) SW1838 and (b) DP - 460 obtained by quasi-static to 

impact compressive tests. 
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Figure 6. Yield behavior in uniaxial compression as a function of strain rate for structural adhesives SW1838 and DP - 

460. 
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Figure 7. Schematic illustrations of folded molecular chain with an angle of kink ω  and a chain length of segment z 

given by Argon (1973). 
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Figure 8. Schematic illustrations of folded molecular chain with an angle of kink ω  and twist rotation θ . 
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Figure 9. Comparison of a compressive yield - strain rate relationship obtained by the experiment and the formulated 

model. 
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Figure 10. Four elements elasto-viscoplastic model including each relaxation process. 
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Figure 11. Finite element model for compressive specimen. 



 36

 

 

 

 

 
(a)                                      (b) 

Figure 12. Comparison of stress - strain curve for the structural adhesive (a) SW1838 and (b) DP - 460 obtained by the 

experiment and the computation 

 

 

 

 


