
Algorithms for Finding Multivariate Discriminant Rules

for Classification and Regression Trees

Yasuhiko Morimoto

March 2002

Abstract

Progress in technologies for data input, such as POS (Point Of Sales) systems, and technologies

for data storage, such as high density magnetic or optical recording devices, have made it easier

for enterprises to collect massive amounts of data and to store them on hard disk at a very

low cost. From the early 90’s, many enterprises have been interested in extracting previously

unnoticed information that inspires new marketing strategies from these huge databases. Tech-

nologies for extracting such information, or knowledge, from huge databases are called “data

mining.”

Data mining covers technologies for association analysis, classification and regression, cluster

analysis, and evolution analysis. Most of these have been widely studied in the field of databases,

statistics, and machine learning. Data mining, in general, is focusing on efficiency so that we

can handle emerging huge databases whose size is too large to be processed by the conventional

techniques.

Among these technologies, the author focused on the association analysis and the classifica-

tion and regression in this dissertation. The author considered association rules on numerical

attributes while conventional data mining can only effective for categorical attributes. The ac-

complishment significantly expanded applications of the association analysis. Then, the author

explored classification and regression problems. By utilizing techniques developed for the nu-

merical association rules, the author proposed accurate and comprehensive classification and

regression trees. Among these accomplishments, primary contributions of the author are the

works on the classification and regression problems.

In general, huge databases often contain many attributes and there are many correlations

among attributes. However, conventional data mining techniques cannot handle correlations

well. In the statistics literature, multivariate analysis methods have been used to handle correla-

tions in numerical databases. Many statistical methods, such as “principal component analysis,”

“factor analysis,” and so forth, are categorized as multivariate analysis. Most of the methods in

the multivariate analysis assume a linear correlation. Such conventional techniques are effective

for data that have linear correlations. However, data contain various types of correlations that

cannot be handled by the conventional methods.

In order to handle various types of correlations, the author proposed multivariate optimized

discriminant rules that can be defined on more than one attribute and presented efficient al-

gorithms for finding the rules. The algorithms efficiently find multivariate discriminant rules

i

ii

such as optimized region rules that can be defined on two numeric attributes, and optimized

conjunctive rules that can be defined on arbitrary number of categorical attributes.

Such multivariate discriminant rules are capable of representing various types of correlations

among attributes. These achievements have been applied to classification and regression tree

learning, which is one of the most widely used methods for inductive inference. Diverse ex-

periments show that the proposed multivariate rule approach can create compact trees whose

accuracy is better than that of conventional trees.

In Chapter 1, the author summarizes the background and motivation of the study of data

mining.

In Chapter 2, the author discussed association rules, which is the most fundamental func-

tionality of data mining. For numerical attributes, conventional data mining techniques are not

applicable. The author considered optimized numerical association rules and proposed efficient

algorithms for finding optimal rules, in particular, optimized numerical association rules (range

rules) and optimized two dimensional association rules (region rules).

Next, the author explored classification problems in Chapter 3. How to find high quality

discriminant rules is the key for modeling and predicting unknown value, which we are focusing

on. The author proposed efficient algorithms for finding rules on categorical attributes by

using techniques of computational geometry. For numerical attributes, the author modified the

efficient algorithms for optimized numerical association rules (range rules) and optimized two

dimensional association rules (region rules) to find discriminant rules.

Then, in Chapter 4, the author consider effective ways of utilizing discriminant rules in

decision trees. Conventional decision trees that use univariate discriminant rules used to suffer

from correlations. The author proposed to use multivariate rules, such as region rules, for

handling correlation in a database.

In Chapter 5, regression problems are discussed. The author utilized the algorithms of

multivariate rules for regression problems and proposed regression trees that use such rules.

Finally, Chapter 6 summarizes the achievements of these works and gives some open problems

towards future direction of this study.

Acknowledgements

The author would like to take this opportunity to express his deep appreciation to those who

supported him to achieve the study.

The author thank researchers who were or have been in the data mining project at IBM

Tokyo Research Laboratory and supported him to complete this study. Professor Shinichi Mor-

ishita, currently with the University of Tokyo, Professor Takeshi Tokuyama, currently with

Tohoku University, Dr. Takeshi Fukuda, Mr. Hirofumi Matsuzawa, and Mr. Kunikazu Yoda,

provided invaluable assistance throughout the study. Mr. Yoshihiro Ohta and Mr. Hiromu Ishii

helped him for implementing the system and provided various data mining functions that are

indispensable for the system.

Thanks are also due to the past and present members of the data mining project at IBM

Almaden Research Center. In particular, Dr. Rakesh Agrawal, Dr. Manish Mehta, Dr. John

Shafer, Dr. Ramakrishnan Srikant, and Dr. Kyuseok Shim gave him invaluable advice in the

early stage of the study and gave him data mining tools such as visualization tools.

The author owe it to Professor Tadao Ichikawa of Hijiyama University and Professor Hasahito

Hirakawa of Hiroshima University that the author was able to complete the dissertation. They

have always been giving invaluable guidance since the author was in Hiroshima University. The

author would not be able to pursue the study without their continuous encouragement after the

author finished his master’s thesis by their supervision at Hiroshima University.

The author would like to thank Professor Tadashi Ae, Professor Kenichi Morita, Professor

Ryuei Nishii, Professor Toshimasa Watanabe, and Professor Masahito Hirawaka who served as

examination committee of the dissertation in Graduate School of Information Engineering, Hi-

roshima University for their valuable comments and suggestions for improving this dissertation.

This study was partly supported by the Advanced Software Enrichment Project of the

Information-Technology Promotion Agency (IPA), Japan. Thanks to the support, the author,

jointly with members of Stanford University, the University of Wisconsin, Madison, IBM Al-

maden Research Center, and IBM Tokyo Research Laboratory, published an advanced data

mining system that contains the results of this study.

Some results of the study have been productized and have been utilized as powerful data

mining tools in Japanese market. In 1998, IBM Japan released a product called “Default

Meter,” which estimates the credit risk of companies. In 1999, Daiwa Securities and IBM jointly

developed a product called “Rating Meter,” which evaluates the current rating of a company

iii

iv

by using financial statements and various kinds of data on macro economy’s conditions and

predicts future movements of the ratings. Those products used the data mining techniques of

this study as an essential part of their functions. Clearly, these products would not exist without

the contributions of a great many talented people of the project members of these products in

Daiwa Securities and IBM Japan.

Finally, the author would like to express his deep appreciation to many editors and editorial

assistants for helping related publication works of this study and to anonymous reviewers for

valuable comments for improving quality of this study.

Contents

1 Introduction 1

1.1 Towards Strategic Data Analysis . 1

1.1.1 Data Warehousing . 2

1.1.2 Knowledge Discovery and Data Mining Process 3

1.1.3 Data Mining . 4

1.2 Accomplishments . 7

1.2.1 Contributions on Association Analysis . 7

1.2.2 Contributions on Classification and Regression 10

1.3 Organization of Dissertation . 21

2 Association Analysis 23

2.1 Rules on Categorical Attributes . 23

2.1.1 Frequent Itemsets . 23

2.1.2 Association Rules . 26

2.2 Rules on Numerical Attributes . 27

2.2.1 Numerical Association Rules . 29

2.2.2 Optimized Numerical Association Rules 29

2.2.3 Optimized Confidence Rules . 31

2.2.4 Optimized Support Rules . 37

2.2.5 Two Dimensional Numerical Association Rules 40

3 Classification 43

3.1 Discriminant Rules . 44

3.1.1 Stamp Points . 44

3.1.2 Rules on Categorical Conditional Attribute 44

3.1.3 Rules on Numerical Conditional Attribute 45

3.2 Criteria of Classification Rules . 46

3.2.1 Classification Criteria . 48

3.2.2 Optimal Rule . 49

3.2.3 Convexity of Classification Criteria . 50

3.3 Optimal Rule on Categorical Attribute . 53

v

vi CONTENTS

3.3.1 Related Works . 54

3.3.2 Greedy Enumeration Algorithm . 55

3.3.3 Enumeration Algorithm . 56

3.3.4 Random Enumeration Algorithm . 59

3.3.5 Probing Algorithm . 61

3.3.6 Experiments . 65

3.4 Optimal Rule on Numerical Attribute . 68

3.4.1 Range Rules . 69

3.4.2 Region Rules . 70

3.4.3 Related Works for Handling Correlations 70

3.4.4 Optimized Two-Dimensional Region . 71

3.4.5 Hand Probing for Region . 72

3.4.6 Search on Convex Hull . 77

3.4.7 Experiments . 80

4 Decision Tree 83

4.1 Construction of Tree Models . 84

4.2 Prediction Accuracy . 86

4.3 Pruning . 86

4.3.1 Prepruning . 87

4.3.2 Reduced Error Pruning . 88

4.3.3 Cost Complexity Pruning . 89

4.4 Multivariate Decision Trees . 89

4.4.1 Trees with Region Rules . 89

4.4.2 Record Density of a Pixel . 92

4.5 Experiments . 92

4.5.1 Prediction Accuracy . 92

4.5.2 Performance Results . 97

5 Regression Tree 99

5.1 Regression Rules . 99

5.1.1 Criterion of Regression Rules . 99

5.1.2 Convexity . 101

5.1.3 Experiments . 102

5.2 Multivariate Regression Trees . 103

5.2.1 Spline Interpolation of Grid Regions . 104

5.3 Experiments . 106

5.3.1 Prediction Accuracy . 106

5.3.2 Performance Results . 115

CONTENTS vii

6 Conclusion 117

6.1 Remarks from Experiments . 118

6.2 Recent Progress in Modeling and Prediction Tasks 119

6.2.1 Fast Tree Construction Algorithms . 119

6.2.2 Toward Accurate Predictions . 119

6.2.3 Other Progresses . 120

6.3 Future Direction . 120

A Detailed Experimental Results 127

A.1 Cross Validation Results for Classification . 127

A.2 Cross Validation Results for Regression . 129

viii CONTENTS

List of Figures

1.1 Data Warehouse . 2

1.2 Knowledge Discovery and Data Mining Process 4

1.3 Minimize Diameter of the Maximal Cluster of Two Clusters 6

1.4 Optimized Numerical Association Rule . 9

1.5 Region Families . 10

1.6 Decision Tree . 11

1.7 Healthy Region and Guillotine-cut Subdivision 14

1.8 Tests for Analyzing Credit Risk . 16

1.9 Decision Tree for Analyzing Credit Risk . 17

1.10 Tests for Analyzing the Market . 19

1.11 Regression Tree for Analyzing the Market . 20

2.1 A Priori Algorithm for Frequent Itemsets . 25

2.2 Itemset Lattice . 26

2.3 Algorithm Generate-Rule . 28

2.4 Randomized Algorithm for Equi-Depth Buckets 31

2.5 The Inner Tangent of Qm and Ur(m) . 33

2.6 Algorithm for Computing Upper Hull . 34

2.7 Upper Hulls . 35

2.8 Computing Upper Hulls . 35

2.9 Algorithm for Finding Maximum Slope . 36

2.10 Leaving L Untouched . 37

2.11 Clockwise Search . 38

2.12 Counter-clockwise Search . 38

2.13 Algorithm for Enumerating Effective Ranges . 39

2.14 Algorithm for Finding Top Index . 40

3.1 Greedy Enumeration Algorithm . 55

3.2 Convex hull of Two Class Problem . 56

3.3 Enumeration Algorithm . 58

3.4 A Segmentation in a Projected Space . 59

ix

x LIST OF FIGURES

3.5 Random Enumeration Algorithm . 60

3.6 Sample and Subdivision . 61

3.7 Inscribed Polygon and Circumscribed Polygon . 63

3.8 Probing Algorithm . 64

3.9 Inscribed Polygon Refinement . 64

3.10 Performance of the Random Enumeration Algorithm (1) 65

3.11 Performance of the Enumeration Random Algorithm (2) 66

3.12 Performance of the Probing Algorithm . 67

3.13 F (i,≤ m + 1) and the Corresponding Region . 74

3.14 Partition of Rectilinear Region into Monotone Parts 76

3.15 Guided Branch-and-Bound Search . 78

3.16 Branch and Bound Search for Two Classes Problems 79

3.17 Time for Computing the Optimized Region in Classification (2) 81

4.1 Decision Tree for ”Item A” . 84

4.2 Algorithm of Greedy Tree Construction . 85

4.3 Tree Size and Prediction Accuracy . 87

4.4 Classification of Validation Set . 88

4.5 X-monotone Region Splitting . 91

4.6 Accuracy for “breast cancer wisconsin” . 94

5.1 Regression Tree for ”Amount Purchase” . 100

5.2 Time for Computing the Optimal Region in Regression (2) 103

5.3 Interpolated Regions . 105

5.4 Spline Interpolation . 105

5.5 Accuracy for “abalone” . 110

A.1 Prediction Accuracy for Classification Problem (1) 127

A.2 Prediction Accuracy for Classification Problem (2) 128

A.3 Prediction Accuracy for Regression Problem (1) 129

A.4 Prediction Accuracy for Regression Problem (2) 130

A.5 Prediction Accuracy for Regression Problem (3) 131

List of Tables

1.1 Sales Database . 3

1.2 Shop Database . 3

1.3 Financial Statements . 15

1.4 NY Market Database . 18

2.1 Purchases Transactions . 24

3.1 Weather Forecast Database (Training Data) . 46

3.2 Observed Data . 47

3.3 Information of the Rule 1 . 48

3.4 Information of the Rule 2 . 48

3.5 Car Rental Sales Log . 54

3.6 Time for Computing the Optimal Region in Classification (1) 80

4.1 Customer Profile Database (Training Data) . 84

4.2 Summary of Classification Datasets . 94

4.3 Summary of Classification Accuracy (1) . 95

4.4 Summary of Classification Accuracy (2) . 96

4.5 Classification Accuracy for Pruned Trees . 97

4.6 Decision Tree Construction Time (1) . 98

4.7 Decision Tree Construction Time (2) . 98

5.1 Time for Computing the Optimal Region in Regression (1) 103

5.2 Summary of Regression Datasets . 106

5.3 Minimal Potential Error (X-monotone) . 108

5.4 Minimal Potential Error (Rectilinear) . 109

5.5 Minimal Potential Error (Conventional) . 110

5.6 Error of Pruned Tree (X-monotone) . 112

5.7 Error of Pruned Tree (Rectilinear) . 113

5.8 Error of Pruned Tree (Conventional) . 114

5.9 Regression Tree Construction Time (1) . 115

5.10 Regression Tree Construction Time (2) . 115

xi

xii LIST OF TABLES

Chapter 1

Introduction

Progress in technologies for data input, such as POS (Point Of Sales) systems, and technologies

for data storage, such as high density magnetic or optical recording devices, have made it easier

for enterprises to collect massive amounts of data and to store them on hard disk at a very low

cost. As a result, a lot of enterprises have been eager to utilize their stored information property

in more intelligent ways.

Many enterprises have been interested in extracting previously unnoticed information that

inspires new marketing strategies from these huge databases. Technologies for extracting such

information, or knowledge, from huge databases are called “data mining.”

Data mining covers technologies for finding frequent or rare patterns, modeling and predicting

value of an attribute, grouping or clustering data, classifying data, and so forth. Most of these

have been widely studied in the field of databases, statistics, and machine learning. Data mining,

in general, is focusing on efficiency so that we can handle emerging huge databases whose size

is too large to be processed by the conventional techniques [PSF91, PS91, AIS93a, FPSSU96,

Han98].

1.1 Towards Strategic Data Analysis

Many enterprises have been interested in utilizing their information property in more intelligent

ways. Consequently, such enterprises have been investing in decision support applications in

which current and stored data are comprehensively analyzed and explored.

Databases that manage daily operations, which we call operational databases, are updated fre-

quently. Most of the update operations, say transactions, make small changes into the databases.

However, operational databases must be reliable and must be able to handle a large number

of transactions efficiently. We call technologies to realize the requirement of such operational

databases OLTP (OnLine Transaction Processing). Many enterprises have several kinds

of operational databases for each daily operation such as sales management, reservation man-

agement, stock management, and so forth.

1

2 CHAPTER 1. INTRODUCTION

Operational Databases

External Data

Data Warehouse

� Extract
� Transform
� Update

Services
� Aggregation Results
� Patterns, Trends
� Data Visualization

Metadata

Figure 1.1: Data Warehouse

1.1.1 Data Warehousing

From the early 1990’s, many enterprises have constructed data warehouses to manage their

information resources that are stored in each operational database and conventional database (for

example a customer database and an employee database), which is not frequently updated like

operational databases [Inm92]. Figure 1.1 illustrates conceptual data warehouse architecture.

Data warehouses extract information from several data sources for example data from ex-

ternal web sites in addition to their operational databases. Sometimes, data needs to be trans-

formed. One of the typical cases in which we need to transform data is to adjust the unit

of numbers, such as currency (prices in US dollar into Japanese Yen), length (inches into cen-

timeters), weight (pounds into grams), volume (ounces into cubic centimeters), and temperature

(Fahrenheit into Celsius), to be consistent in the data warehouse. Tables and records from many

operational databases are copied into the data warehouse. In general, some projected tables and

/ or selected records are redundantly copied into several tables in the data warehouse in order to

realize good scalability and high availability. Data in a data warehouse is periodically refreshed

to reflect updates in operational databases. Data warehouses manage meta information that is

needed to manage data extraction, transformation, and refreshment.

In addition to the mentioned data management tasks, data warehouses have to provide a

variety of services for data analysis such as OLAP (OnLine Analytical Processing) queries,

data mining, visualizations, statistical calculations, and reportings.

Assume a sales database in Table 1.1. The database is a collection of facts that “the quantity

of the product was sold by the customer at the shop with the price.” The OLAP query functions

are the most fundamental service of data warehouses. Typical OLAP queries on the table are

kinds of data aggregation, i.e., computing average (AVG), count (COUNT), maximal and minimal

value (MIN, MAX), sum (SUM), and so on. Such queries can be described with GROUP BY predicate

1.1. TOWARDS STRATEGIC DATA ANALYSIS 3

Table 1.1: Sales Database

Date Shop Product Customer Price Quantity

1999/07/16 Shop-1 Chips-A Customer-X 20,000 2

1999/07/16 Shop-2 Beer-B Customer-Y 8,000 4

1999/07/19 Shop-3 Aspirin-A Customer-Z 12,0000 1
...

...
...

...
...

...

Table 1.2: Shop Database

Shop Category Country State City

Shop-1 Foods US California San Jose

Shop-2 Liquor Japan Tokyo Machida

Shop-3 Pharmacy Australia New South Wales Sydney
...

...
...

...
...

in SQL statements, corresponding function names in SQL statements are in the parenthesis

respectively. For example, the following SQL statement,

SELECT "Shop", SUM("Price") FROM "Sales"

GROUP BY "Shop",

computes the total sales of each shop. We can grasp some kinds of trends in the database by

aggregating data in various aspects.

Assume another database, containing shop information, in Table 1.2. If we join the two

relations, sales and shop, we can aggregate the databases in different views that could not

be considered by each one, for example, aggregation by each category, aggregation by each

country, and so forth. For each view point, i.e., group-by predicate, we can define a dimension

in the database space. We can further define various data cubes by combining these dimensions

[GBLP95]. For any position in a data cube, we can assign corresponding aggregated result.

The OLAP query functions have to respond to many ad hoc requests, which are coming

online, within a short time period. In order to achieve better service level, various techniques

have been proposed for the OLAP query functions [GHQ95, HRU96, AAD+96], for example,

precomputing intermediate results that are considered to be used frequently in many queries.

1.1.2 Knowledge Discovery and Data Mining Process

As mentioned above, constructing a data warehouse is one of the effective means for utilizing

information property in large databases. Many enterprises expect to find useful knowledge for

their decision making by data analysis services perhaps provided by a data warehouse.

Data analysis services such as OLAP queries, data minings, visualizations, statistical calcu-

lations, and reportings are considered to be kinds of data abstraction or summarization services.

Figure 1.2 shows the conceptual analytical processes that are roughly separated into five steps

4 CHAPTER 1. INTRODUCTION

Projection
Selection

Preprocessing

Transformation

Interpretation
Evaluation

Raw Data

Target
Data

Preprocessed
Data

Transformed
Data

Rules
Patterns
Trends

Knowledge

���������	��
���
������	��������

Figure 1.2: Knowledge Discovery and Data Mining Process

according to the level of abstraction. These analytical processes are often referred as KDD

(Knowledge Discovery and Data mining) processes.

First of all, the raw data goes to the “projection / selection” step in which we identify the

target dataset and relevant attributes. Then, in the “preprocessing” step and in the “trans-

formation” step, we remove noise, transform values to common units, generate new attributes

through combination of existing attributes, and bring data into a table that is used as an input

to data mining tasks. In the “pattern extraction” step, we extracts the actual patterns in the

dataset. Finally, in the “interpretation / evaluation” step, we present the patterns in an under-

standable form for example through data visualizations. The results of any step might feedback

to an earlier step in order to redo the process with the new knowledge gained.

In general, data mining and statistical calculations are considered to be the higher level

tasks in the KDD process, which roughly cover the pattern extraction step and the interpre-

tation / evaluation step. Though many functions of data mining and statistical calculations

are overlapped, the former tends to be “hypothesis finding” tasks while the latter tends to be

“hypothesis testing” tasks. Data mining, which is new emerging technology that attracts many

enterprises from the early 1990’s, has hypothesis finding features in other word “knowledge

discovery” features.

1.1.3 Data Mining

Data mining consists of technologies for finding hypothesis or knowledge in large datasets. The

findings are expected to be utilized for decision making. Some of the findings might give a

data analyst unexpected insights that can be more carefully investigated by using statistical

hypothesis testing techniques.

A lot of technologies have been proposed, for example, for finding, frequent or rare patterns,

1.1. TOWARDS STRATEGIC DATA ANALYSIS 5

modeling and predicting value of an attribute, grouping or clustering data, classifying data, and

so forth. Most of these had been widely studied in the field of databases, statistics, and machine

learning. Data mining, in general, is focusing on efficiency so that we can handle emerging huge

databases whose size is too large to be processed by the conventional techniques.

Several data mining functions, which can efficiently handle huge databases, have been devel-

oped so far. Roughly speaking, all of these functions can be classified into one of four categories,

1) functions for association analysis, 2) functions for classification and regression, 3)

functions for cluster analysis, and 4) functions for evolution analysis.

Association Analysis

Association analysis is used for discovering association rules that occur frequently together in

a given database. If we can find a rule “a customer who purchases A and B tend to purchase

C,” the retailer can consider strategic sales promotions for the goods. For example, they can

arrange the layout of goods in a store or in a catalog page so that A, B, and C are close to each

other.

Such rules are called association rules. An association rule has the form:

LHS ⇒ RHS, (support, confidence)

where both LHS, left hand set, and RHS, right hand set, are sets of predicates.

Market basket analysis is the most typical applications of association analysis. In the market

basket analysis, a collection of items purchased by a customer, called market basket, in purchases

transactions is analyzed by retailers to identify items that frequently purchased together. In the

market basket analysis, both LHS and RHS are sets of items. In addition, the form implies

that a customer who purchases all items in LHS tends to purchase all items in RHS.

Each association rule has two measures support and confidence. The support is the proba-

bility of records, or transactions in market basket analysis, that satisfies all of predicates in the

union of LHS and RHS. The confidence is the probability of records satisfying all of predicates

in the union of LHS and RHS over records satisfying all predicates in LHS.

Among all possible association rules, we are interested in rules such that both support

and confidence are large enough for users. Agrawal, Imielinski, and Swami [AIS93b] proposed a

method for enumerating all association rules that have larger support value than a user specified

minimal support and confidence value.

Classification and Regression

Classification, or regression, is the process of finding a set of models that describe and distinguish

data classes, or data values (resp.), for the purpose of being able to use the models to predict

the class, or the value (resp.), of a record whose class, or value (resp.), is unknown.

Assume that we have a weather forecast database that consists of attributes, Weather, actual

weather of the next day, Forecast, a weather forecast for the next day, and Pressure and

6 CHAPTER 1. INTRODUCTION

Figure 1.3: Minimize Diameter of the Maximal Cluster of Two Clusters

Temperature on today.

If we are interested in weather of the next day, we want to know which rules are important

to know weather of the next day. However, we want to predict weather of future from observed

data whose actual weather value is unknown. In such cases, we construct prediction models for

Weather by using other attributes in the database, whose Weather value is known. Forms of

the prediction models can be represented as rules, rule lists, trees, neural networks, or Bayesian

networks.

Cluster Analysis

Clustering is to partition a set of records into groups such that records within a group are similar

to each other. Each such group is called a cluster. Similarity between records is measured by a

distance function. We can choose or define a distance function for each application.

In general, a distance function, f(p1, p2), takes two records as input and returns a value that

is a measure of their similarity. We often use a function based on Euclidean distance of two

input records that have numerical attributes. The clustering is a kind of optimization problem

to make the optimal clusters in a certain criterion for example to minimize sum of diameters of

all clusters, to minimize the maximal diameter of clusters like Figure 1.3, and so forth.

Unlike classification and regression analysis, which need database records whose class or value

is known, clustering analyzes database records without consulting a known class or a value. In

general, classes or values are not present in database records when we use clustering analysis.

Clustering can be used to generate such classes or values.

Evolution Analysis

Evolution analysis describes and models regularities or trends for database records whose be-

havior changes over time. Though this may include functions for association analysis, clas-

sification and regression, or cluster analysis of time-related databases, distinct features of the

evolution analysis include time-series data analysis, sequence or periodical pattern matching,

1.2. ACCOMPLISHMENTS 7

and similarity-based data analysis.

Time-series data mining and sequential pattern mining are typical examples of the evolution

analysis. Assume we have the stock market (time-series) databases. Someone wants to identify

stock evolution regularities for overall stocks and for the stocks of particular companies. Such

regularities may help predict future trends in stock market prices. Sequential pattern mining is

the mining of frequently occurring patterns related to time or other sequences. An example of

the sequential pattern is “customers who bought A are likely to buy B within one month.”

1.2 Accomplishments

As mentioned in the previous section, data mining covers technologies for association analysis,

classification and regression, cluster analysis, and evolution analysis. Among these technologies,

the author focused on the association analysis and the classification and regression in this dis-

sertation. The author considered association rules on numerical attributes while conventional

data mining can only effective for categorical attributes. The accomplishment significantly ex-

panded applications of the association analysis. Then, the author explored classification and

regression problems. By utilizing techniques developed for the numerical association rules, the

author proposed accurate and comprehensive classification and regression trees. Among these

accomplishments, primary contributions of the author are the works on the classification and

regression problems.

1.2.1 Contributions on Association Analysis

In general, there are two types of attributes: categorical and numerical attributes in a database.

Conventional algorithms for finding association rules assume that attributes, which are inves-

tigated, are all categorical. However, in many systems we have to analyze data of numerical

attributes especially for financial applications. Association analysis for numerical attributes is

necessary for such databases containing numerical attributes. Therefore, the author considered

association rules for numerical attributes.

General form of the association rules is:

P1(C1) ∧ P2(C2) · · · ∧ Pi(Ci) ⇒ Pi+1(Ci+1) ∧ Pi+2(Ci+2) · · · ∧ Pk(Ck)

where Ci (1 ≤ i ≤ k) are attributes that are analyzed. The Pi(Ci) are predicates that involve

attribute Ci.

For categorical attributes, the form of the predicates would be t[Ci] = vi where t[Ci] is the

value of the attribute Ci of a certain record and vi is a value in the domain of Ci.

Conventional algorithms for finding association rules work efficiently if predicates has the

form t[Ci] = vi. If Ci is a numerical attributes, the number of distinct values becomes large and

hence support value becomes much smaller. Such rules whose support is small are not significant.

Therefore, for numerical attributes, the form of the predicate would be t[Ci] ∈ [vi−lo, vi−hi] where

8 CHAPTER 1. INTRODUCTION

vi−lo and vi−hi (vi−lo < vi−hi) are threshold values in the domain of Ci. In the predicate, vi−lo

can be −∞ or vi−hi can be ∞.

Association rules on a numerical attribute are often called “numerical association rules” or

“quantitative association rules.” Srikant and Agrawal proposed an algorithm for finding rules

[SA96] of the following form:

{t[C1] ∈ [v1−lo, v1−hi]} ∧ · · · ∧ {t[Ci] ∈ [vi−lo, vi−hi]} ⇒ t[Ck] = vk, (support, confidence)

The rule implies that if the value of Ci of a record r falls in the range [vi−lo, vi−hi], the

record’s value of Ck is likely to be vk.” The support of the rule is the probability of records

that satisfy both {t[C1] ∈ [v1−lo, v1−hi]} ∧ · · · ∧ {t[Ci] ∈ [vi−lo, vi−hi]} and t[Ck] = vk. The

confidence is the probability of records that satisfy t[Ck] = vk among the records satisfying

{t[C1] ∈ [v1−lo, v1−hi]} ∧ · · · ∧ {t[Ci] ∈ [vi−lo, vi−hi]}.
Like association rules for categorical attributes, we are interested in rules whose support

and confidence value are large. We have a freedom to choose the value range [vi−lo, vi−hi] of a

numerical attribute Ci when we search for rules. In general, if we choose a wider range on the

numerical attribute, we will have larger support value, however, the corresponding rules tend to

converge on the average confidence value, it means the rules are less significant. On the other

hand, if we choose a narrower range, we can find rules whose confidence value is significantly

high or low though the support values are low.

Optimized Numerical Association Rules

The authors considered optimized numerical association rules [FMMT96d, FMMT99] of the

form

{t[Ci] ∈ [vi−lo, vi−hi]} ⇒ t[Ck] = vk, (support, confidence).

In this work, we focused on computing two optimized ranges: one that maximizes the support

on the condition that the confidence ratio is at least a given threshold value, and the other

maximizes the confidence ratio on the condition that the support is at least a given threshold

number. The former rules are called optimized support rules and the latter rules are called

optimized confidence rules.

The optimized support rules can be used to identify the largest set of records on a numerical

attribute whose minimum confidence is more than the specified value. On the other hand, the

optimized confidence rules can be used to identify the densest set of records on a numerical

attribute whose minimum support is more than the specified value.

Figure 1.4 shows the optimized confidence rule and the optimized support rule on numerical

attribute A.

There are trivial ways of computing optimized support rules and optimized confidence rules

in O(n2) time for each numerical attribute, where n is the number of all records in a database.

We proposed a non-trivial linear time algorithm for each optimized rule, on the assumption that

the data are sorted with respect to the numeric attribute, it means we spend O(n log n) time

1.2. ACCOMPLISHMENTS 9

of Records
such that t[C] � S

of All Records

Value of “A”

Optimized Confidence Rules (min support 30%)

Optimized Support Rules (min confidence 30%)

of

 A
ll

R
ec

or
ds

Figure 1.4: Optimized Numerical Association Rule

for the preprocessing. Each algorithm uses some computational geometry techniques to achieve

the linear time complexity.

Optimized Two-Dimensional Numerical Association Rules

It would also be valuable to extend our framework to rules with two numeric attributes in the

presumptive condition, and to find the region in the two-dimensional space of these attributes

that represents a nice association rule between these two numeric attributes and the conclusion.

For instance, we would like to find a rule such as

(Age, Balance) ∈ X ⇒ (CardLoan = yes),

where X is a rectangle or a connected region in two-dimensional space of Age and Balance.

Optimized rules can also be defined naturally in this extension.

We considered regions that can be defined on a two-dimensional pixel grid plane G. While

the problem of finding the optimal arbitrary connected pixel grid region is NP-hard, we pro-

posed practical solutions for the cases where the regions are x-monotone, rectilinear convex, or

rectangular [FMMT96b, YFM+97, FMMT01].

Assume that we focus on two numerical attribute B and C. We distribute the values of

B (resp. C) into NB (NC) buckets so that every bucket contains almost the same number of

records. We then divide the Euclidean plane associated with B and C into NB×NC pixels (unit

squares). For simplicity, we assume that NB = NC = N , without loss of generality, as regards

our algorithms.

A grid region is a union of pixels in G that are connected. An x-monotone region is a grid

region whose intersection with any vertical line is undivided. For example, Figure 1.5 (a) shows

10 CHAPTER 1. INTRODUCTION

(a) Not X-Monotone

A

divided

(b) X-Monotone (c) Rectilinear

Figure 1.5: Region Families

a region that is not x-monotone, since the intersection of the vertical line A and the region is

divided. In contrast, Figure 1.5 (b) shows an x-monotone region. We can express an x-monotone

region by a disjunction of expressions, where each disjunct has the form (a1 ≤ x ≤ a2) and

(b1 ≤ y ≤ b2), where the union of disjuncts does not divide a vertical column. A rectilinear

convex region is an x-monotone region such that its intersection with any horizontal line is

also undivided. Figure 1.5 (c) shows an example of a rectilinear convex region. A rectangular

region is a rectangle on G, and is thus a rectilinear convex region. We will consider the class of

x-monotone regions, the class of rectilinear convex regions, and the class of rectangular regions.

We considered algorithms for computing optimized two-dimensional association rules, i.e.,

both optimized support two-dimensional association rules and optimized confidence two-dimensional

association rules. We found that the optimized two-dimensional association rules that optimize

support or confidence can be computed in time proportional to O(N2n), O(N3n), and O(N3)

where n is the number of records in the whole grid G for x-monotone regions, rectilinear convex

regions, and rectangular regions, respectively [FMMT96b]. However, the n is unacceptably large

in data mining applications. Therefore, for x-monotone and rectilinear convex regions, we con-

sidered another efficient algorithms that closely approximate the optimized two-dimensional re-

gions. Those algorithms run in time proportional to O(N2 log n) and O(N3 log n) for x-monotone

regions and rectilinear convex regions respectively.

1.2.2 Contributions on Classification and Regression

Assume that we have a weather forecast database that consists of attributes, Weather, actual

weather of the next day, Forecast, a weather forecast for the next day, and Pressure and

Temperature on today. In addition assume that we are interested in the Weather value, i.e.,

weather of the next day. Some association rules may affect the Weather value and some may

not. We want to know which rule is the most important for the Weather value.

Classification is the process of finding a set of models that describe and distinguish data

classes for the purpose of being able to use the models to predict the class of database records

1.2. ACCOMPLISHMENTS 11

All Data

Dataset L Dataset R

Forecast = Fair ?

NoYes

Dataset LL Dataset LR

NoYes

Temperature <= 18 ?

NoYes
…

NoYes

Prediction:
Fair

Prediction:
Rain

NoYes
…

Figure 1.6: Decision Tree

whose class is unknown. In the example, the classes are values of the Weather attribute. In gen-

eral, there is one designated attribute like Weather whose value of which we would like to predict

or model in classification and regression. We call such an attribute the target attribute. When

the target attribute is categorical, we call the modeling and prediction process classification.

When the target attribute is numerical, on the other hand, we call the process regression.

Typical forms of the models are rules, rule lists, trees, neural networks, or Bayesian networks.

Among them, the author focused on tree induction models in this dissertation.

A rooted tree, each of whose internal nodes is associated with a left-hand-side predicate of

a rule, called a discriminant rule or a test. We associate each leaf node with the subset (called

leaf-cluster) of records satisfying all tests on the path from the root to the leaf. Every leaf-cluster

is labeled as one of the value of the target attribute on the basis of the target value distribution

in the leaf-cluster.

For example, if we are interested in the Weather value, each leaf node has Fair or Rain as

the label of the node. Such a tree-based prediction model is called a decision tree if the target

attribute is categorical, while it is called a regression tree if the target attribute is numerical.

Figure 1.6 shows an example of a decision tree which models and predicts the Weather value.

Decision trees and regression trees are very popular since they are easy to interpret. For

example, highlighted leaf node in Figure 1.6 represents the rule: if “Forecast is Fair” and

“Temperature is larger than 18” and “the test for LR node is satisfied” then “it is likely to be

Fair.” In addition, decision trees are accurate despite the limitations in structure. Therefore,

many researches have been investigated after the pioneer works done by Breiman et al. [BFOS84]

and Quinlan [Qui93].

In this dissertation, the author explores the tree induction models and proposes some signif-

icant improvements over the previous works on the literature. Though we can consider n-nary

decision trees, we consider only binary trees like the example in the rest of this dissertation.

12 CHAPTER 1. INTRODUCTION

Multivariate Categorical Discriminant Rules

We associate each internal nodes of a tree model with a rule, which splits a dataset into two

subsets. The choice of a rule at each internal node strongly affects the size and accuracy of

the tree model. In general, the quality of a discriminant rule can be evaluated by how they

discriminate a dataset on the view point of value distribution of the target value. We need to

find as better rule as possible in order to construct compact and accurate tree models.

For a categorical conditional attribute C, the form of a rule is t[C] ∈ V where V is a set of

values on the domain of C. If C has n distinct values, the conditional domain size, there are

O(2n) possible discriminant rules. It is not affordable to examine all possible rules exhaustively

except for the cases where n is small.

Attributes in a database are often correlated. In such cases, we should consider rules on

multiple categorical attributes, which are called multivariate (categorical) rules.

Let C1, C2, · · · , CM be the conditional attributes. We can treat these attributes as a sin-

gle attribute C whose domain is the Cartesian product of their domains, that is, dom(C) =

dom(C1)× dom(C2)× · · · × dom(CM). If Ci, where i = 1, 2, · · · ,M , has ni distinct values, the

conditional domain size of C is n =
∏

i ni for 1 ≤ i ≤ M .

If we consider multivariate (categorical) rules, the n tends to become large. Moreover, in a

huge database, the n can be large even on a single categorical conditional attribute. Therefore,

we have to develop algorithms that work even for large n.

Let k be the number of distinct values of the target categorical attributes, call it the target

domain size. For the case where the target domain size is two, i.e., k = 2 or the target attribute

is numerical, we can order the n values so that the best V is one “cut” of the ordered sequence

[BFOS84]. Consequently, we have an O(n log n) algorithm. However, this algorithm is not

applicable to cases in which the target domain size is greater than two.

For huge categorical databases, in which n is large and k > 2, there is no practical existing

algorithm that can find the best discriminant rule. Despite the difficulty, there are some heuris-

tics for handling the problem [BFOS84, MP91, Qui93] that are used in practice for constructing

decision trees.

In this dissertation, the author proposes two algorithms, named the Random Enumeration

Algorithm and the Probing Algorithm, which use computational geometry techniques. Both

of the algorithms can feasibly compute a high quality V , which is much better than that of

conventional heuristics’s, for cases in which k is a small constant. The n is allowed to be very

large.

Each possible V on a conditional attribute can be interpreted as a point in a k-dimensional

space, and we can translate the problem of finding V into that of finding a point in the k-

dimensional space. We proved that the best point must be on the convex hull of the point set of

all possible value groups. Both of the algorithms compute a point on the convex hull efficiently,

that is, in O(n) time, without examining points inside the hull.

The Random Enumeration Algorithm examines points on the convex hull by using random

1.2. ACCOMPLISHMENTS 13

sampling. It outputs the best point of the examined points, which are computed from a small

sample. The time complexity is reduced to O(sk−2n), where s(¿ n) is the sample size. We will

empirically show that the Random Enumeration Algorithm finds a satisfactory V with a small

sample. This algorithm can run with a small working space and can easily be parallelized.

The Probing Algorithm uses tangential hyperplanes to compute points on the convex hull.

If we maintain a list of points that are examined during the search and incrementally construct

inscribed and circumscribed convex polygons inside and outside the hull, we can find clues as

to the next point to be examined. However, the total cost of the incremental convex polygon

maintenance and probing of the convex hull is O((n+m)|P |), if we have m points and |P | facets

on the convex hull. The m and P can be asymptotically as large as nk−1 and mb k
2
c, respectively,

in a pathological input. Though they are known to be much smaller in a normal input, the

incremental polygon maintenance is still costly when k becomes large.

The Probing Algorithm maintains only promising facets of the inscribed convex polygon,

using some heuristics, and works within a limited working space. It can find a satisfactory value

group in an earlier step of the algorithm. At every incremental step of the algorithm, it can

report the best solution found so far, and thus the solution gradually converges to the best point.

In cases where a quick response is required, the Probing Algorithm can return the best V found

in the required time, and it is thus suitable for online applications.

Two-Dimensional Numerical Discriminant Rules

Quinlan [Qui93] pointed out that the approach that use discriminant rules on a single numerical

conditional attribute has a serious problem if a pair of attributes is correlated. For example, let us

consider two numerical attributes, “height (cm)” and “weight (kg),” in a health check database.

Obviously, these attributes have a strong correlation. Indeed, the region 0.85 ∗ 22 ∗ height2 <

weight < 1.15 ∗ 22 ∗ height2 and its complement provide a popular criterion for separating

healthy patients from patients who need dietary cures. In the left chart of Figure 1.7, the

enclosed gray region shows the “healthy” region. However, if we construct a decision tree for

classifying patients by using rules on a single attribute, its subdivision is complicated and the

size of the tree becomes very large, and hence, it becomes hard to recognize the substantial rule.

Therefore, it is very important to propose a better scheme for handling numerical conditional

attributes with strong correlations in order to make an efficient diagnostic system based on a

decision trees.

In this dissertation, the author proposes the following scheme for the above problem, applying

the two-dimensional association rules, region rules in short, of [FMMT96b, FMMT01] and an

image segmentation algorithm of [ACKT96]. The scheme has been implemented as a subsystem

of SONAR, which stands for System for Optimized Numeric Association Rules, developed by

the authors [FMMT96e].

Let n be the number of records in the database. First, for each numeric attribute, we create

an equi-depth bucketing so that records are uniformly distributed into N ≤ √
n ordered buckets

14 CHAPTER 1. INTRODUCTION

���������
	���
����

���
���
� �
� � �
�

���

� �

!��

" ��� " � � " !#�

$

%

& '

()

* +-,., /10325476
8:9 ;=<.45252?>@6A4CB=, D3<E6

Figure 1.7: Healthy Region and Guillotine-cut Subdivision

according to the values of the attribute.

Next, we find all pairs of strongly correlated numeric attributes. For each such a pair A

and A′, we create an N × N pixel grid G according to the Cartesian product of the buckets

of each numeric attribute. The problem of finding the optimal arbitrary connected pixel grid

region as a discriminant rule is NP-hard like the optimized two-dimensional association rule.

Therefore, we consider a family R of grid regions; in particular, we consider the set R(xmono)

of all x-monotone connected regions and the set R(recti) of all rectilinear convex regions.

The author presents algorithms for computing the optimal two-dimensional discriminant rule

in worst case times of O(nN2) and O(nN3) for R(xmono) and R(recti) respectively. Moreover,

in practical instances, our algorithms run in O(N2 log n) time and O(N3 log n) time. Since

N ≤ √
n, the those time complexities are O(n log n) and O(n1.5 log n) respectively.

Accurate Tree Induction

The author used the optimal two-dimensional discriminant rule, region rule in short, to construct

tree models. Diverse experiments show that trees with region rules are compact and accurate

compared to conventional trees. Following two applications are examples of a decision tree and

a regression tree. One is for estimating credit risk of companies. The other is for predicting

market performances.

Credit Risk Analysis

Table 1.3 shows parts of the financial statements of some Japanese companies from 1992 to 1996.

It contains 69 numeric attributes such as “ID” (ID of a company), “Net Income / Sales,”

and “Equity Ratio.” It also contains the attribute “Default,” which indicates whether the

company defaulted within a year or not. Companies marked “D” defaulted, while companies

marked “N” did not default within a year. In order to discover tests that discriminate between

1.2. ACCOMPLISHMENTS 15

Table 1.3: Financial Statements

ID Net Income / Sales (%) Equity Ratio (%) ... Default

xxx 5.119 25.876 ... N

xxx 1.248 3.847 ... N

xxx 0.355 8.941 ... D

xxx 1.235 38.886 ... N

...

xxx -0.096 4.111 ... D

“D” and “N,” we collected 1036 samples of defaulted companies and another 1036 of non-defaulted

companies.

Figure 1.8 shows the most important two-dimensional x-monotone region that was found

from the table. Note that there are 69 attributes in the table and more than 2300 permutations

(pairs). We examined each pair to find the optimal region, and chose the most important one

based on the gini index value. The region on the plane whose x-axis is “EBIT / Sales” and

whose y-axis is “Equity Ratio” divides the original data “S” into two subsets “S1” (inside the

region) and “S2” (outside the region) as follows:

No. of companies No. of default No. of non-default
S: All data 2072 1036 1036
S1: Inside 969 797 172
S2: Outside 1103 239 864

We divided the data recursively by using such two-dimensional tests, and constructed a

decision tree to evaluate the credit risk of each company. Figure 1.9 shows the decision tree

constructed from the example. In each leaf node (square node), the relative frequency of default

companies is larger (or smaller) than that of non-default ones. Each company whose credit risk

is unknown can be classified into one of the leaf nodes in the tree.

We want to estimate credit risk according to the frequency of default companies in each leaf

node. In order to estimate credit risk of companies, we have to take account of macro conditions

like market indices, exchange ratios, and so forth. However, such macro conditions change on a

daily basis, while companies disclose their financial statements on a yearly basis. We first use all

the daily macro conditions to compute average probability of default (for each industry). Then,

we use the average probability to compute the probability for each leaf node in the constructed

decision tree.

In Japanese market, the Nikkei average is one of the important macro conditions that affect

credit risk of companies. To simplify the explanation, let us focus on only the Nikkei average,

we found that there is strong linear correlation between the index and probability of default in

all industries. Therefore, we can use a simple function for computing average default probability

p as follows:

p = A ∗Nikkei + B

16 CHAPTER 1. INTRODUCTION

EBIT / Sales

E
q
u
i
t
y

R
a
t
i
o

All companies

Companies inside
 the region

Companies outside
 the region

N

D

N

N

D D

Figure 1.8: Tests for Analyzing Credit Risk

1.2. ACCOMPLISHMENTS 17

Inside R1 Outside R1

R1

Outside R2

R2

Inside R1
(Predicted as "N")

Outside R1 & Outside R2
(Predicted as "D")

DN DN

EBIT/Sales

E
q
u
i
t
y

R
a
t
i
o

Equity Ratio

A
s
s
e
t
s

/

L
i
a
b
i
l
i
t
i
e
s

Inside R2

Figure 1.9: Decision Tree for Analyzing Credit Risk

18 CHAPTER 1. INTRODUCTION

Table 1.4: NY Market Database

Y M W BPS GDM YEN TB3M TB30Y GOLD SP500

85 12 52 1.44353 .40746 .00498 7.02 9.31 326.00 210.88

86 1 1 1.44612 .40805 .00495 7.04 9.28 339.45 205.96

86 1 2 1.43794 .40485 .00494 7.13 9.37 357.25 208.43

86 1 3 1.40470 .40879 .00498 7.17 9.49 355.25 206.43

...

93 5 18 1.56875 .63384 .00907 2.91 6.89 357.50 442.31

where A and B are constants. We use p as prior probability to compute posterior probability

after we have known which leaf node a company belongs.

Assume that we used Dall default samples and Nall non-default samples for training the

decision tree. And assume a leaf node, say “l,” of the decision tree contains Dl and Nl default

and non-default samples respectively. Based on the Bayes theorem, probability of default for

companies that belong to the node, pl, can be computed as follows:

pl =
p Dl

Dall

p Dl
Dall

+ (1− p) Nl
Nall

.

Market Analysis

Table 1.4 shows the relation collected from the New York markets every Monday from the last

Monday of 1985 through the first Monday of May 1993. It contains 384 records and 10 numeric

attributes: “W” (week), “M” (month), “Y” (year), “BPS” (British pound sterling, i.e., US$/pound),

“GDM” (deutschmark, i.e., US$/mark), “YEN” (Japanese yen, i.e., US$/yen), “TB3M” (3-month

Treasury bill yields), “TB30Y” (30-years Treasury bill yields), “GOLD” (US$/ounce), and “SP500”

(Standard and Poors index). Suppose we are interested in the “SP500,” which is one of the

indices for measuring the overall market performance.

Figure 1.10 shows the most important two-dimensional x-monotone region that can be found

from the table. The region on the plane whose x-axis is “GDM” and whose y-axis is “GOLD” divides

the data “S” into “S1” and “S2” so that the variance of the “SP500” is minimized. The number

of data, the mean, and the variance are as follows:

No. of data SP500 mean SP500 variance
All Data S 384 324 4431
Inside Region S1 157 391 1118
Outside Region S2 227 278 1489

We divided the data recursively by using such two-dimensional tests, and constructed a

regression tree to predict the “SP500.” Figure 1.11 is the regression tree. The variance of the

“SP500” value in each leaf node (square node) is much smaller than that of “S.”

Note that tests found in the examples are non-linear correlations.

1.2. ACCOMPLISHMENTS 19

GDM

G
O
L
D

All data

Data inside the region Data outside the region

SP500

SP500 SP500

Figure 1.10: Tests for Analyzing the Market

20 CHAPTER 1. INTRODUCTION

Inside R1 Outside R1

R1 R2

Inside R1 & Outside R2

Outside R2

TB3MGDM

G
O
L
D

G
O
L
D

(Predicted SP500 value)

Inside R2

Figure 1.11: Regression Tree for Analyzing the Market

1.3. ORGANIZATION OF DISSERTATION 21

1.3 Organization of Dissertation

In Chapter 2, the author discussed association rules, which is the most fundamental function-

ality of data mining. For numerical attributes, conventional data mining techniques are not

applicable. The author considered optimized numerical association rules and proposed efficient

algorithms for finding such optimal rules, in particular, optimized numerical association rules

(range rules) and optimized two dimensional association rules (region rules).

Next, the author explored classification problems in Chapter 3. How to find high quality

discriminant rules is the key for modeling and predicting unknown value, which we are focusing

on. The author proposed efficient algorithms for finding rules on categorical attributes by

using techniques of computational geometry. For numerical attributes, the author modified the

efficient algorithms for optimized numerical association rules (range rules) and optimized two

dimensional association rules (region rules) to find discriminant rules.

Then, in Chapter 4, the author consider effective ways of utilizing discriminant rules in

decision trees. Conventional decision trees that use univariate discriminant rules used to suffer

from the correlation problem. The author proposed to use multivariate rules, such as region

rules, for handling correlation in a database.

Finally, in Chapter 5, regression problems are discussed. The author utilized the algorithms

of multivariate rules for regression problems and proposed regression trees that use such multi-

variate rules.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Association Analysis

Data mining consists of technologies for finding hypothesis or knowledge in large datasets. Sev-

eral data mining functions, which can efficiently handle huge databases, have been developed

so far. Among them, functions for finding association rules that occur frequently together in a

database have been intensively investigated and utilized.

2.1 Rules on Categorical Attributes

2.1.1 Frequent Itemsets

One of the most typical data mining application is market basket analysis, where a collection of

items purchased by a customer, called market basket, in a purchases transactions is analyzed by

retailers to identify items that frequently purchased together.

Assume a database of purchases transactions as shown in Table 2.1. Each records has

customer ID (Customer), transaction ID (TID), name of purchased item (Item), and date and

time of the transaction (Time). We call a set of items an itemset. For each itemset S, we can

count the frequency of transactions that contain all items in the itemset, and let the number

be cnt(S). Let N be the number of all transactions in the transaction database. We call the

number defined by sup(S) = cnt(S)/N as support of S. In the example database, the support

of the itemset {A}, sup({A}), is 2/4. Similarly, sup({A,B}) = 1/4.

If we look at the itemset {B, E}, its support is 3/4. Thus, we can consider that B and E

are frequently purchased together. We usually interested in such frequent itemsets. We define

itemsets whose support value is more than a user specified value, call it minimum support, as

frequent itemsets.

Agrawal and Srikant proposed an efficient algorithm, called a priori algorithm, for enumerate

all frequent itemsets in a large transaction database [AS94]. We begin by defining terminology

to explain the a priori algorithm. Assume we have a transaction database, say D, like the one

in Table 2.1. Let I be a set of all items in D. We assume, without loss of generality, we can

order all items in I. We call an itemset that consists of k items a k-itemset and express it Ik.

Let itemi(I) be the i-th item in the itemset I. Let Ck be a set of k-itemsets and let Lk be a set

23

24 CHAPTER 2. ASSOCIATION ANALYSIS

Table 2.1: Purchases Transactions

Customer TID Item Time

397 00001 A 99/02/23:10:00

397 00001 C 99/02/23:10:00

397 00001 D 99/02/23:10:00

147 00002 B 99/02/26:18:10

147 00002 C 99/02/26:18:10

147 00002 E 99/02/26:18:10

921 00003 A 99/02/27:18:30

921 00003 B 99/02/27:18:30

921 00003 C 99/02/27:18:30

921 00003 E 99/02/27:18:30

397 00004 B 99/03/02:14:20

397 00004 E 99/03/02:14:20

of frequent k-itemsets in which each member itemset Ik has support value greater than or equal

to the minimum support minsup. Figure 2.1 is the a priori algorithm.

The problem for enumerating all frequent itemsets has inherent difficulty in terms of compu-

tational complexity, because if a target transaction database has k items there are 2k possible

itemsets that can be frequent. The frequent itemsets have a property that sup(Ik) ≥ sup(Ik+1)

if Ik is a k-subset of Ik+1. Therefore, if any k-subset of an itemset Ik+1 has less support value

than the minimum support, the itemset Ik+1 must not be a frequent itemset. Figure 2.2 shows

an itemset lattice to be examined for frequent itemsets. The pruning phase of the algorithm

use this property to prune away candidate itemsets to be examined as shown in the figure.

Consequently, it can work even for large databases within a limited working space in practice.

The a priori algorithm and many variants of this algorithm have been widely used in this

literature. Park et al. utilized a hashing scheme to improve efficiency of the algorithm [PCY95]

and Brin et al. pipelined the recursions, called dynamic itemset counting, of the algorithm

[BMUT97]. Morishita and Sese focused on the statistical significance, in stead of frequence, of

itemsets and proposed an algorithm for enumerating significant itemsets [MS00].

While most of a priori style algorithms search the itemset lattice, like Figure 2.2, in breadth

first manner, some algorithms search the lattice in depth first manner and find local maxi-

mal (deepest) itemsets. Every itemsets that are descended from the local maximal itemsets

must be frequent and we do not have to examine. For example, if we find a maximal itemset

{A,B,C}, all of its descendants, {A,B} {A, C}, {B,C}, {A}, {B}, and {C} must be frequent

itemsets. MaxMiner [Bay98], DepthProject [AAP98], MaxEclat/MaxClique [ZPOL97] are such

algorithms.

While all of the mentioned algorithms traverses the itemset lattice, Han et al. [HPY00]

proposed a method that uses a prefix tree, they call it a frequent pattern (FP) tree, like the one

often used in pattern matching literature.

2.1. RULES ON CATEGORICAL ATTRIBUTES 25

0) Algorithm Apriori(D, minsup) {
1) C1 := {{I1} | I1 ∈ I};
2) k := 1;

3) while (Ck 6= ∅) {
4) scan all transactions t ∈ D to compute cnt(Ik) for all Ik ∈ Ck

5) Lk := {Ik ∈ Ck | cnt(Ik)/N ≥ minsup};
6) Ck+1 := Apriori-Gen(Lk);

7) k := k + 1;

8) }
9) return

⋃
k Lk;

10) }
11) Function Apriori-Gen(Lk) {
12) /* Generation Phase */

13) Ck+1 := ∅;
14) foreach p, q ∈ Lk such that

15) itemi(p) = itemi(q) for i = 1 . . . k − 1 & itemk(p) < itemk(q)

16) {
17) I := p ∪ itemk(q);

18) Ck+1 := Ck+1 ∪ {I};
19) }
20) /* Pruning Phase */

21) foreach Ik+1 ∈ Ck+1 {
22) foreach k-subsets Ik of the Ik+1 {
23) if (Ik /∈ Lk)

24) remove Ik+1 from Ck+1;

25) }
26) }
27) return Ck+1;

28) }

Figure 2.1: A Priori Algorithm for Frequent Itemsets

26 CHAPTER 2. ASSOCIATION ANALYSIS

Figure 2.2: Itemset Lattice

2.1.2 Association Rules

If we can find a rule “a customer who purchases A and B tend to purchase C,” the retailer can

consider strategic sales promotions for the goods. For example, they can arrange the layout of

goods in a store or in a catalog page so that A, B, and C are close to each other.

Such rules are called association rules. An association rule has the form:

LHS ⇒ RHS, (support, confidence)

where both LHS, left hand set, and RHS, right hand set, are sets of items. The form implies

that a customer who purchases all items in LHS tends to purchase all items in RHS. Each

association rule has two measures support and confidence. The support is the probability of

transactions that contains all of items in the union of LHS and RHS. The confidence is

the probability of transactions containing all of items in the union of LHS and RHS over

transactions containing all items in LHS.

Definition 2.1 The support of the rule LHS ⇒ RHS is cnt(LHS ∪ RHS)/N , and the confi-

dence is cnt(LHS ∪RHS)/cnt(LHS). [EOD]

The support value is an indication of the applicability of the rule, while the confidence value is

an indication of the strength.

Association rules that can be found from the transaction database in Table 2.1 are as follows:

{B} ⇒ {E}, (support = 3/4, confidence = 3/3)

{A} ⇒ {C}, (support = 2/4, confidence = 2/2)

2.2. RULES ON NUMERICAL ATTRIBUTES 27

{C} ⇒ {A}, (support = 2/4, confidence = 2/3)

{B,E} ⇒ {C}, (support = 2/4, confidence = 2/3)

Among all possible association rules, we are interested in rules such that both support

and confidence are large enough for users. Agrawal, Imielinski, and Swami [AIS93b] proposed a

method for enumerating all association rules that have larger support value than a user specified

minimal support and confidence value. Agrawal and Srikant improved time and space efficiency

by using the a priori algorithm [AS94].

Assume a frequent itemset S and its subset s ∈ S. The support and confidence of the rule

s ⇒ (S− s) are sup(S) and sup(S)/sup(s) respectively. Let conf(s ⇒ (S− s)) be confidence of

the rule. Figure 2.3 is an algorithm for finding all association rules whose support and confidence

are larger than user specified values minsup and minconf, respectively. For each frequent itemset

the Generate-Rule examine rules whose RHS contains only one item and the subroutine Ap-

GenRule examines other rules that can be generated from the itemset.

This algorithm uses a property that is derived from the a priori property of itemsets, sup(s) ≥
sup(S) if s ∈ S. Suppose we focus on an itemset S. Assume two subsets, say s1 and s2, of S

such that s1 ∈ s2 ∈ S. Assume that we are examining all rules that can be generated from S.

If the rule whose RHS is s1 (S − s1 ⇒ s1) does not satisfy the minimum confidence criterion,

i.e., minconf > sup(S)/sup(S − s1), we do not have to examine rules that contains s1 in their

RHS like S − s2 ⇒ s2 because the confidence must be smaller than minconf∗. Notice that all

rules generated from frequent itemsets satisfy the minimum support criterion.

Since the algorithms of [AIS93b, AS94] have proposed, many data mining applications de-

veloped based on their algorithms and utilized in market basket analysis. Several parallel imple-

mentations have been proposed to handle huge transaction databases [AS96, SK96]. Sawaragi

et al. considered an integration into relational database systems [STA98].

Some researchers pointed out a problem that data mining algorithms often find too many

rules to analyze each rule. Brin et al. and Morishita et al. considered improvements to eliminate

rules whose statistical significance is low [BMS97, MS00]. Bayardo and Agrawal introduced

several alternative measures in addition to support and confidence [BA99]. Liu et al. considered

further implications of rules to filter unnecessary rules [LHM99].

2.2 Rules on Numerical Attributes

In general, there are two types of attributes: categorical and numerical attributes in a database.

Conventional algorithms for finding association rules assume that attributes, which are inves-

tigated, are all categorical. However, in many systems we have to analyze data of numerical

attributes especially for financial applications. Association analysis for numerical attributes is

necessary for such databases containing numerical attributes. Therefore, the author considered

∗Notice that minconf > sup(S)/sup(S − s1) > sup(S)/sup(S − s2) because sup(s1) > sup(s2) and sup(S −
s1) < sup(S − s2).

28 CHAPTER 2. ASSOCIATION ANALYSIS

0) Algorithm Generate-Rules() {
1) foreach frequent itemsets lk (with k ≥ 2 items) ∈ Lk {
2) RHS1 := ∅;
3) foreach item r1 ∈ lk {
4) conf := sup(lk)/sup(lk − r1);

5) if (conf ≥ minconf) {
6) output (lk − r1) ⇒ r1;

7) RHS1 := RHS1 ∪ {r1};
8) }
9) }
10) call Ap-GenRule(lk, RHS1);

11) }
12) }
13) Procedure Ap-GenRule(lk, RHSm) {
14) if (k > m + 1) {
15) RHSm+1 := Apriori-Gen(RHSm);

16) foreach rm+1 ∈ RHSm+1 {
17) conf := sup(lk)/sup(lk − rm+1);

18) if (conf ≥ minconf)

19) output (lk − rm+1) ⇒ rm+1;

20) else

21) RHSm+1 := RHSm+1 − {rm+1};
22) }
23) Ap-GenRules(lk, RHSm+1);

24) }
25) }

Figure 2.3: Algorithm Generate-Rule

2.2. RULES ON NUMERICAL ATTRIBUTES 29

association rules for numerical attributes.

General form of the association rules is:

P1(C1) ∧ P2(C2) · · · ∧ Pi(Ci) ⇒ Pi+1(Ci+1) ∧ Pi+2(Ci+2) · · · ∧ Pk(Ck)

where Ci (1 ≤ i ≤ k) are attributes that are analyzed. The Pi(Ci) (1 ≤ i ≤ k) are predicates

that involve attribute Ci.

For categorical attributes, the form of the predicates would be t[Ci] = vi where t[Ci] is the

value of the attribute Ci of a certain record and vi is a value in the domain of Ci.

Conventional algorithms for finding association rules work efficiently if predicates has the

form t[Ci] = vi. If Ci is a numerical attributes, the number of distinct values becomes large and

hence support value becomes much smaller. Such rules whose support is small are not significant.

Therefore, for numerical attributes, the form of the predicate would be t[Ci] ∈ [vi−lo, vi−hi] where

vi−lo and vi−hi (vi−lo < vi−hi) are threshold values in the domain of Ci. In the predicate, vi−lo

can be −∞ or vi−hi can be ∞.

2.2.1 Numerical Association Rules

Association rules on a numerical attributes are often called “numerical association rules” or

“quantitative association rules.” Srikant and Agrawal proposed an algorithm for finding rules

[SA96] of the following form:

{t[C1] ∈ [v1−lo, v1−hi]} ∧ · · · ∧ {t[Ci] ∈ [vi−lo, vi−hi]} ⇒ t[Ck] = vk, (support, confidence)

The rule implies that if the value of Cj of a record r falls in the range [vj−lo, vj−hi] for

j = 1, ..., i, the record’s value of Ck is likely to be vk. The support of the rule is the probability

of records that satisfy both {t[C1] ∈ [v1−lo, v1−hi]} ∧ · · · ∧ {t[Ci] ∈ [vi−lo, vi−hi]} and t[Ck] = vk.

The confidence is the probability of records that satisfy t[Ck] = vk among the records satisfying

{t[C1] ∈ [v1−lo, v1−hi]} ∧ · · · ∧ {t[Ci] ∈ [vi−lo, vi−hi]}.
Like association rules for categorical attributes, we are interested in rules whose support

and confidence value are large. We have a freedom to choose the value range [vi−lo, vi−hi] of a

numerical attribute Ci when we search for rules. In general, if we choose a wider range on the

numerical attribute, we will have larger support value, however, the corresponding rules tend to

converge on the average confidence value, it means the rules are less significant. On the other

hand, if we choose a narrower range, we can find rules whose confidence value are significantly

high or low though the support values are low.

2.2.2 Optimized Numerical Association Rules

The optimized numerical association rules of the form

{t[C] ∈ [vlo, vhi]} ⇒ t[A] = a, (support, confidence).

are considered for numerical attributes[FMMT96d, FMMT99].

30 CHAPTER 2. ASSOCIATION ANALYSIS

Definition 2.2 A rule is confident if its confidence is not less than the given minimum confidence

threshold. Among confident rules, the optimized support rule maximizes sup(vlo ≤ t[C] ≤ vhi).

A rule is ample if sup(vlo ≤ t[C] ≤ vhi) is not less than the given minimum support threshold.

Among ample rules the optimized confidence rule maximizes (or minimizes) the confidence.

[EOD]

Ordered Equi-Depth Buckets

We assume all distinct values on a numerical attribute C are sorted. This preprocess takes

O(n log n) time where n is the number of records in a database. If n is unacceptably large, we

make M buckets on the domain of C.

Definition 2.3 Buckets of the domain C are a sequence of disjoint ranges

B1, B2, . . . , BM

(Bi = [xi, yi] and xi ≤ yi < xi+1)

such that the value of C for all records are covered by the buckets; namely, for an arbitrary

record t ∈ R, there exists a bucket Bj that contains t[C]. We say that a bucket Bi is finest if

Bi = [x, x] for a value x. [EOD]

Linking consecutive buckets Bs, Bs+1, . . . , Bt creates a range [xs, yt]. Observe that if all

buckets are finest, the combination of consecutive finest buckets gives the range of an optimized

association rule. Given a large number of buckets that may not be finest, an approximation of

the range of an optimized rule can be obtained by joining consecutive buckets.

Definition 2.4 We call the number of records in {t ∈ R | t[C] ∈ Bi} the size of Bi, and denote it

by ui. We assume that each bucket Bi contains at least one record; that is, ui ≥ 1. Bi’s are called

equi-depth if the size of any Bi is the same or almost same. Let vi denote the number of records

in {t ∈ R | t[C] ∈ Bi, t[A] = a}, and let n be the number of all records. (
∑t

i=s vi)/(
∑t

i=s ui) gives

the confidence of rule (C ∈ [xs, yt]) ⇒ t[A] = a, and the support of A ∈ [xs, yt] is (
∑t

i=s ui)/n.

[EOD]

Though there are many ways of making M buckets, we make equi-depth buckets, which

divide the n data into almost evenly, because we empirically learned that the equi-depth buck-

ets have suitable properties, for instance robustness against noise [FMMT99], for data mining

applications.

Since we had better avoid sorting data, the bucketting algorithm in Figure 2.4 is one of

the good way for making equi-depth buckets. In the algorithm, D is the database and C is a

conditional numerical attribute in D. The s is the number of records for a random sample and

M is the number of buckets. The MakeBuckets function takes those parameters and makes

M equi-depth buckets for attribute C in the database D.

2.2. RULES ON NUMERICAL ATTRIBUTES 31

0) Algorithm MakeBuckets(D, C, s, M) {
1) Choose a random sample S having s records

from the database D having n records.

2) Sort S in ascending order of t[C]. (It takes O(s log s) time.)

3) v0 := −∞, vM := ∞.

4) For each i = 1, · · · ,M − 1 {
5) Set the i(s/M)-th data in S to vi.

6) }
7) For each record t ∈ D {
8) Find i such that vi−1 < t[C] ≤ vi.

9) Assign t to the i-th bucket.

10) }

Figure 2.4: Randomized Algorithm for Equi-Depth Buckets

In the algorithm in Figure 2.4, the step 8 can be done in O(logM) time by using a binary

search tree for the buckets. In the ordinal inputs, s is much smaller than n and the time for

the step 2 is not dominant factor. Therefore, for all i, (x1({Bi}), x2({Bi})[, · · ·]), the coordinate

values of Bi can be computed in O(n log M) time.

In the bucketting algorithm, we use an s-sized random sample and the size affects the quality

of buckets. We intensively investigated the quality of buckets with respect to s and found that

40 ·M is enough for s [FMMT99].

Given a sequence of buckets B1, B2, · · · , BM , such that Bi = [xi, yi] and xi ≤ yi < xi+1, we

focus on rules of the form

(C ∈ [xs, yt]) ⇒ t[A] = a,

where [xs, yt] is a combination of consecutive buckets Bs, Bs+1, · · · , Bt.

Definition 2.5 Since any range [xs, yt] is specified by a pair of indexes s ≤ t, for simplicity, we

denote sup(A ∈ [xs, yt]) by sup(s, t) and denote conf((A ∈ [xs, yt]) ⇒ t[A] = a) by conf(s, t)

throughout this section. [EOD]

Then, among ample rules such that sup(s, t) is not less than a given threshold, the optimized

confidence rule maximizes (or minimizes) conf(s, t). On the other hand, among confident rules

such that conf(s, t) is not less than a given threshold, the optimized support rule maximizes

sup(s, t).

2.2.3 Optimized Confidence Rules

Definition 2.6 Let B1, · · · , BM be buckets. Let N denote the number of all records. Let ui

denote the number of records in {t ∈ R | t[C] ∈ Bi}. We assume that ui ≥ 1. Let vi denote

a real number associated with Bi. Consider the sequence of points Qk = (
∑k

i=1 ui,
∑k

i=1 vi) for

32 CHAPTER 2. ASSOCIATION ANALYSIS

k = 1, · · · ,M , and let Q0 be (0, 0). Let m and n be non-negative integers such that m < n.

Observe that the x-coordinate of Qn minus the x-coordinate of Qm is equal to N×sup(m+1, n).

We call s ≤ t an ample pair if sup(s, t), which is
∑t

i=s ui/N , is no less than the given

minimum support threshold. We call m and n an optimal slope pair, if m + 1 and n are an

ample pair that maximizes the slope of QmQn. If more than one pair has the same maximum

slope, select a pair that maximizes sup(m + 1, n). [EOD]

In the special case when vi is the number of records in {t ∈ R|t[C] ∈ Bi, t[A] = a}, the

slope of the line QmQn gives conf(m + 1, n). Thus, if m and n are the optimal slope pair,

(C ∈ [xm+1, yn]) ⇒ t[A] = a is the optimized confidence rule. We will therefore present an

algorithm for computing the optimal slope pair.

To compute the optimal slope pair, we use a technique of handling convex hulls, for which

we introduce some special terms.

Definition 2.7 Let S be a set of distinct points. A convex polygon of S has the property that

any line connecting any two points of S must itself lie entirely inside the polygon. The convex

hull of S is the smallest convex polygon of S. Let vmin be the node in S with the minimum

x-coordinate, and let vmax be the node in S with the maximum x-coordinate. Observe that vmin

and vmax are on the convex hull of S. From vmin we can visit nodes on the convex hull of S

in clockwise (counterclockwise) order until we hit vmax, and we call the set of nodes visited the

upper (lower) hull of S.

Let Um denote the upper hull of {Qm, · · · , QM}, and let r(m) be

min{i | m + 1 ≤ i is an ample pair}.

Now consider the tangent of Qm and Ur(m), and suppose that the tangent touches Ur(m) at Qt,

as illustrated in Figure 2.5. Qt is called the terminating point of the tangent (if the tangent

touches more than one node of Ur(m), select the node with the maximum x-coordinate as Qt).

[EOD]

It is easy to see that if m ≤ n is the optimal slope pair, Qn is the terminating point of

the tangent of Qm and Ur(m). Thus, we need to find the tangent of Qm and Ur(m) with the

maximum slope among all m.

Online Maintenance of Convex Hulls

Online stack maintenance algorithm in Figure 2.6 constructs a data structure that represents the

convex hull tree of Q0, · · · , QM , such as illustrated in Figure 2.7. While various implementations

are possible [PS85], we use stacks S and Di (i = 0, · · · ,M) in the data structure. We use S to

store the sequence of nodes of the convex hull that we are focusing on, and we use Di to store a

branch of the convex hull tree; namely, the nodes that belong to Ui+1, but do not belong to Ui.

The algorithm consists of Preparatory Phase and Restoration Phase. Given a sequence of

nodes Q0, · · · , QM that is the sorted list with respect to the x-coordinate value, Preparatory

2.2. RULES ON NUMERICAL ATTRIBUTES 33

Qm

Qr(m)

Ur(m)

Qt

Figure 2.5: The Inner Tangent of Qm and Ur(m)

Phase sets each branch of the convex hull tree to Di, for i = M − 1, · · · , 0. After the execution

of each step of the Preparatory Phase, the top-to-bottom order of nodes in S corresponds to the

clockwise order of nodes on Ui (the upper hull of {Qi, · · · , QM}), which enables us to access the

neighbors of each node Q on Ui by looking at the next node and the previous node of Q in S.

Restoration Phase makes Ur(m) on S, for each m = 0, · · · ,M − 1, using Dis.

Since throughout the execution, at most M nodes are popped from S, and at most M nodes

are pushed back from Dis to S, the overall computation time is O(M).

Example 2.1 Consider nodes Q0, Q1, · · · , Q9 in Figure 2.7. The dotted line from Qi to Q9

shows the upper hull of {Qi, · · · , Q9}. Let us apply the preparatory phase of the algorithm

in Figure 2.6 to {Q0, · · · , Q9}. Each column of the upper table in Figure 2.8 illustrates the

content of S for each i = 9, · · · , 0. Observe that each column contains the upper convex hull of

{Qi, · · · , Q9}. Each column of the lower table in Figure 2.8 shows Di for i = 9, · · · , 0. We can

also see how the restoration phase works by observing the columns from i = 0 to 9. [EOE]

Computing Tangents

Next, we search the tangent of Qm and Ur(m) with the maximum slope among all m. The

algorithm in Figure 2.9 finds the maximum slope efficiently.

Figure 2.10 illustrates an example of the case of the step 8). We do not compute the tangent

of Qm and Ur(m), and leave L untouched because the slope of the tangent of Qm and Ur(m) is

not greater than that of L.

Figure 2.11 illustrates the step 11) to 14). Among all nodes on both Ur(k) and Ur(m), let

X denote the node with the minimum x-coordinate. The clockwise search of the step 12) only

scans edges from Qr(m) to at most X; otherwise, Ur(k) cannot be convex, since the terminating

point is above QmX, and at least one node on the left-hand side of X on Ur(k) is also above

34 CHAPTER 2. ASSOCIATION ANALYSIS

0) Algorithm UpperHull(Q0, Q1, · · · , QM) {
1) Let S and Di (i = 1, · · · ,M) be empty.

2) Preparatory Phase:

3) For each i = M, · · · , 0 {
4) If i = M {
5) Push QM onto S, which trivially makes S store UM .

6) }
7) Else{
8) Clockwise Search:

9) If the slope of Qi and the top node of S is less than or equal to

10) the slope of Qi and the node that is the second from the top of S,{
11) Pop the top node from S. (the top node is no longer a node on Ui)

12) Push it onto Di. (Dis are used for recording the nodes deleted at each step.)

13) Repeat the Clockwise Search.

14) }
15) Else{
16) Push Qi onto S. (the slope of Qi and the top node is maximum)

17) }
18) }
19) }
20) Restoration Phase:

21) Set 1 to i. (We use i to search for r(m).)

22) For each m = 0, · · · ,M − 1 {
23) While (m + 1, i) is not an ample pair,

24) pop the top node Qi from S,

25) push back all nodes of Di in top-to-bottom order onto S,

26) which makes S store Ui+1.

27) Increment i.

28) If i > M , stop the restoration phase.

29) }
30) }

Figure 2.6: Algorithm for Computing Upper Hull

2.2. RULES ON NUMERICAL ATTRIBUTES 35

QQ

Q
QQ

Q

QQ

Q

Q

9
8

7

6
5

4

3
2

1

0

Figure 2.7: Upper Hulls

Q3

Q4 Q4 Q2 Q0

Q7 Q6 Q5 Q5 Q5 Q5 Q1 Q1

Q8 Q8 Q8 Q8 Q8 Q8 Q8 Q8 Q8

Q9 Q9 Q9 Q9 Q9 Q9 Q9 Q9 Q9 Q9

i = 9 8 7 6 5 4 3 2 1 0

Q4 Q5

Q7 Q6 Q3 Q2

D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Figure 2.8: Computing Upper Hulls

36 CHAPTER 2. ASSOCIATION ANALYSIS

0) Algorithm MaxSlopeSearch(Q0, Q1, · · · , QM){
1) Run UpperHull(Q0, Q1, · · · , QM) to make Ur(m) for each m = 0, · · · ,M .

2) Base Step:

3) Find the terminating point of the tangent of Q0 and Ur(0) by clockwise search;

that is, visit each node Q on Ur(0) from Qr(0) in clockwise order.

4) Set the tangent Q0Q with the maximum slope to L.

5) Inductive Step:

6) For each m = 1, · · · ,M {
7) While Ur(m) is not empty {

(Assume that L stores the tangent of Qk and Ur(k) for some k < m.)

8) If Qm is above or on L, leave L untouched.

9) If Qm is below L {
10) Let Qt be the terminating point of L.

11) If L does not touch Ur(m) (Qt is on the left-hand side of Qr(m)){
12) find the terminating point of Qm and Ur(m) by clockwise search;

that is, visit each node Q on Ur(m) from Qr(m) in clockwise order.

13) Find the QmQ with the maximum slope.

14) }
15) Else{ (L touches Ur(m) at Qt.)

16) Find the terminating point of Qm and Ur(m) by counter-clockwise search;

that is, visit each node Q on Ur(m) from Qt in counter-clockwise order.

17) Find the QmQ with the maximum slope.

18) }
19) Set the tangent of Qm and Ur(m) to L.

20) }
21) }
22) }
23) Final Step:

24) Among all tangents that have been set to L,

select the ones with the maximum slope.

25) }

Figure 2.9: Algorithm for Finding Maximum Slope

2.2. RULES ON NUMERICAL ATTRIBUTES 37

Qm

L

Ur(m)

Qk

Ur(k)

Figure 2.10: Leaving L Untouched

or on QmX. Since edges between Qr(m) and X are hidden inside Ur(k), those edges have never

been scanned in this algorithm.

Figure 2.12 illustrates the case of the step 15) to 18). Note that edges between Qr(m) and

Qt have never been scanned before in this algorithm.

Theorem 2.1 Algorithm in Figure 2.9 computes all optimal slope pairs in O(M) time. [EOT]

Proof: Let S denote the set of edges on Ur(m) for all m. Both the clockwise search and the

counter-clockwise search in the algorithm scan each edge in S at most once. Since the number

of edges in S is at most M − 1, the algorithm computes tangents with the maximum slope in

O(M) time. [EOP]

2.2.4 Optimized Support Rules

Definition 2.8 Let B1, · · · , BM be buckets such that Bi = [xi, yi] and xi ≤ yi < xi+1. Let N

denote the number of all records. Let ui denote the number of records in {t ∈ R | t[C] ∈ Bi}. Let

vi denote a real number associated with Bi. Let s and t be non-negative integers such that s ≤ t.

Let avg(s, t) denote (
∑t

i=s vi)/(
∑t

i=s ui). Let θ be a minimum threshold for avg(s, t). We call

(s, t) an optimal support pair if avg(s, t) ≥ θ, and (s, t) maximizes sup(s, t) (= (
∑t

i=s ui)/N).

[EOD]

In the special case when vi is the number of records in {t ∈ R|t[C] ∈ Bi, t[A] = a}, avg(s, t)

is equal to conf(s, t). Suppose that θ is the minimum confidence threshold. If (s, t) is an optimal

support pair, (C ∈ [xs, yt]) ⇒ t[A] = a is an optimized support rule.

38 CHAPTER 2. ASSOCIATION ANALYSIS

Qm

L

Ur(m)

Qk

Ur(k)

Qr(m)

Qt

X

Clockwise
Search

Figure 2.11: Clockwise Search

Qm

L

Ur(m)

Qk

Qr(m)

Qt

Counter-clockwise
Search

Figure 2.12: Counter-clockwise Search

2.2. RULES ON NUMERICAL ATTRIBUTES 39

0) Algorithm EnumEffective(){
1) 1 is effective

2) w := 0

3) For each s := 2 to M{
4) w := vs−1 − θus−1 + max{0, w}
5) If (w < 0) then s is effective

6) }
7) }

Figure 2.13: Algorithm for Enumerating Effective Ranges

Definition 2.9 Let us call s is effective if avg(j, s− 1) < θ for every j < s. [EOD]

Lemma 2.1 If s ≤ t is an optimal support pair, s is effective. [EOL]

Proof: Otherwise, there exists j such that avg(j, s− 1) ≥ θ. Since s ≤ t is an optimal support

pair, avg(s, t) ≥ θ, and hence avg(j, t) ≥ θ, which contradicts the optimality of s and t. [EOP]

From the above lemma, we will find all effective indices and choose an optimal support pair.

Let w be maxj<s
∑s−1

i=j (vi − θui) for each index s. Then, note that s is effective iff w < 0. The

algorithm in Figure 2.13 computes w for all indices in O(M) by scanning buckets forwards, and

gives the set of all effective indices.

Let top(s) denote the largest index t, such that s ≤ t and avg(s, t) ≥ θ. The final step is to

choose a value of s that maximizes
∑top(s)

i=s ui.

Lemma 2.2 If s < s′ are effective, top(s) ≤ top(s′). [EOL]

Proof: Since s′ is effective, avg(s, s′ − 1) < θ. From the definition of top(s), avg(s, top(s)) ≥ θ.

Then, it follows that avg(s′, top(s)) ≥ θ, which implies that top(s) ≤ top(s′). [EOP]

Thanks to this property, we only need to scan backwards through the list of effective indices

(s(1), · · · , s(q)) and the list of all indices (1, · · · ,M) alternately to find top(s(i)). We can do this

by means of the algorithm in Figure 2.14.

In the algorithm in Figure 2.14, we pre-compute a cumulative table F (j) =
∑j

i=1 vi −
θ

∑j
i=1 ui. Since

avg(s(j), i) < θ iff F (i)− F (s(j)− 1) < 0,

we can check avg(s(j), i) < θ in a constant time (F (0) is defined as 0). Thus both algorithms

in Figure 2.13 and 2.14 run in O(M) time.

Theorem 2.2 All optimal support pairs can be computed in O(M) time. [EOT]

40 CHAPTER 2. ASSOCIATION ANALYSIS

0) Algorithm Top(){
1) i := M

2) For each j from q to 1 {
3) While (avg(s(j), i) < θ){
4) i := i− 1

5) }
6) top(s(j)) := i

7) }
8) }

Figure 2.14: Algorithm for Finding Top Index

2.2.5 Two Dimensional Numerical Association Rules

It would also be valuable to extend the optimized numeric association rules to rules with two

numeric attributes in the presumptive condition, and to find the region in the two-dimensional

space of these attributes that represents a nice association rule between these two numeric

attributes and the conclusion. For instance, we would like to find a rule such as

(Age, Balance) ∈ X ⇒ (CardLoan = yes),

where X is a rectangle or a connected region in two-dimensional space of Age and Balance.

Optimized rules can also be naturally defined in this extension.

We considered regions that can be defined on a two-dimensional pixel grid plane G. While

the problem of finding the optimal arbitrary connected pixel grid region is NP-hard, we pro-

posed practical solutions for the cases where the regions are x-monotone, rectilinear convex, or

rectangular [FMMT96b, YFM+97, FMMT01].

Assume that we focus on two numerical attribute B and C. We distribute the values of

B (resp. C) into NB (NC) buckets so that every bucket contains almost the same number of

records. We then divide the Euclidean plane associated with B and C into NB×NC pixels (unit

squares). For simplicity, we assume that NB = NC = N , without loss of generality, as regards

our algorithms.

A grid region is a union of pixels in G that are connected. We considered three class of

region families, x-monotone, rectilinear convex, and rectangular. (Examples of these regions are

shown in Figure 1.5 in Section 1.2.1.) We considered algorithms for computing optimized two-

dimensional association rules, i.e., both optimized support two-dimensional association rules and

optimized confidence two-dimensional association rules.

2.2. RULES ON NUMERICAL ATTRIBUTES 41

Optimized Rectangles

There are O(N4) rectangular regions of G. Thus, a naive algorithm examines these O(N4)

rectangles and outputs the optimal one. The time complexity of this algorithm is O(N4), which

is too expensive.

It can be easily reduced to O(N3) by transforming the problem into the computation of

optimized ranges. We choose a pair r < r′ of rows in G, and consider only rectangles whose

horizontal edges are on these rows. For each column index j, we define uj =
∑r′

i=r ui,j and

vj =
∑r′

i=r vi,j .

Consider buckets B1, B2,..., BN such that the number of records in Bj is uj and the number

of success records in Bj is vj . From Theorem 2.1 and Theorem 2.2, we can compute the

optimized confidence range and the optimized support range in O(N) time. Since there are

O(N2) candidate pairs of rows, the optimized confidence rectangle and the optimized support

rectangle can be computed in O(N3) time.

Theorem 2.3 Each of the optimized confidence rectangle and the optimized support rectangle

can be computed in O(N3) time. [EOT]

Non-Rectangular Optimized Regions

In our experience, the use of non-rectangular regions often yields useful, i.e., accurate and

comprehensive, rules. For example, let us consider “Age” and “Salary” as the numeric attributes,

and “GoldCard” as the objective condition. Here, we would expect to find a rule that, among

people on the same salary, younger ones are more likely to pay an annual fee for premium credit

cards. This expectation is confirmed if we find a two-dimensional association whose region

resembles a triangle, which is a rectilinear convex and an x-monotone region, but a rectangle.

Consequently, we believe that rectilinear convex or x-monotone regions are better than rectangles

for our class of regions in two-dimensional association rules.

We found that the optimized two-dimensional association rules that optimize support or

confidence can be computed in time proportional to O(N2n) and O(N3n) where n is the number

of records in the whole grid G for x-monotone regions and rectilinear convex regions, respectively

[FMMT96b]. However, n is unacceptably large in data mining applications. Therefore, another

efficient algorithms that closely approximate the optimized two-dimensional regions are explored

in [FMMT96b]. Those algorithms run in time proportional to O(N2 log n) and O(N3 log n) for

x-monotone regions and rectilinear convex regions respectively.

The author also considered algorithms for computing the optimal two-dimensional regions

for discriminant rules of classification and regression problems. The details of each algorithm

for classification and regression are discussed in Section 3.4. Since the problems for the two-

dimensional optimized support or confidence rules has similar properties of the problems in

Section 3.4, the author omited the details of the two-dimensional optimized support or confidence

rules in this dissertation.

42 CHAPTER 2. ASSOCIATION ANALYSIS

Chapter 3

Classification

We can find unexpected patterns from rules extracted by data mining technologies. Such pat-

terns, or rules, are further investigated to utilize in businesses. For example, some rules may

affect whether a certain product is sold or not by a customer. We want to know which rule is the

most important for the product sales. And, we naturally would like to know such information

to identify rules that predict whether the product will be sold by new customers.

Assume that we have a following schema of relations concerning weather.

(Weather, Pressure, Temperature, Humidity)

If we are interested in the Weather, useful rule is, for example, “if the Pressure is larger than

980 and the Humidity is smaller than 60% then it is likely to be Fair.” In such case, we use the

Pressure, the Temperature, and the Humidity to predict or model the Weather. Thus, there

is one designated attribute whose value of which we would like to predict or model, and we call

this attribute the target attribute. The other attributes are called conditional attributes.

General form of the rules for such modeling and prediction tasks is:

P1(C1) ∧ P2(C2) · · · ∧ Pk(Ck) ⇒ t[A] = a

where C1, ... , Ck are conditional attributes that are used to predict or model the value of

the target attribute A. In this dissertation, the author use a notation t[C] for denoting the

value of the attribute C of a certain record. The Pi(Ci) (i = 1, ..., k) are predicates that involve

attribute Ci. There are two types of attributes: categorical and numerical attributes. For

categorical attributes, the form of the predicates would be t[Ci] ∈ V where V is a subset of

values in the domain of Ci. For numerical attributes, the form would be t[Ci] ∈ [vlo, vhi] where

vlo and vhi (vlo < vhi) are threshold values in the domain of Ci.

The rules whose target attribute is categorical are called classification rules. On the other

hand, the rules whose target attribute is numerical are called regression rules. In this chapter,

the author explores classification rules.

43

44 CHAPTER 3. CLASSIFICATION

3.1 Discriminant Rules

If we applied a rule (or predicates of a rule) for a set of records, each record of the set can be

divided into two segments: one is the set of records that satisfy the predicates and the other

is the set of records that do not satisfy the predicates. Therefore, rules (or predicates) for

classification problems are often called discriminant rules and they can be characterized by how

they discriminate records in a database on the view point of value distribution of the target

attribute.

In this dissertation, the author explores the classification problems as geometrical prob-

lems. Therefore, we now characterize rules geometrically and define stamp points of rules (or

predicates).

3.1.1 Stamp Points

Let A be the target attribute that is categorical. Assume A has k distinct values, a1, · · · , ak. A

rule P (C) that is defined on a conditional attribute C divides the database relation R into two

segments, a segment S containing records that satisfy the predicate P (C) and its complement

segment S̄ containing records that do not satisfy the predicate. We can characterize any rules

by the corresponding segment S or its complement S̄.

Definition 3.1 Assume a predicate divides the database relation R into two segment S and its

complement. For a segment S, let xi(S) be the number of records in S for which the value of

the target attribute is ai. Thus, each segment S of the relation R can be mapped to a point

x(S) = (x1(S), x2(S), · · · , xk(S)) in the k-dimensional Euclidean space, which is referred to as

a stamp point of S, or of the predicate. [EOD]

A stamp point represents the distribution of the target attribute of interest. In the rest of

the dissertation, we use the k-dimensional stamp points, x(S) = (x1(S), x2(S), · · · , xk(S)), for

classification problems where k is the number of distinct values that the target attribute can

take.

3.1.2 Rules on Categorical Conditional Attribute

Definition 3.2 Let C be a categorical conditional attribute and dom(C) be the domain of C,

i.e., a set of all values that t[C] can take. [EOD]

Let V ⊂ dom(C) be a subset of values on the domain of C. Rules on C can be characterized

by V . As mentioned above, the subset divides the database relation R into two segments

S = {t ∈ R | t[C] ∈ V } and S̄ = {t ∈ R | t[C] /∈ V }. The subset can further be mapped into a

stamp point.

As the author argues later in this chapter, we can compare the quality of rules based on the

coordinate values of stamp points. For each categorical conditional attribute, we will examine

all possible subsets on the domain and their corresponding stamp points.

3.1. DISCRIMINANT RULES 45

When changing the subset V , we will frequently compute stamp points x(V), i.e., x(S). If

we scan the database relation R to find each stamp point, it will always take O(|R|) time. To

speed up this process, we preprocess the relation as follows.

Definition 3.3 Among all possible subsets on dom(C), we call subsets that consist of only one

element atomic subsets and denote each such subset Vatom. [EOD]

We can construct an arbitrary V for the categorical conditional attribute by making a union

of atomic subsets.

We compute a stamp point x(Vatom) = (x1, x2, · · · , xk) for each atomic subset beforehand.

To find the stamp point of V , we simply need to sum up the points x(V) =
∑

Vatom∈V x(Vatom),

which will take O(|dom(C)|) time. We also compute the stamp point of the entire relation

x(R), since the stamp point of S̄ = R \ S, the complement of S, can be easily computed from

x(S̄) = x(R)− x(S).

Example 3.1 Suppose we are given a relation R with categorical attributes A and C. Let A be

a target attribute having k distinct values, and C be a conditional attribute having n distinct

values. The following SQL query will count the number of records for each distinct value of A

and value of C to generate the stamp points of the atomic subsets:

SELECT A, C, COUNT(*) FROM R GROUP BY A, C.

A C count(*)

a1 c1 26 = x1({c1})
a1 c5 15 = x1({c5})
a2 c2 31 = x2({c2})
...

...
...

...

ak cn 17 = xk({cn})

3.1.3 Rules on Numerical Conditional Attribute

Let C be a numerical conditional attribute. Let the minimal and maximal value of t[C] in the

database relation R be vmin and vmax respectively. We call the value range between vmin and

vmax, [vmin, vmax], be the domain of C. Let vlo, vhi (vlo < vhi) be the threshold values on the

domain of C that divides the database relation R into two segments S = {t ∈ R | t[C] ∈ [vlo, vhi]}
and S̄ = {t ∈ R | t[C] /∈ [vlo, vhi]}. The vlo can be −∞ or the vhi can be ∞.

Rules on the numerical conditional attribute C are all possible combinations of vlo and vhi

in the domain of C. And all rules can be mapped into stamp points. For each numerical

conditional attribute, we will examine all possible vlo and vhi combinations on the domain and

their corresponding stamp points. Therefore, we will frequently compute a stamp point x(S),

taking O(|R|) time for each.

For each numerical conditional attribute C, we make adequate number of buckets on the

domain. We precompute stamp points for all the buckets, like atomic points in the previous

46 CHAPTER 3. CLASSIFICATION

Table 3.1: Weather Forecast Database (Training Data)

Weather Forecast Pressure Temperature · · ·
Fair Fair 1012 24.6 · · ·
Fair Fair 998 28.0 · · ·
Rain Rain 986 24.2 · · ·
Rain Fair 968 21.7 · · ·
· · · · · · · · · · · · · · ·
Fair Fair 1004 24.5 · · ·

section. Assume that C takes n distinct numerical values and we are trying to make M buckets.

If n is small enough to fit in a main memory, we use M = n, that is, we make buckets for all the

n values. In such cases, we can compute all stamp points of buckets by simple SQL query like

the previous example and sort all the buckets. However, for large databases, n might be large

and sometimes we do not allow to sort the n value. Therefore, we need smaller buckets.

Though there are many ways of making M buckets, we make equi-depth buckets, which divide

n records into almost evenly, because we empirically learned that the equi-depth buckets have

suitable properties, for instance robustness against noise [FMMT99], for data mining applica-

tions. In Section 2.2.2, the author presented an efficient algorithm, which runs in O(n log M)

time, for making such equi-depth buckets. Note that since M ¿ n, the running time is almost

linear to n.

To find the stamp point of value range B = [Blo, Bhi](lo ≤ hi), we simply need to sum up

the points x(B) =
∑hi

i=lo x(Bi), which will take O(M) time.

3.2 Criteria of Classification Rules

Assume that we have a weather forecast database in Table 3.1. In the database, Weather={Fair,
Rain} is actual weather of the next day, Forecast={Fair, Rain} is a weather forecast for the

next day, and Pressure and Temperature on today. Assume that we found following two

association rules that lead to actual weather of the next day.

• Rule 1: Y 1

Forecast=Fair ⇒ Weather=Fair (support=54%, confidence=90%)

• Rule 2: Y 2

Pressure < 980 ⇒ Weather=Rain (support=30%, confidence=50%)

If we are interested in weather of the next day, we want to know which rules are important

to know weather of the next day. In the database, actual weather values are given, we call such

data training data. However, in general, we want to predict weather of future from observed

data like Table 3.2 whose next day’s weather is unknown. In such cases, we use classification

rules for predicting the Weather by using other given conditional attributes.

3.2. CRITERIA OF CLASSIFICATION RULES 47

Table 3.2: Observed Data

Weather Forecast Pressure Temperature · · ·
? Fair 970 24.6 · · ·
? Fair 1004 24.5 · · ·
· · · · · · · · · · · · · · ·

Let us focus on the first record of Table 3.2. Since its Forecast is Fair, we can apply the

Rule 1 and therefore we can predict the Weather is Fair. However, its Pressure value is less

than 980. Therefore, the Rule 2 is also applicable for the record and we can predict the Weather

is Rain. Both the support and the confidence are not suitable measures to compare rules for

modeling and prediction tasks.

The significance of the discovered rules depends on the user’s objective, and hence there is no

universal criterion for measuring the significance. A useful segmentation should divide data into

segments whose target distribution is more skewed than that of the data as a whole. Therefore,

for classification problems, we often use mutual information, GINI index, or χ2 for the modeling

and prediction tasks. All of the above criteria indicate the extent to which the divided data

distributions are skewed and differ from the original data distribution.

Example 3.2 Let us consider mutual information criterion as an example. The following is the

entropy function, which indicates the extent of uncertainty of information.

H(S) = −
k∑

j=1

pj logk pj

In the formula, S is a segment S = {x1, ..., xk} where xj is the number of records in S whose

target value is the j-th value in the target domain. The pj is the probability of the j-th target

value in S, i.e., xj/|S| where |S| is the number of records in S. If we have a segment whose

probability of Fair and Rain are 0.95 and 0.05 respectively, the entropy value of the segment

is −0.95 log2 0.95− 0.05 log2 0.05 = 0.286. Similarly, if we have a segment whose corresponding

probabilities are both 0.5, the entropy value is −0.5 log2 0.5−0.5 log2 0.5 = 1.0. Notice that if we

predict Fair since Fair is the majority value in the former segment, we can answer the Weather

value with 95% accuracy. On the other hand, we can only predict with 50% accuracy for the

latter segment. Thus, the latter segment has much uncertainty with respect to the Weather.

Assume that we have historical results for the weather records regarding the Rule 1, say

Y 1, and the Weather, say X, as in Table 3.3. From the table, the entropy value regarding the

Weather (X) is

H(X) = −0.64 log2 0.64− 0.36 log2 0.36

= 0.943.

If we discriminate records that satisfy the Rule 1 (Y 1 = Y es), the probabilities of Fair and

Rain in the discriminated segment are 0.54/0.6 = 0.9, 0.06/0.6 = 0.1, respectively. Therefore,

48 CHAPTER 3. CLASSIFICATION

Table 3.3: Information of the Rule 1

Forecast = Fair: Y 1

Yes No

Weather X Fair 0.54 0.1 0.64

Rain 0.06 0.3 0.36

0.6 0.4

Table 3.4: Information of the Rule 2

Pressure ≤ 980: Y 2

Yes No

Weather X Fair 0.3 0.34 0.64

Rain 0.3 0.06 0.36

0.6 0.4

the entropy value is

H(X|Y 1 = Y es) = −0.9 log2 0.9− 0.1 log2 0.1

= 0.469.

As for the other segment, it can be computed as

H(X|Y 1 = No) = −0.25 log2 0.25− 0.75 log2 0.75

= 0.811.

Since the probability of Fair and Rain in the Forecast attribute is 0.6 and 0.4, respectively,

the Rule 1 (Y 1) reduces the entropy value regarding the Weather (X) to

H(X|Y 1) = 0.6 ∗H(X|Y 1 = Y es) + 0.4 ∗H(X|Y 1 = No)

= 0.606.

The reduction of the entropy value by the Rule 1 (Y 1), i.e., H(X)−H(X|Y 1) = 0.337, is the

mutual information regarding the Weather (X) of the Rule 1 (Y 1). Similarly from Table 3.4,

the mutual information of the Rule 2 (Y 2) is H(X)−H(X|Y 2) = 0.099. [EOE]

3.2.1 Classification Criteria

All of the mentioned criteria can be defined as functions of stamp points, x(S) = (x1, · · · , xk)

for a classification rule whose target attribute has k distinct values, a1, · · · , ak. Followings are

criteria of classification rules. In each definition, let R be set of all records in the database and

R = S∪ S̄ where S̄ is the complement of S. Let pi(S) be the probability of the i-th target value,

ai, in a set S, i.e., xi(S)/|S|. And let xi(S) be the number of records in S whose target value is

the i-th value in the target domain.

3.2. CRITERIA OF CLASSIFICATION RULES 49

Mutual Information

The following entropy gain function compares the mutual information gained by a segmentation,

S. It indicates “how much information is given by the segmentation” like the above example.

Ent(x(S)) = Ent(S; S̄)

= −
k∑

i=1

pi(R) log pi(R)

+
|S|
|R|

k∑

i=1

pi(S) log pi(S) +
|S̄|
|R|

k∑

i=1

pi(S̄) log pi(S̄)

GINI Index

The implication of the “gini” criterion, which is used in the CART system [BFOS84], is “how

much the mean squared error of the target values is decreased by a segmentation, S.” The

optimal segmentation according to this criterion minimizes the mean squared error. The error

is the sum of the number of misclassified records in each segment, that is, the number of records

that are not the majority value in each segment. Let |S| = ∑k
i=1 xi(S). The GINI index criterion

is defined as follows:

Gini(x(S)) = Gini(S; S̄)

=

(
1−

k∑

i=1

pi(R)2
)

−|S||R|

(
1−

k∑

i=1

pi(S)2
)
− |S̄|
|R|

(
1−

k∑

i=1

pi(S̄)2
)

χ2 (Correlation)

The following χ2 function indicates how strongly the statistical hypothesis that “S and S̄ are

not different from R” is denied.

Chi(x(S)) = Chi(S; S̄)

=
k∑

i=1

|S|(pi(S)− pi(R))2 + |S̄|(pi(S̄)− pi(R))2

pi(R)

The quality of a classification rule with respect to mutual information criterion can be

evaluated by the value of Ent(x(S)) = Ent(S; S̄) if the value group splits data into two segments,

say “S” and “S̄.” The higher the value of the objective function is, the better the quality of

the rule is with respect to this criterion. Similarly, we prefer higher values of Gini(x(S)) =

Gini(S; S̄) and Chi(x(S)) = Chi(S; S̄).

3.2.2 Optimal Rule

For classification problems, the quality of a rule can be evaluated by one of the objective functions

for the classification criteria. The higher the value of the objective function is, the better the

50 CHAPTER 3. CLASSIFICATION

quality of the rule is with respect to the corresponding criterion. Among all possible rules on

a conditional attribute, we call the rule that has the highest value of the specified objective

function the optimal rule.

The optimal rule can be considered as the most important rule for modeling and prediction

tasks of a certain target attribute. Especially, for constructing decision trees, the optimal rule

is frequently computed. Therefore, many researches have been focused on the optimization

problem.

For a categorical conditional attribute that has n distinct values, there are O(2n) possible

rules or stamp points. It is not affordable to examine all possible rules exhaustively except for

the cases when n is small. And for a numerical conditional attribute that has M buckets (and

n values), there are O(M2) (or O(n2)) possible rules or stamp points, if we use a value range as

rules. Though it is much smaller compared to the case for a categorical conditional attribute, it

is sometimes too expensive for large n.

3.2.3 Convexity of Classification Criteria

In this dissertation, we consider the optimization problem in computational geometry context.

Therefore, we discuss efficient algorithm for finding the optimal stamp point from the set of

O(2n) stamp points on a categorical conditional attribute or the set of O(n2) stamp points on a

numerical conditional attribute. If we consider the problem in computational geometry context,

we can utilize a property of the objective functions. An objective function, say f(x), is convex

if it satisfies following condition.

Definition 3.4 f(x) is convex if

max{f(x1), f(x2)} ≥ f((1− γ)x1 + γx2)

for 0 ≤ γ ≤ 1 and arbitrary points x1 and x2 in the domain of f . [EOD]

All of the objective functions, the mutual information Ent(x), the gini index Gini(x), and

the χ2 function Chi(x) are all convex on x in the k-dimensional space.

Mutual Information Function

Theorem 3.1 The function Ent(x) is convex in the k-dimensional space; that is,

max{Ent(x1), Ent(x2)} ≥ Ent((1− γ)x1 + γx2)

for 0 ≤ γ ≤ 1 and arbitrary points x1 = (x11, ..., x1k) and x2 = (x21, ..., x2k) satisfying x1i > 0

and x2i > 0 for i = 0, ..., k. [EOT]

Proof: Let f(x) =
∑k

i=1 xi log(xi/s(x)), where s(x) =
∑k

i=1 xi, i.e., |S|. Since xi = pi|S|, we

have

Ent(x(S)) = Ent(S; S̄)

3.2. CRITERIA OF CLASSIFICATION RULES 51

= −
k∑

i=1

pi(R) log pi(R)

+
|S|
|R|

k∑

i=1

pi(S) log pi(S) +
|S̄|
|R|

k∑

i=1

pi(S̄) log pi(S̄)

= −
k∑

i=1

pi(R) log pi(R)

+
1
|R|f(x(S)) +

1
|R|f(x(S̄)).

In the function,
∑k

i=1 pi(R) log pi(R) is invariant to the choice of x. Therefore, it suffices to show

that the convexity of f(x).

For a vector ∆ = (δ1, ..., δk), let Y (∆) = (∆, x) =
∑k

i=1 δixi. In order to show the convexity

of Ent(x), it suffices to show that for any ∆,

f ′′(x) =
∂2f(x)
∂Y (∆)2

≥ 0.

Since

f ′(x) =
∂f(x)
∂Y (∆)

=
k∑

i=1

∂f(x)
∂xi

1
δi

,

f ′(x) =
k∑

i=1

δ−1
i log xi − s(t) log s(x),

where t = (δ−1
1 , .., δ−1

k). Hence,

f ′′(x) =
k∑

i=1

δ−2
i x−1

i − s(t)2s(x)−1.

Now, it suffices to show that

(∗) = s(x)
∑

i

δ−2
i x−1

i − s(t)2 ≥ 0.

We consider vectors A = (x1/2
1 , .., x

1/2
k) and B = (x−1/2

1 δ−1
1 , .., x

−1/2
k δ−1

k). Then, from the

Cauchy-Schwarz inequality, (∗) = |A|2|B|2 − (A,B)2 ≥ 0. [EOP]

GINI Index Function

Theorem 3.2 The function Gini(x) is convex in the k-dimensional space; that is,

max{Gini(x1), Gini(x2)} ≥ Gini((1− γ)x1 + γx2)

for 0 ≤ γ ≤ 1 and arbitrary points x1 = (x11, ..., x1k) and x2 = (x21, ..., x2k). [EOT]

Proof: For any vector ∆ 6= 0, the second derivative of the functions along with ∆ is non-

negative.

Let r = (r1, · · · , rk) be the set of all records to be split, and let ‖r‖ =
∑k

i=1 ri, i.e., |R| and

let ‖x‖ =
∑k

i=1 xi, i.e., |S|.

52 CHAPTER 3. CLASSIFICATION

Gini(x(S)) is transformed as follows:

Gini(x(S)) = Constant +
1
|R|G(x(S)) +

1
|R|G(x(R)− x(S)),

where

G(x(S)) = G(x) =
k∑

i=1

x2
i

‖x‖ .

Let ∆ = (δ1, δ2, · · · , δk), Y = (∆,x) =
∑k

i=1 δixi. The first derivative of G(x) is

G′(x) =
dG(x)
dY

=
k∑

i=1

1
δi

∂G(x)
∂xi

=
1
‖x‖

k∑

i=1

2xi

δi
− ‖t‖
‖x‖2

k∑

i=1

x2
i ,

where t = (δ−1
1 , · · · , δ−1

k), and the second derivative is

G′′(x) =
2
‖x‖

k∑

i=1

(
‖t‖xi

‖x‖ − 1
δi

)2 ≥ 0.

Therefore, Gini′′(x(S)) ≥ 0. [EOP]

χ2 Function

Theorem 3.3 The function Chi(x) is convex in the k-dimensional space; that is,

max{Chi(x1), Chi(x2)} ≥ Chi((1− γ)x1 + γx2)

for 0 ≤ γ ≤ 1 and arbitrary points x1 = (x11, ..., x1k) and x2 = (x21, ..., x2k). [EOT]

Proof: Chi(x(S)) is transformed as follows:

Chi(x(S)) = C(x(S)) + C(x(R)− x(S)),

where

C(x(S)) = C(x) =
k∑

i=1

(xi − ri
‖x‖
‖r‖)

2

ri
‖x‖
‖r‖

.

The first derivative of C(x) is

C ′(x) =
dC(x)
dY

=
k∑

i=1

1
δi

∂C(x)
∂xi

=
‖r‖
‖x‖

k∑

i=1

2xi

δiri
− ‖t‖‖r‖

‖x‖2

k∑

i=1

x2
i

ri
− ‖t‖,

3.3. OPTIMAL RULE ON CATEGORICAL ATTRIBUTE 53

and the second derivative is

C ′′(x) =
d2C(x)
dY 2

=
2‖r‖
‖x‖

k∑

i=1

1
ri

(
1
δi
− xi

‖t‖
‖x‖)2 ≥ 0.

Therefore, Chi′′(x(S)) ≥ 0. [EOP]

3.3 Optimal Rule on Categorical Attribute

Definition 3.5 Let A be the target attribute, and let dom(A) = {a1, a2, · · · , ak} be the domain

of A, where k is the target domain size, that is, the number of distinct values that A has. Let

xi(S) denote the number of records in S ⊆ R for which the value of the target attribute A is

ai (1 ≤ i ≤ k). Let C be a conditional attribute C whose domain is dom(C) = {c1, c2, · · · , cn},
where n is the conditional domain size.

To make a binary segmentation of R, we use a set of attribute values, which we call a value

group, on the conditional attribute C. Let V ⊂ dom(C) be a value group that divides the

database relation R into two segments S = {t ∈ R | t[C] ∈ V } and S̄ = {t ∈ R | t[C] /∈ V },
where t denotes a record in R and t[C] denotes a value of t for attribute C. We say “V splits R

into (S; S̄).” Such a value group V is a discriminant rule on conditional categorical attribute.

[EOD]

Our ideal goal is to find, among all possible value groups, a value group V that optimize an

objective function f(S; S̄) = f(x1(S), · · · , xk(S)) = f(x(S)). The f(x(S)) is one of Ent(x(S)),

Gini(x(S)), and Chi(x(S)).

We can also consider a value group on multiple conditional categorical attributes. Let

C1, C2, · · · , CM be the conditional attributes. We can treat these attributes as a single attribute

C whose domain is the Cartesian product of their domains, that is, dom(C) = dom(C1) ×
dom(C2)× · · · × dom(CM). If Ci, where i = 1, 2, · · · ,M , has ni distinct values, the conditional

domain size of C is n =
∏

i ni for 1 ≤ i ≤ M .

Note that we do not have to treat all conditional categorical attributes as a single attribute.

In many applications, it is better to treat each attribute separately. In such cases, there is a

binary segmentation problem for each attribute.

Example 3.3 Table 3.5 shows an example of a relation projected from the sales log of a car

rental company. In the relation, Color, and Size show the characteristics of each car rented,

and Age shows the customer’s age. Assume that there are five colors (white, black, red, blue,

and silver) and three sizes (compact, medium, and large) in the relation.

Assume that the company wants to classify customers according to the value of Age by using

the characteristics of cars. We use the Age as a target attribute and the other attributes as con-

ditional attributes. If we treat the two conditional attributes as a single attribute, a value group

is a set of values like “Color=white and Size=compact” or “Color=red and Size=compact.”

54 CHAPTER 3. CLASSIFICATION

Table 3.5: Car Rental Sales Log

Color Size Age

white compact young

black compact young

black medium middle-aged

red large old

blue large middle-aged

white medium old

· · · · · · · · ·

Finding a high quality value group on the conditional domain gives us clues to understanding

what characteristics attracted young, middle-aged, or old customers.

If there are five colors and three sizes, there are at most 15 = 5× 3 values in the conditional

domain of the relation. Therefore, we have to examine at most 215−1 possible value groups in

this small example to find the optimal one. [EOE]

In general, if the conditional domain size is n, there are 2n−1 − 1 possible value groups.

Hence, a naive exhaustive search for the optimal binary segmentation requires O(2n) time,

which is not practical. Therefore, we need feasible heuristics that can find high quality value

groups approximating the optimal one with respect to the quality of the binary segmentation.

Definition 3.6 In the rest of this section, we use P as a set of all stamp points of value groups

and Patom ⊂ P as a set of all stamp points of atomic value groups. We define Conv(P) to be

the convex hull of P . [EOD]

3.3.1 Related Works

For the case in which the target domain size is two, i.e., k = 2, we can order the n values so

that the optimal value group is one “cut” of the ordered sequence, if we can assume convexity

of the objective criterion [BFOS84], and all of the mentioned criteria do have this property.

Consequently, we have an O(n log n) algorithm. However, this algorithm is not applicable for

the cases in which the target domain size is greater than two.

For categorical databases, in which the conditional domain size is large and k > 2 , there

is no practical existing algorithm that can find the optimal value group. Despite the difficulty,

there are some heuristics for handling the problem [BFOS84, MP91, Qui93] that are used in

practice for constructing decision trees.

A heuristic called “two-ing” [BFOS84] divides the target domain into two classes, called

superclasses, and applies the O(n log n) algorithm for k = 2 to create the optimal subdivision

for each of the 2k−1 possible divisions into superclasses, and finds the best one among them.

This runs in O(2k−1n log n) time, which is efficient for a small constant k.

3.3. OPTIMAL RULE ON CATEGORICAL ATTRIBUTE 55

0) Algorithm Greedy-Enumeration() {
1) Sort points in Patom in descending order of y = x1/(x1 + x2).

(It takes O(n log n) time.)

2) p0 = (0, 0)

3) For i = 1 to n {
4) pi = pi−1 + xi

(xi is the i-th point of the ordered point sequence.)

5) Examine the stamp point pi by an objective function.

6) }
7) }

Figure 3.1: Greedy Enumeration Algorithm

Another heuristic [Qui93] greedily merges two conditional values from the conditional domain

to reduce the conditional domain size to n− 1, so that the objective function is maximized. It

repeats this greedy merging process until n = 2 and then returns the final two groups. This

O(n3) heuristic can be used even if k is large.

The above heuristics are known to be practical for constructing decision trees. However,

neither of them has a guarantee on the optimality of the result.

3.3.2 Greedy Enumeration Algorithm

Let us consider the case in which the target domain size is two. Any stamp point of P can

be characterized as a point in the 2-dimensional space, i.e., x = (x1, x2). In this case, there

must be an O(n log n) algorithm for the optimal value group problem if the objective function

is convex, as proved in [BFOS84]. The Greedy-Enumeration algorithm in Figure 3.1 is one

such algorithm.

Theorem 3.4 The Greedy-Enumeration algorithm in Figure 3.1 scans all points of Conv(P)

and finds the optimal answer in O(n log n) time. [EOT]

Proof: We will show that the iteration in Step 3 to Step 6 scans the upper chain of Conv(P)

(see Figure 3.2). Let {x1,x2, · · · ,xn} be the ordered point sequence of Patom in descending order

of x1/(x1 + x2), and let p0 be the origin (0, 0).

p0 is on the convex hull. p1 = p0 + x1 is also on the convex hull, since if there is a point

above p0p1, there must be a stamp point whose x1/(x1 + x2) is larger than that of x1. This is

a contradiction. Similarly, it is easy to see that if pi is on the upper convex hull, pi+1 is also on

the convex hull.

We do not have to scan the lower chain of the convex hull, since the upper and the lower

chains are symmetric. There are n points on the upper chain of Conv(P) and it takes a constant

56 CHAPTER 3. CLASSIFICATION

x2

x1

Step 3

p0

p1

p2

p3

pn

Figure 3.2: Convex hull of Two Class Problem

time to examine the objective function for each point. Hence, the O(n log n) cost for sorting

points in Patom dominates the time complexity of this algorithm. [EOP]

Example 3.4 To illustrate this algorithm by using Figure 3.2, we assumes following stamp

points of eight atomic value groups.

Patom x1 x2 x1/(x1 + x2)
∑

x1
∑

x2

x1 3 0 1 3 0

x2 3 1 .75 6 1

x3 6 3 .66 12 4

x4 9 5 .64 21 9

x5 5 8 .38 26 17

x6 3 7 .3 29 24

x7 1 3 .25 30 27

x8 0 3 0 30 30

Those stamp points are ordered by x1/(x1 + x2). Let p0 be the origin and let pi = pi−1 + xi

for i = 1, ..., 8. The point sequence of pi (i = 1, ..., 8) is the upper chain of the convex hull of all

stamp points. [EOE]

This algorithm is not applicable to cases in which the target domain size k is greater than

two.

3.3.3 Enumeration Algorithm

If k > 2, we project all points of Patom in the k-dimensional space into points y = (x1/‖x‖, x2/‖x‖,
. . . , xk−1/‖x‖) in the (k − 1)-dimensional space where ‖x‖ =

∑k
i=1 xi. Let H be a (k − 2)-

dimensional hyperplane that contains at least k − 1 linearly independent points. H splits the

3.3. OPTIMAL RULE ON CATEGORICAL ATTRIBUTE 57

projected space into two halfspaces, i.e., an upper side and a lower side of H. We can define a

value group V (H) that corresponds to the union of the projected points in the upper (or lower)

halfspace of H. Let x(V (H)) be the stamp point of V (H).

Theorem 3.5 The stamp point x(V (H)) must be a point on Conv(P). Conversely, each vertex

of Conv(P) can be represented as x(V (H)) for a suitable hyperplane H. [EOT]

Proof: We first prove the first statement of the theorem. Assume a (k − 2)-dimensional

hyperplane H : a1y1 + a2y2 + · · ·+ ak−1yk−1 = ak in the projected space. Each projected point

in the upper halfspace of H must be a1y1 + a2y2 + · · · + ak−1yk−1 ≥ ak. That is equivalent to

(a1−ak)x1 +(a2−ak)x2 + · · ·+(ak−1−ak)xk−1−akxk ≥ 0 in the original k-dimensional space.

Any point of Conv(P) must have a (k − 1)-dimensional tangential hyperplane. If the tan-

gential hyperplane has a normal vector Θ, the hyperplane maximizes (or minimizes) the inner

product (Θ,x). If a point maximizes (or minimizes) the inner product, it must be the tangential

point of the hyperplane and Conv(P).

Let V + be the value group that is defined by the upper halfspace of H. And let ΘV =

(a1 − ak, a2 − ak, · · · , ak−1 − ak,−ak). The stamp point of V + maximizes (ΘV ,x) among P ,

since if there is a point whose (ΘV ,x) is larger than V +, there must be an atomic point whose

(ΘV ,x) is non-negative except points in V + or there must be an atomic point whose (ΘV ,x) is

negative in V +. It is contradiction. Therefore, the stamp point of V + is a point of Conv(P).

The second half can be proved in a similar manner. [EOP]

Theorem 3.6 We can enumerate all of the vertices on Conv(P) by examining all combination

of k − 1 atomic points. [EOT]

Proof: A set of k − 1 linearly independent points in the projected space identifies a (k − 2)-

dimensional hyperplane H : a1y1 + a2y2 + · · · + ak−1yk−1 = ak that corresponds to a (k − 1)-

dimensional hyperplane S : (a1 − ak)x1 + (a2 − ak)x2 + · · ·+ (ak−1 − ak)xk−1 − akxk = 0 which

contains the origin. The hyperplane S, which contains k − 1 linearly independent points, splits

Patom into two groups. Note that S and two tangential hyperplanes, each of which contains the

stamp point of the corresponding group, have identical normal vector Θ. Since we are focusing

on enumerating different value groups, it is enough to examine all combinations of k− 1 atomic

points and corresponding values of Θ. [EOP]

Thanks to the Theorem 3.5 and 3.6, the Enumeration algorithm in Figure 3.3 enumerates

all vertices on Conv(P):

Theorem 3.1, 3.2, and 3.3 prove that one of the points on the convex hull gives the optimal

value group. Therefore, we can concentrate on enumerating all the combinations of k − 1

projected points in order to find the optimal value group.

Example 3.5 To explain the Enumeration algorithm, let us consider the following data,

whose target domain size k is three and conditional domain size n is four:

58 CHAPTER 3. CLASSIFICATION

0) Algorithm Enumeration() {
1) Project Patom into the (k − 1)-dimensional space.

(x = (x1, · · · , xk) 7→ y = (x1/‖x‖, · · · , xk−1/‖x‖))
2) For each combination of k − 1 projected points, {
3) If the k − 1 points are linearly independent {
4) Define a (k − 2)-dimensional hyperplane H containing the k − 1 points.

5) Initialize a stamp point for a value group, p = 0.

6) For each atomic point xi of the projected points, {
7) if xi 7→ yi is in the upper halfspace associated with H {
8) p = p + xi

9) Evaluate p by means of an objective function.

10) }
11) }
12) }
13) }
14) }

Figure 3.3: Enumeration Algorithm

c1 c2 c3 c4

x1(A = a1) 20 20 20 30

x2(A = a2) 20 10 20 10

x3(A = a3) 40 10 0 40

For each stamp point x({ci}) = (x1, x2, x3) of Patom in three-dimensional space, we consider

a projected point y = (y1 = x1/(x1 +x2 +x3), y2 = x2/(x1 +x2 +x3)) in two-dimensional space.

Figure 3.4 illustrates the two-dimensional space. A straight line H in the projected space, which

can be identified by two points, splits the projected points y into two groups.

The broken line H in Figure 3.4, which is 0.0y1 + 1.0y2 = 0.25, splits the atomic points into

two groups: V + = {c1, c2, c3} and V − = {c4}. H corresponds to a plane S : −0.25x1 + 0.75x2−
0.25x3 = 0 in the original three-dimensional space. The value group V + (resp. V −) maximizes

(resp. minimizes) the inner product with the normal vector Θ = (−0.25, 0.75,−0.25) of S (See

also the table in Section 3.3.5). [EOE]

Let n be a conditional domain size of C. Since one splitting is defined by k − 1 projected

points of n atomic values, there are O(nk−1), i.e.,

(
n

k − 1

)
, different combinations, and it will

take O(n) time to obtain the coordinates of a stamp point of a value group. Therefore, the

time complexity of the Enumeration algorithm 3.3 is O(nk). There is a way to improve this

complexity to O(nk−1) by using a sophisticated computational geometry algorithm [AT94b].

However, if k and n become large, it is still costly.

3.3. OPTIMAL RULE ON CATEGORICAL ATTRIBUTE 59

y2 = x2/(x1+x2+x3)

y1
 =

 x
1/

(x
1+

x2
+

x3
)

H

c1

c2

c3

c4

Figure 3.4: A Segmentation in a Projected Space

3.3.4 Random Enumeration Algorithm

To reduce the complexity of the Enumeration algorithm, we (1) take an s-sized random sam-

ple from Patom, (2) project the sample into a (k − 1)-dimensional space, and (3) apply the

Enumeration algorithm to the sample. Figure 3.5 shows such randomized algorithm.

The time complexity of the randomized algorithm becomes O(sk−1n), because it is propor-

tional to

(
s

k − 1

)
, and can be further improved to O(sk−2n). The Random-Enumeration

algorithm needs only a small working space and is easy to parallelize.

Quality Analysis on Sample Size

As we have shown above, the optimal solution is given as a subdivision of atomic stamp points by

a hyperplane cut in (k−1)-dimensional space. From the PAC learning theory, such a subdivision

can be closely approximated by using a small number of samples. Let Y be the set of points in

(k − 1)-dimensional space and Z be a random sample from Y . We say that Z is an ε-net for a

region family if |X ∩ Y |/|Y | ≤ ε holds for every region X of the family satisfying X ∩ Z = ∅.
Note that our sample strategy is weighted sampling. First, we consider the unweighted case

where |x| = 1 for each x. Suppose that the optimal value group Vopt is given by a hyperplane

Hopt. Let us consider the family of wedges bounded by Hopt and another hyperplane. This

family of wedges defines at most O(nk) different value groups of n points, roughly speaking,

because the Vapnik-Chervonenkis dimension is k, and hence it is known [HW87, BEHW89] that

a random sample of size

s(ε) = ε−1 max{6k log(16kε−1), 4 log(2δ−1)}

is an ε-net with a probability of at least 1− δ. Note that s(ε) is independent of n = |Y |.
Let us take a sample that is an ε-net for our wedges, and let Vsample be the value group

obtained by the sample maximizing the objective function (e.g., Gini(x)) F . There exists a

60 CHAPTER 3. CLASSIFICATION

0) Algorithm Random-Enumeration() {
1) Choose {x1,x2, · · · ,xs} atomic values at random,

so that each atomic value x is chosen with probability ‖x‖s/|x(R)|.
(|x(R)| is the total number of records in the database.)

2) Project the sample into the (k − 1)-dimensional space.

(x = (x1, · · · , xk) 7→ y = (x1/‖x‖, · · · , xk−1/‖x‖))
3) For each combination of k − 1 points of the s sample points, {
4) If the k − 1 points are linearly independent {
5) Define a (k − 2)-dimensional hyperplane H containing the k − 1 points.

6) Initialize the stamp point of a value group, p = 0.

7) For each atomic value xi of Patom, {
8) If xi 7→ yi is in the upper halfspace associated with H {
9) p = p + xi

10) Evaluate p by means of an objective function.

11) }
12) }
13) }
14) }
15) }

Figure 3.5: Random Enumeration Algorithm

3.3. OPTIMAL RULE ON CATEGORICAL ATTRIBUTE 61

H

H’

H

opt

sample

sample

Sample

Other

Figure 3.6: Sample and Subdivision

value group V ′
sample obtained as the sample such that the edge bounded by Hopt and H ′

sample

(the hyperplane associated with V ′
sample) contains no sample point. Since our sample is an ε-

net, the set difference between the value groups V ′
sample and Vopt contains at most εn points.

Figure 3.6 shows a sample that is an ε-net when k = 2. The gray wedge in the figure shows a

subdivision bounded by Hopt and H ′
sample.

For the weighted case, we consider each value group x as a set of |x| copies of the point to

obtain the result that if we take s(ε) samples then the set difference between the value groups

V ′
sample and Vopt contains points whose total weight is at most ε|x(R)|.

By definition, F (x(Vsample)) ≥ F (x(V ′
sample)), and hence we have a lower bound of F (x(Vsample)).

For example, we can show that

Gini(x(Vopt))−Gini(x(Vsample)) ≤ 2ε + αε2

where α = |R|(|Vopt|−1 + |V̄opt|−1). Since we do not want to find a subdivision with a very large

α, this is a good approximation if ε is small.

We can use the theory of ε-approximation for the k-labeled space given by Hasegawa et

al. [HII95] to avoid introducing α into the analysis. Theoretically, if we want to make ε =

0.01, s(0.01) = 600k log(1600k), which is very large. However, the theoretical bound is very

pessimistic, and a much smaller sample is sufficient, as we will show by experiment later.

3.3.5 Probing Algorithm

Hand Probing for Value Group

The Probing Algorithm also searches for stamp points on Conv(P). Computing a stamp point

on Conv(P) and its corresponding value group without knowing the coordinates of the point

is called hand probing in the field of computational geometry [DEY86]. Geometrically, hand

probing in a k-dimensional space means computing a tangential point of a (k − 1)-dimensional

hyperplane and Conv(P).

Any tangential hyperplane in a k-dimensional space has a normal vector Θ = (θ1, θ2, · · · , θk).

62 CHAPTER 3. CLASSIFICATION

By giving a k-dimensional vector Θ, we can compute the tangential point p of the hyperplane

and Conv(P) by maximizing (or minimizing) the inner product (Θ,p).

Example 3.6 Let us consider once again the Example 3.5. The tangential point of a hyperplane

with a normal vector Θ = (−0.25, 0.75,−0.25) maximizes (or minimizes) the inner product

(Θ,x) = −0.25x1 + 0.75x2− 0.25x3. We compute the inner product (Θ,x) for each stamp point

of Patom = {c1, · · · , c4}.

c1 c2 c3 c4

(Θ,x) 0 0 10 -10

The value group corresponding to the hand probing is the union of those terms whose inner

product is non-negative (resp. negative). The coordinates of the tangential point (value group)

can be obtained by summing up the coordinates of those terms. In this example, C = c1∨c2∨c3

(resp. C = c4) is the value group, and the tangential point is (60, 50, 50) (resp. (30, 10, 40)).

[EOE]

The time complexity to compute a stamp point p maximizing (Θ,p) for a given Θ is O(n),

where n is the conditional domain size.

Convex Hull Searching

We have shown that stamp points on Conv(P) can be computed efficiently by using hand

probing. Now, let us consider how to find the optimal points on Conv(P).

Various convex hull algorithms have been studied intensively [PS85], since many problems,

such as optimized numeric association rules [FMMT96d, FMMT96c, FMMT99], two dimen-

sional association rules [FMMT96b, YFM+97] in data mining, classification and regression trees

[FMMT96a, MFMT97, MIM97], can be interpreted as convex hull problems. The Probing Algo-

rithm uses an online convex hull maintenance algorithm called the “beneath-beyond” method.

First of all, we compute k different points, which are linearly independent, by using hand

probings with k different random vectors. Consequently, we have 2k points. Empirically, a

vector Θinit satisfying (Θinit,x(R)) = 0 determines a satisfactory point as an initial stamp point

with respect to a convex criterion. The line containing the origin and x(R) is the central line of

the convex hull, and a hyperplane whose normal vector is Θinit is parallel to the line. Therefore,

we include such vectors in the initial set of k vectors. Strictly speaking, we may not be able to

find k linearly independent points in a k-dimensional space by any hand probing. In this case, we

project all points into a (k−1)-dimensional space and solve the problem as a (k−1)-dimensional

one.

We can define an inscribed convex polygon whose vertices are the initial 2k points, inside

Conv(P). We can also define a circumscribed polygon whose facets are tangential hyperplanes

used by hand probings. Figure 3.7 shows examples of inscribed and circumscribed polygons of

Conv(P) in two-dimensional space, i.e., k = 2.

3.3. OPTIMAL RULE ON CATEGORICAL ATTRIBUTE 63

convex hull

inscribed polygon

circumscribed polygon

f1
v1

v3

v2

Figure 3.7: Inscribed Polygon and Circumscribed Polygon

Let I ⊆ P be a set of vertices of an inscribed convex polygon, and let C be a set of intersecting

points of tangential hyperplanes of Conv(P) that are vertices of a circumscribed convex polygon.

Thanks to Theorem 3.1, 3.2, and 3.3, we know stamp points inside Conv(I) are not better than

the best vertex of I. If we consider a facet of Conv(I), the stamp points between Conv(C) and

the facet are not better than the corresponding vertex of Conv(C) and the vertices of the facet.

For example, if we consider the facet f1 in Figure 3.7, the stamp points inside the gray triangular

region can not be better than the best of v1, v2, and v3. Therefore, the value of a vertex of C

gives a lower bound of corresponding points on Conv(P) inside Conv(C) and Conv(I).

The guided branch-and-bound search method [FMMT96a, MFMT97, MIM97] recursively re-

fines the inscribed and circumscribed polygons. It efficiently finds the optimal point on Conv(P)

by using those lower bounds to order and drop candidate facets. However, there are as many as

(nk−1)b
k
2
c facets on Conv(P). The method needs to maintain Conv(I) and Conv(C) that may

have as many facets as Conv(P) has. Therefore, it is only applicable when k is small enough

for the available working space.

In the Probing Algorithm, we predefine the size of the working space that is used to maintain

facets of Conv(I) and drop facets so that it works within the limited working space.

The algorithm in Figure 3.8 is the essential part, which contains refinement procedure of

facet queue of the inscribed polygon, of the Probing Algorithm.

In each refinement procedure, we can make at least k facets outside of the inscribed convex

polygon. Figure 3.9 is an example for a three-dimensional case. If we find a point x by hand

probing with the normal vector of the facet {1, 2, 3}, we add three facets {x, 2, 3}, {1, x, 3},
{1, 2, x}. If k is large, the limited working space may run out after several refinement procedures.

We maintain Q as a priority queue. We decide the priority of new facets based on the value of

the new point. In the example, the value of x is used for the three new facets.

We empirically find that stamp points for which the value of the objective criterion exceeds

the best value tend to lie near the best point or near the points that are closest to the best

64 CHAPTER 3. CLASSIFICATION

0) Algorithm Probing() {
1) Compute initial 2k points by k vectors.

2) Construct the initial inscribed polygon I.

3) Initialize a facet queue Q from I.

4) Repeat until Q becomes empty or stopping conditions are satisfied {
5) Refine(Q)

6) }
7) }
8) Function Refine(Q) {
9) Let f be the first facet of Q.

10) Compute the normal vector Θ of f .

11) Compute a tangent point of Conv(P) by using hand probing with Θ.

12) If a new point x is found {
13) Refine I := I ∪ x.

14) Create new facets by using x.

15) Replace the facets in Q.

16) }
17) }

Figure 3.8: Probing Algorithm

value. The above heuristics help to find a high quality result in an earlier step of the algorithm.

Furthermore, in order to prevent too many excessively small expansions of the convex poly-

gon, we use a distance threshold. If the distance between a facet and a new point is smaller than

a given threshold, the new facets that contain the new point are pruned away. This heuristic

also helps to speed up the searching.

Though the expected running time of the Probing Algorithm is still substantial, it can find

a satisfactory point in a period much shorter than the expected running time, and can return

the intermediate value group interactively.

1

2

3

x

Figure 3.9: Inscribed Polygon Refinement

3.3. OPTIMAL RULE ON CATEGORICAL ATTRIBUTE 65

0.005

0.01

0.015

0.02

0.025

0.03

0.01 0.1 1 10 100

G
in

i I
nd

ex

Execution Time [sec]

k = 4

4

10
20 30 40

Random
Two-ing

0

0.005

0.01

0.015

0.02

0.025

0.01 0.1 1 10 100 1000

G
in

i I
nd

ex

Execution Time [sec]

k = 6

6

10

20 25 30
16

Random
Two-ing

Figure 3.10: Performance of the Random Enumeration Algorithm (1)

3.3.6 Experiments

We implemented the proposed algorithms for rules on categorical conditional attribute and

performed several experiments to evaluate their performance. All experiments were performed

on an IBM RS/6000 workstation with a POWER2 processor running at 66 MHz with 2 MB of

L2 cache and 256 MB of real memory.

In this experiment, we generated synthetic data with n = 1000 (conditional domain size) and

various values of k (target domain size) to simulate a very large categorical database. Each type

of dataset has 10,000 records and two categorical attributes, C and A. The conditional attribute

C takes c1, · · · , cn distinct values. The target attribute A takes a1, · · · , ak distinct values. For

each record of the synthetic data, we randomly and independently assign a value of C and a

value of A. For purposes of comparison, we use the “two-ing” which is used in the CART system

to compute a binary segmentation. Note that another well known conventional heuristic used

in C4.5 is unsuitable for large n and does not perform well in this condition.

Random Enumeration Algorithm

Figure 3.10 shows the relationship between the execution time for a single run and the improve-

ment in the gini index gained by a value group obtained by the Random Enumeration Algorithm

for various sample sizes. The target domain sizes k are 4 and 6. The numbers in the graph

represent the sample sizes. Each error-bar (vertical line) indicates the range between the best

and worst results of 32 runs for each sample size. The results of the 32 runs are distributed

throughout the range, and each point on the range shows the average value of these results.

The “two-ing” method deterministically computes a value group for each problem. Each

diamond mark in the figures indicates the time taken to compute the value group and the

improvement in the gini index achieved by the value group. We draw a horizontal broken

line for each diamond mark so that our algorithms can be easily compared with the “two-ing”

method. Though the “two-ing” gives the optimal value group of a certain superclass obtained

by grouping k classes, the heuristic is known to find a relatively good approximated value group.

66 CHAPTER 3. CLASSIFICATION

0.0155

0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

1 10 100 1000

G
in

i I
nd

ex

Execution Time [sec]

k = 8

8

10 12

14

16

Random
Two-ing

0.0125

0.013

0.0135

0.014

0.0145

0.015

0.0155

1 10 100 1000 10000

G
in

i I
nd

ex

Execution Time [sec]

k = 10

10

12 14

16

Random
Two-ing

Figure 3.11: Performance of the Enumeration Random Algorithm (2)

From this experiment, we can see that the Random Enumeration Algorithm generates a

result of satisfactory quality within a practical time when the sample size is around 20. Note

that the best result of the 32 runs is better than the result of the “two-ing” method, even if

we use a small sample size. The CPU time taken for a single run is almost proportional to(
s

k − 1

)
.

When k becomes larger, we have to use a small sample size s so that the algorithm can

terminate in a practical amount of time. However, a small sample often gives low-quality results.

To overcome this problem, we run this algorithm with a small sample a number of times, and

take the best result. Figure 3.11 shows the relationship between the execution time for 32 runs

and the best improvement in the gini index of the 32 runs when k = 8 and 10.

The Random Enumeration Algorithm achieved better or comparable results with a small

sample in 32 runs. Those multiple trials can be executed independently. Therefore, we can

expect better results if we can use a parallel environment.

Probing Algorithm

Figure 3.12 shows the extent to which the gini index value is improved by the Probing Algorithm,

along with the time taken in seconds. Thanks to the heuristics for maintaining the facet queue,

we can observe that when the Probing Algorithm found a better result, it often found a still

better result within a short period of time. As a result, the Probing Algorithm tends to find a

satisfactory value group relatively quickly. Such a value group, which is much better than the

result given by the “two-ing” method, is satisfactory for most applications. Thus, the Probing

Algorithm returns an intermediate result in a practical time.

One defect of the Probing Algorithm is its required working space when k becomes large.

However, it can usually find a satisfactory result before its working space becomes too large.

In the experiment for k = 10, the working space of the Probing Algorithm is less than 64 MB,

which is acceptable on most workstations, when the best result in the graph was obtained. In

these experiments, we limited the working space of the Probing Algorithm to 130 MB.

3.3. OPTIMAL RULE ON CATEGORICAL ATTRIBUTE 67

0.026
0.0265

0.027
0.0275

0.028
0.0285

0.029
0.0295

0.03
0.0305

0.031

0.01 0.1 1 10

Im
pr

ov
em

en
t [

G
in

i I
nd

ex
]

Execution Time [Sec.]

k=4

Probing
Two-ing

0.022

0.0225

0.023

0.0235

0.024

0.0245

0.025

0.0255

0.026

0.01 0.1 1 10 100

Im
pr

ov
em

en
t [

G
in

i I
nd

ex
]

Execution Time [Sec.]

k=6

Probing
Two-ing

0.017

0.0175

0.018

0.0185

0.019

0.0195

0.02

0.01 0.1 1 10 100

Im
pr

ov
em

en
t [

G
in

i I
nd

ex
]

Execution Time [Sec.]

k=8

Probing
Two-ing

0.013

0.0135

0.014

0.0145

0.015

0.0155

0.016

0.01 0.1 1 10 100

Im
pr

ov
em

en
t [

G
in

i I
nd

ex
]

Execution Time [Sec.]

k=10

Probing
Two-ing

Figure 3.12: Performance of the Probing Algorithm

68 CHAPTER 3. CLASSIFICATION

These experiments used synthetic databases whose values are randomly assigned. We have

tried similar experiments by using other synthetic and real databases whose values are skewed.

We observed that the performance of our algorithms is basically the same for such skewed cases.

The results of the experiments show that both the Random Enumeration Algorithm and the

Probing Algorithm found a better value group than the “two-ing” method in a practical time,

and that both are feasible.

Though the complexities are O(sk−2n) for the Random Enumeration Algorithm and O((n+

m)|P |) for the Probing Algorithm, we derived practical implementations by using randomization

and strategic facet maintenance. Above various experiments confirmed that the algorithms could

find satisfactory value groups within reasonable computation times. The quality of the results

obtained for various samples by the Random Enumeration Algorithm differs dramatically if we

use a small sample size. Therefore, multiple trials are needed to obtain better value groups.

Those trials can be executed independently and in parallel; thus, the Random Enumeration

Algorithm is suitable for a parallel environment. On the other hand, the quality of the Probing

Algorithm becomes stable after a certain amount of execution time. However, it requires a large

working space compared to the Random Enumeration Algorithm. Since the available memory

size is still increasing dramatically, the practical applicability of the Probing Algorithm seems

to be promising.

3.4 Optimal Rule on Numerical Attribute

For a numerical conditional attribute that has M buckets (and n values), there are O(M2) (or

O(n2)) possible rules or stamp points, if we use a range as a rule. Though the time complexity

is much smaller compared to the case for a categorical conditional attribute, it is sometimes too

expensive for large n.

Note that many classification and regression systems use a sole threshold value in the nu-

merical domain instead of range and split records into two segments based on the threshold

value. Such splitting method is called “guillotine-cut” splitting. And there are O(M) (or O(n))

possible rules or stamp points for the guillotine-cut rules. The guillotine-cut splitting can be

a special case of range splitting where one of the lower or the higher threshold is −∞ or ∞,

respectively. Therefore, for a numerical conditional attribute, we analyze the problem as range

splitting.

When it comes to handling numerical attributes, conventional methods are inefficient if any

numerical attributes are strongly correlated. The author offers one solution to this problem.

For each pair of numerical conditional attributes with strong correlation, we compute a two

dimensional association rule with respect to these attributes and the target attribute.

In particular, we consider a family R of grid-regions in the plane associated with the pair

of numerical attributes. For R ∈ R, the data can be split into two segments: data inside R

and data outside R. We compute the region Ropt ∈ R that optimizes one of the criteria for

3.4. OPTIMAL RULE ON NUMERICAL ATTRIBUTE 69

a classification or a regression problem. We give efficient algorithms for cases in which R is

x-monotone connected regions, rectilinear convex regions, and rectangles.

3.4.1 Range Rules

In this section, we consider classification rules on a numerical conditional attribute C and a

target categorical attribute A whose target domain size is k. As mentioned above, if C has

n values, there are O(n2) possible (range) rules or stamp points. Though we often divide the

domain of C into M equi-sized buckets for large n, we consider the problem of n values without

loss of generality.

In this dissertation, we consider the optimization problem in computational geometry con-

text. Therefore, we discuss efficient algorithm for finding the optimal stamp point from the set

of the O(n2) stamp points.

Hand Probing for Range

As proved in Section 3.2.3, all of criteria mentioned for classification problems are convex in

the k-dimensional space. Therefore, we can concentrate on stamp points on the convex hull,

Conv(P), of the set of all O(n2) points, P .

We can compute a stamp point on Conv(P) and its corresponding range without knowing

the coordinates of the point by hand probing algorithm for range. Geometrically, hand probing

in a k-dimensional space means computing a tangential point of a (k−1)-dimensional hyperplane

and Conv(P), as same as the cases for value groups in Section 3.3.5.

Any tangential hyperplane in a k-dimensional space has a normal vector Θ = (θ1, θ2, · · · , θk).

By giving a k-dimensional vector Θ, we can compute the tangential point p of the hyperplane

and Conv(P) by maximizing (or minimizing) the inner product (Θ,p).

Assume there are n buckets Bi for i = 1, · · · , n on the domain of C. We precompute stamp

points of each buckets, p(Bi). Then, for a vector Θ, we compute
∑i

j=0(Θ,p(Bi)) for all i =

0, · · · , n. During the computation, we maintain two indexes, min and max that minimizes and

maximizes
∑i

j=0(Θ,p(Bi)), respectively. The tangential point that minimizes (or maximizes) the

inner product (Θ,p) is the range [Bmax+1, Bmin] (resp. [Bmin+1, Bmax]) when
∑i

j=0(Θ,p(Bi))

is minimized (resp. maximized).

Example 3.7 The tangential point of a hyperplane with a normal vector Θ = (−0.25, 0.75,−0.25)

maximizes (or minimizes) the inner product (Θ,x) = −0.25x1 + 0.75x2 − 0.25x3. We compute
∑i

j=0(Θ,p(Bi)) for each i = 0, · · · , n. Assume we have 10 buckets as follows:

70 CHAPTER 3. CLASSIFICATION

i 1 2 3 4 5 6 7 8 9 10

a1 4 0 8 4 2 8 12 16 0 10

a2 8 4 4 12 0 0 8 0 10 0

a3 0 4 12 12 0 4 0 12 8 0
∑j

j=0(Θ,Bj) 5 7 5 10 9.5 6.5 5.5 -1.5 4 1.5

max 1 2 2 4 4 4 4 4 4 4

min 0 0 0 0 0 0 0 8 8 8

The range corresponding to the hand probing is [B5, B8] and [B1, B4]. [EOE]

The time complexity to compute a stamp point p minimizing or maximizing (Θ,p) for a

given Θ is O(n), where n is the conditional domain size.

Probing Algorithm for Range

Thanks to Theorem 3.1, 3.2, and 3.3, we can apply the Probing algorithm in Section 3.3.5 for

searching the optimal stamp point. If k is small, we can prune unnecessary stamp points on

conv(P) effectively and hence the expected running time for the Probing algorithm find the

optimal range can be O(n log n). However, if k is large, examining all O(n2) stamp points is

faster than the Probing algorithm.

3.4.2 Region Rules

There are many correlated numerical attributes in a database. This is one of the important

reasons why multivariate analysis in the field of statistics is widely used for analyzing databases

that contain several numerical attributes.

In the statistics literature, multivariate analysis has been used to handle correlated data.

“Principal component analysis,” “factor analysis,” and so forth, is categorized as multivariate

analysis. Most of the methods in the multivariate analysis assume a linear correlation. Such

conventional techniques are effective for data that have linear correlations. However, databases

contain various types of correlations that cannot be handled by the conventional methods.

3.4.3 Related Works for Handling Correlations

One approach is as follows: consider each pair of numeric attributes as a two-dimensional at-

tribute. Then, for each such two-dimensional attribute, compute a line partition of the corre-

sponding two dimensional space so that the corresponding objective function is maximized. One

(minor) defect of this method is that it is not cheap to compute the optimal line. Although

some works have been done on this problem in computational geometry [AT94a, DE93], the

worst time complexity remains O(n2) if there are n records. Another (major) defect is that the

decision tree may still be too large even if we use line partition. Although some multivariate

decision tree classifiers [BFOS84, BU95] can find multivariate tests of the form
∑

i aiBi < c,

3.4. OPTIMAL RULE ON NUMERICAL ATTRIBUTE 71

where ai and c are constants, in more practical ways, the latter problem, which is inherent in

linear partitioning methods, still remains.

To handle non-linear correlations, Ittner and Schlosser [IS96] considers composite attributes

that include all possible pairwise products and squares of numerical attributes, and finds a linear

partitioning on those composite attributes. This approach is an alternative to our use of regions.

3.4.4 Optimized Two-Dimensional Region

In this dissertation, the author proposes the following scheme for the above problem, applying

the two-dimensional association rules, region rules in short, of [FMMT96b, FMMT01] and an

image segmentation algorithm of [ACKT96]. The scheme has been implemented as a subsystem

of SONAR, which stands for System for Optimized Numeric Association Rules, developed by

the authors [FMMT96e].

Let n be the number of records in the database. First, for each numeric attribute, we create

an equi-depth bucketing so that records are uniformly distributed into N ≤ √
n ordered buckets

according to the values of the attribute.

Next, we find all pairs of strongly correlated numeric attributes. For each such a pair A

and A′, we create an N × N pixel grid G according to the Cartesian product of the buckets

of each numeric attribute. The problem of finding the optimal arbitrary connected pixel grid

region, which optimizes one of classification criteria mentioned in Section 3.2.1, is NP-hard.

Therefore, we consider a family R of grid regions; in particular, we consider the set R(xmono)

of all x-monotone connected regions, the set R(recti) of all rectilinear convex regions, and the

set R(recta) of all rectangular regions. (Examples of these regions are shown in Figure 1.5 in

Section 1.2.1.)

An x-monotone region is a grid region whose intersection with any vertical line is undivided.

For example, Figure 1.5 (a) shows a region that is not x-monotone, since the intersection of the

vertical line A and the region is divided. In contrast, Figure 1.5 (b) shows an x-monotone region.

We can express an x-monotone region by a disjunction of expressions, where each disjunct has

the form (a1 ≤ x ≤ a2) and (b1 ≤ y ≤ b2), where the union of disjuncts does not divide a

vertical column. A rectilinear convex region is an x-monotone region such that its intersection

with any horizontal line is also undivided. Figure 1.5 (c) shows an example of a rectilinear

convex region. A rectangular region is a rectangle on G, and is thus a rectilinear convex region.

We will consider the class of x-monotone regions, the class of rectilinear convex regions, and the

class of rectangular regions.

Assume that we focus on two numerical attribute B and C. We distribute the values of

B (resp. C) into NB (NC) buckets so that every bucket contains almost the same number of

records. We then divide the Euclidean plane associated with B and C into NB×NC pixels (unit

squares). For simplicity, we assume that NB = NC = N without loss of generality as regards

our algorithms.

Regarding the pair of attributes as a two-dimensional attribute, we compute the region Ropt

72 CHAPTER 3. CLASSIFICATION

in R and consider the discriminant rule (t[A], t[A′]) ∈ Ropt. The author presents algorithms for

computing Ropt in worst case times of O(nN2), O(nN3), and O(nN3) for R(xmono), R(recti),

and R(recta) respectively. Moreover, in practical instances, our algorithms run in O(N2 log n)

time, O(N3 log n) time, and O(N3 log n) time. Since N ≤ √
n, those time complexities are

O(n log n), O(n1.5 log n), and O(n1.5 log n), respectively.

3.4.5 Hand Probing for Region

If a region rule divides the database relation R into two segments S and S̄. The rule can be

characterized by a stamp point of the segment S, x(S) = (x1(S), x2(S), · · · , xk(S)), as same as

the cases of value groups or ranges.

There are O(N2N) possible x-monotone or rectilinear regions on an N ×N pixel grid and it

is not affordable to examine all of the possible regions. As proved in Section 3.2.3, all criteria

for classification problems are convex. Therefore, we can concentrate on stamp points on the

convex hull, Conv(P), of the set of all O(N2N) points, P . We use the hand probing algorithm

for the optimal region for find a stamp point on the convex hull.

A point of the convex hull and its corresponding region can be computed efficiently by

using “hand probing” technique, invented by Asano et al. [ACKT96] for image segmentation

and modified by Fukuda et al. [FMMT96b] for extraction of the two-dimensional optimized

association rules.

Any tangential hyperplane in a k-dimensional space has a normal vector Θ = (θ1, θ2, · · · , θk).

By giving a k-dimensional vector Θ, we can compute the tangential point p of the hyperplane

and Conv(P) by maximizing (or minimizing) the inner product (Θ,p).

Definition 3.7 Assume two numerical conditional attributes C1 and C2 that are divided into

N1 and N2 buckets, respectively. Let us consider a two-dimensional N1 × N2 pixel-grid G,

consisting of N1 ×N2 unit squares called pixels. G(r, c) is the (r, c)-th pixel, where r and c are

called the row number and column number, respectively. The c-th column G(∗, c) of G is its

subset consisting of all pixels whose column numbers are c. Geometrically, a column is a vertical

stripe. We use the notation n = N1 ×N2. For a set of pixels, the union of pixels in it forms a

planar region, which we call a pixel region. [EOD]

For each record t, t[C1] and t[C2] are values of the numeric attributes C1 and C2 at t. If

t[C1] is in the r-th bucket and t[C2] is in the c-th bucket in the respective bucketings, we define

f(t) = G(r, c). Then, we have a mapping f from the set of all records to the grid G.

Let xi(r, c) (i = 1, · · · , k) denote the number of records whose value of the target attribute

is ai and are mapped to G(r, c). Given a region X, we define

x(X) = (
∑

G(r,c)∈X

x1(r, c), · · · ,
∑

G(r,c)∈X

xk(r, c)).

Given a vector Θ = (θ1, · · · , θk), we define

gΘ(r, c) = θ1 × x1(r, c) + · · ·+ θk × xk(r, c)

3.4. OPTIMAL RULE ON NUMERICAL ATTRIBUTE 73

Gain(X) =
∑

G(r,c)∈X

gΘ(r, c).

We want to compute a region X that maximizes Gain(X) for a vector Θ.

Hand Probing for X-monotone Region

For each m = 1, 2, . . . , N , we pre-compute the indices bottomm(s) and topm(s) for all 1 ≤ s ≤ N ,

where bottomm(s) and topm(s) are defined so that

s∑

i=bottomm(s)

gΘ(i,m) and
topm(s)∑

i=s

gΘ(i,m)

are maximized, respectively.

Theorem 3.7 The indices topm(s) and bottomm(s) for all s = 1, 2, . . . , N can be computed in

O(N) time. [EOT]

Proof: Define Summ[< j] =
∑j−1

i=1 gΘ(i,m) for 2 ≤ j ≤ N , and Summ[< 1] = 0. bottomm(s)

maximizes
s∑

i=bottomm(s)

gΘ(i,m) = Summ[< (s + 1)]− Summ[< bottomm(s)],

which is equivalent to the property that bottomm(s) minimizes Summ[< bottomm(s)]. Define

bottomm(1) = 1. For each s = 2, . . . , N , compute bottomm(s) from bottomm(s − 1) in the

following manner:

• If Summ[< s] < Summ[< bottomm(s − 1)], Summ[< bottomm(s)] is the minimum when

bottomm(s) = s.

• Otherwise, Summ[< bottomm(s)] is the minimum when bottomm(s) = bottomm(s− 1).

During the above step, we only need to scan gΘ(i, m) once for each i = 1, . . . , N .

The computation of topm(s) is analogous. [EOP]

For two indices s and s′, we define coverm(s, s′) as follows:

coverm(s, s′) =





∑topm(s′)
i=bottomm(s) gΘ(i,m) if s ≤ s′

∑topm(s)
i=bottomm(s′) gΘ(i,m) if s > s′

Let G(∗,≤ m) be the part of the grid on the left of the m-th column, including G(∗,m). We

define F (i,≤ m) to be the corresponding (intermediate) x-monotone region X ′ with a vector

Θ that maximizes Gain(X ′) and contains the pixel G(i,m) and are contained in the region

G(∗,≤ m). Then, we have the following formula:

F (i,≤ m + 1) = max
1≤j≤N

{max(F (j,≤ m), 0) + coverm+1(i, j)}. (3.1)

When F (j,≤ m) is negative, we do not connect the m-th and the (m+1)-th columns. Figure 3.13

illustrates this formula and the corresponding region. By using Formula 3.1, we can compute

maxm{maxi F (i,≤ m)} and the corresponding region X with a vector Θ, which maximizes

Gain(X).

74 CHAPTER 3. CLASSIFICATION

�������������������������������
���
��
��
��
��
��
��
��
�������������������������������

F(j, m)

(m+1)th column

cover(i,j)

i

j

���
������
���
������
������
������
������
������
������
������
������
���

���

�
�

Figure 3.13: F (i,≤ m + 1) and the Corresponding Region

Lemma 3.1 Suppose that F (j,≤ m) is given for j = 1, 2, · · · , N . We can compute F (i,≤ m+1)

for all i = 1, 2, · · · , N in O(N) time. [EOL]

Proof: Define D(i, j) = F (j,≤ m)+coverm(i, j) and assume an N×N matrix D whose elements

are D(i, j). We can see that the upper and lower triangle parts (D+ and D−, respectively) of

the matrix D satisfies the following equation

D(i1, j1) + D(i2, j2) = D(i2, j1) + D(i1, j2)

for every i1 ≤ i2 and j1 ≤ j2.

Thanks to the property, in D− where j2 ≤ i1, if the k-th column is the maximum in the

m-th row, the maximum column of the (m+1)-th row must be either the k-th or the (m+1)-th

column. Note that since D(m, k)+D(m+1, k′) = D(m+1, k)+D(m, k′) and D(m, k) ≥ D(m, k′),

D(m + 1, k′) ≤ D(m + 1, k) for all k′ ≤ m.

Thus, in O(N) time, we can compute all the row maxima of D+ and D−, and consequently,

of D. By definition, F (i,≤ m + 1) is the i-th row maximum of D. [EOP]

Theorem 3.8 The corresponding x-monotone region with a vector Θ can be computed in O(N2) =

O(n) time. [EOT]

Proof: We solve Formula 3.1 for m = 1, 2, . . . , N . This requires O(N2) = O(n) time. [EOP]

3.4. OPTIMAL RULE ON NUMERICAL ATTRIBUTE 75

Hand Probing for Rectilinear Region

For x-monotone regions, we can compute a stamp point and its corresponding region on Conv(P)

from a set of points (x-monotone regions) P by using hand probing. However, one defect was

pointed out by several people who have observed our output x-monotone region rules is that

although the output region usually gives an intuitive idea on the association between attributes,

it sometimes happens that the region is wildly notched and that it is difficult to speculate on

the meaning of the rule. Since speculation through visualization is very important for users who

require decision support knowledge, this is a serious problem. Moreover, if we use a very fine

bucketing, the shape of the region tends to be very sensitive to the sampling if we use a sample

subset of the database to construct the region [YFM+97]. This dependency on the sample should

be avoided, since we want to make the rule applicable not only to data in the database but also

to unknown data in general; however, it is often tedious to tune the size of bucketings.

In order to resolve these defects, one idea is to design a tool to smooth the shape of grid

regions, and apply the tool to the x-monotone region output by our algorithm. However, this

may result in a loss of optimality, and we would like to avoid this kind of heuristic as far as

possible. Our solution keeps the optimality formulations but replaces the family of x-monotone

regions by the family of rectilinear convex regions. A region is rectilinear convex if it is both

x-monotone and y-monotone. We show below that the corresponding region with a vector Θ in

this family can be computed in O(N3) = O(n1.5) time.

This type of regions gives a more intuitive region and also it is stable for the data sampling

even if we use a fine bucketing (reported in [YFM+97]). As a trade-off, it is more expensive to

compute the rectilinear convex regions than x-monotone regions; therefore, we should provide

both functions so that the user can flexibly choose whichever is better suited to the application

and data.

Let X be a rectilinear convex region. Let m1 and m2 respectively denote the indices of

the first and last columns. Let s(i) and t(i) denote the indices of the bottom and the top

pixels of the i-th column. Since X is a rectilinear convex region, the sequence (t(m1), t(m1 +

1), · · · , t(m2 − 1), t(m2)) of indices of top pixels from left to right increases monotonically up

to some column and then decreases monotonically (possibly one of these two monotone parts is

empty). Similarly, the sequence of indices of bottom pixels decreases monotonically up to some

column and then increases monotonically.

Therefore, we can cut a rectilinear convex region vertically into at most three monotone

pieces each of which is among the following four types:

• A region that gets wider from left to right: This type of region is named W .

• Regions that slant upward and downward: These types of regions are named U and D,

respectively.

• A region that gets narrower from left to right: This type of region is named N .

76 CHAPTER 3. CLASSIFICATION

W D N W D NW N

Figure 3.14: Partition of Rectilinear Region into Monotone Parts

Theorem 3.9 The corresponding rectilinear convex region X with a vector Θ that maximizes

Gain(X) can be computed in O(N3) time. [EOT]

Proof: There are some possible combinations as shown in Figure 3.14, but we consider only

the WUN -type region that starts with a W -type part, continues to a U -type part, and ends

with an N -type part, since other cases can be handled similarly. However, we also use W and

WU types to explain our algorithm.

Our algorithm is based on the dynamic programming paradigm. Before running the dynamic

programming program, we pre-compute
∑

j∈[s,t] gΘ(m, j), which will be denoted by gΘ(m, [s, t]),

for m = 1, · · · , N and 1 ≤ s ≤ t ≤ N . This computation takes O(N3) time.

Now, let RW (m, [s, t]) (resp. RWU (m, [s, t]), RWUN (m, [s, t])) be the (intermediate) cor-

responding rectilinear convex regions with Θ of W -type (resp. WU -type, WUN -type) rec-

tilinear convex regions whose last column is the m-th one, and their intersections with the

m-th column range from the s-th pixel to the t-th pixel. Let fW (m, [s, t]), fWU (m, [s, t]) and

fWUN (m, [s, t]) be their inner product values, i.e., (x(RW (m, [s, t])), Θ), (x(RWU (m, [s, t])),Θ),

and (x(RWUN (m, [s, t])),Θ), respectively.

First, we consider W -type regions. For m = 1, fW (1, [s, t]) = gΘ(1, [s, t]). For m > 1, if

s = t, fW (m, [s, s]) = max{gΘ(m, s), fW (m − 1, [s, s]) + gΘ(m, s)}. Consider the case s < t.

Since the region is of type W , the (m−1)-th column of RW (m, [s, t]) must be a subinterval [s, t].

If it is a subinterval of [s, t − 1] (resp. [s + 1, t]), we can observe that the region must contain

RW (m, [s, t−1]) (resp. RW (m, [s+1, t]). Hence, if RW (m, [s, t]) contains neither RW (m, [s+1, t])

nor RW (m, [s, t− 1]), its (m− 1)-th column must be the interval [s, t].

Hence, the following recurrence holds:

fW (m, [s, t]) = max




fW (m− 1, [s, t]) + gΘ(m, [s, t])
fW (m, [s + 1, t]) + gΘ(m, s)
fW (m, [s, t− 1]) + gΘ(m, t)




3.4. OPTIMAL RULE ON NUMERICAL ATTRIBUTE 77

On the basis of this recursion formula, we can compute fW (m, I) for all m and I in O(N3) time.

Next, consider fWU (m, [s, t]). For m = 1, fWU (1, [s, t]) = gΘ(1, [s, t]). For m > 1, we

pre-compute maxi≤s fW (m− 1, [i, t]) and maxi≤s fWU (m− 1, [i, t]) for all s ≤ t in O(N2) time.

Since the region is of type U , the (m−1)-th column of RWU (m, [s, t]) should be an interval [i, j]

for i ≤ s and j ≤ t. If j 6= t, j ≤ t− 1 holds, and we can observe that the region must contain

RW (m, [s, t − 1]). Hence, we have the following recurrence, which leads us to an O(N3)-time

dynamic programming algorithm:

fWU (m, [s, t]) = max




maxi≤s fW (m− 1, [i, t]) + gΘ(m, [s, t])
maxi≤s fWU (m− 1, [i, t]) + gΘ(m, [s, t])
fWU (m, [s, t− 1]) + gΘ(m, t)




Finally, consider WUN type. For m = 1, fWUN (1, [s, t]) = gΘ(1, [s, t]). For m > 1, we have

the following recurrence (a mirror formula to that for the W -type):

fWUN (m, [s, t]) = max




fWU (m− 1, [s, t]) + gΘ(m, [s, t])
fWUN (m− 1, [s, t]) + gΘ(m, [s, t])
fWUN (m, [s− 1, t])− gΘ(m, s− 1)
fWUN (m, [s, t + 1])− gΘ(m, t + 1)




In this case, we need to compute fWUN (m, [s, t]) by using fWUN (m, [s−1, t]) and fWUN (m, [s, t+

1]). Thus, we first compute fWUN (m, [1, N]) = max{fWUN (m−1, [1, N])+gΘ(m, [1, N]), gΘ(m, [1, N])},
and run the dynamic programming to compute the values of fWUN (m, I) from larger intervals

I to smaller ones.

Consequently these recursion formulas provide a dynamic programming method of obtaining

an O(N3)-time solution for computing fWUN (m, [s, t]) for all m and s ≤ t. [EOP]

Hand Probing for Rectangular Region

As for rectangular regions, there are O(N2) ranges on one of the two axes. For each O(N2)

range, we can apply range optimization technique, which spends O(N) time, given in Section 2.2.

Therefore, the time complexity of computing a rectangular region is also O(N3).

3.4.6 Search on Convex Hull

To search for the stamp point associated with the region R that optimizes one of criteria for

classification problems, Theorem 3.1, 3.2, and 3.3 imply that the optimal stamp point must be

on the convex hull of all the stamp points. By using the hand probing technique repeatedly, we

can scan all the points on the hull and find the optimal point. However, when the number of

records is n, the number of points on the hull is at most n. Therefore, in the worst case, we may

need to try hand probing n times in order to find the optimal stamp point, which is costly in

practice. To avoid searching for unnecessary points, we use a guided branch and bound strategy.

If we rewrite the hand probing procedure into the one of the three region families, we can use

probing algorithm mentioned in Section 3.3.5.

78 CHAPTER 3. CLASSIFICATION

I(left)
I(right)Q(I)

θleft

θright

θmid

I(mid)

Figure 3.15: Guided Branch-and-Bound Search

Example 3.8 Let us consider the searching algorithm for a two dimensional, i.e., k = 2 prob-

lem. While searching for the optimal region, we maintain the current maximal value Vmax

corresponding to the points examined so far. Suppose we have examined two tangent points,

say I(left) and I(right), and consider the interval I = [I(left), I(right)] in Figure 3.15. Let

Q(I) = (xQ(I), yQ(I)) be the point of intersection of the two tangent lines that are used to com-

pute I(left) and I(right). We can compute the value of an objective function, say “f ,” of Q(I),

f(Q(I)) = f(xQ(I), yQ(I)).

Lemma 3.2 For any point Q′ = (x′, y′) inside the triangle I(left), I(right), and Q(I),

f(x′, y′) ≤ max{f(xQ(I), yQ(I)), Vmax}

[EOL]

Proof: Immediate from Theorem 3.1, 3.2, and 3.3. [EOP]

This lemma gives an upper bound of points on the convex hull between these two points.

Hence, we can find the optimal region effectively by hand probing together with a branch and

bound strategy guided by the values f(Q(I)). We examine the subinterval with the maximum

value of f(Q(I)) first. In addition, subintervals whose f(Q(I)) is less than Vmax are pruned

away. During the process, Vmax is monotonically increases while each f(Q(I)) is monotonically

decreases. Most of the subintervals are expected to be pruned away during the computation,

and therefore the number of hand probings is expected to be O(log n), where n is the number

of points on the convex hull. Algorithm in Figure 3.16 sketches the branch and bound search.

Recall that the time complexities of performing hand probing for an x-monotone region, a

rectilinear convex region, and a rectangular region are O(N2), O(N3), and O(N3), respectively.

Thus, we can experimentally compute the region minimizing the mean squared error in time

proportional to O(N2 log n), O(N3 log n), and O(N3 log n) for x-monotone regions, rectilinear

convex regions, and rectangular regions, respectively. [EOE]

3.4. OPTIMAL RULE ON NUMERICAL ATTRIBUTE 79

0) Algorithm Probe2D() {
1) Compute the initial interval Iinit = [Iinit(left), Iinit(right)] using Θ = (∞, 1).

2) f(Q(Iinit)) = ∞
3) Vmax = max{f(Iinit(left)), f(Iinit(right))}
4) Insert Iinit into S.

5) Initialize the set of sorted candidate intervals S.

6) Repeat until S becomes empty or stopping conditions are satisfied {
7) Refine2D(S)

8) }
9) }
10) Function Refine2D(S) {
11) Let I be the interval that has the maximal f(Q(I)) from S.

12) IF Vmax < f(Q(I)) {
13) Let Θmid be the slope of the line containing I(left) and I(right).

14) Compute a new point I(mid) using Θmid.

15) If Vmax > f(I(mid)) then Vmax = f(I(mid)).

16) Divide I into Ileft = [I(left), I(mid)] and Iright = [I(mid), I(right)].

17) Compute f(Q(Ileft)) and f(Q(Iright)).

18) Insert Ileft and Iright into S.

19) }
20) }

Figure 3.16: Branch and Bound Search for Two Classes Problems

80 CHAPTER 3. CLASSIFICATION

Table 3.6: Time for Computing the Optimal Region in Classification (1)

X-monotone Rectilinear Rectangular

Resolution sec. #hand-probe sec. #hand-probe sec. #hand-probe

102 0.08 26 0.05 24 0.01 16

202 0.36 27 0.30 24 0.05 23

302 1.03 32 1.30 31 0.14 25

402 1.78 33 3.19 30 0.37 29

502 2.83 34 6.97 31 0.73 30

3.4.7 Experiments

In this subsection, we examine the time taken to compute the optimal region. In this experi-

ments, we generated our test data whose target attributes takes two values, in the form of an

N ×N grid, as follows: We first generated random numbers uniformly distributed in [N2, 2N2]

and assigned them to the number of records in each pixel. We then assigned a value in [1, N2]

to the number of records that take one of the boolean values of the target attribute, from a

corner pixel to the central one, proceeding in a spiral fashion. These test data were generated

so that the number of points on the convex hull increases sub-linearly to N , the square root of

the number of pixels.

We examined the CPU time taken to compute the optimal region and the number of hand

probing needed to find the region. All the experiments were performed on an IBM RS/6000

workstation with a 112 MHz PowerPC 604 chip and 512 MB of main memory, running under

the AIX 4.1 operating system.

Table 3.6 shows the time (sec.) and the number of hand probing that were required in the

guided branch-and-bound algorithm to find the optimal x-monotone (resp. rectilinear, or rect-

angular) region that maximizes the entropy function. It shows that the number of hand probing

increases very slowly thanks to the guided branch-and-bound algorithm. Figure 3.17 confirms

that the CPU time follows our scale estimation. Although the asymptotic time complexity for

computing the optimal x-monotone region is better than that for computing the optimal recti-

linear region, in practice the optimal rectilinear region is computed faster, because the constant

factor is smaller.

We assume the optimal region will be used for classifying data, for example, as a decision

tree model. At the root of a decision tree, we may need a large number of pixels to guarantee

the specified pixel density. The number of records, however, decreases in lower parts of the tree,

and the number of pixels soon becomes less than 30 × 30 for most datasets; hence, computing

the optimal rectilinear region is not costly for the purposes, according to Table 3.6.

3.4. OPTIMAL RULE ON NUMERICAL ATTRIBUTE 81

0

50

100

150

200

250

300

40^2 80^2 120^2 160^2 200^2 240^2

T
im

e
[s

ec
]

Resolution

X-monotone
Rectangular

Rectilinear

Figure 3.17: Time for Computing the Optimized Region in Classification (2)

82 CHAPTER 3. CLASSIFICATION

Chapter 4

Decision Tree

Classification is the process of finding a set of models that describe and distinguish data classes

for the purpose of being able to use the models to predict the class of database records whose

class is unknown. Typical forms of the models are rules, rule lists, trees, neural networks, or

Bayesian networks. Among them, the author focused on tree induction models, called decision

trees, in this dissertation.

As mentioned above, among all attributes in a database, we treat one attribute as special,

and call it the target attribute. The other attributes are called conditional attributes. A decision

tree is a rooted (binary) tree structure∗ for modeling and prediction of the target categorical

attribute, each of whose internal nodes is associated with a discriminant rule, called a test. We

associate each leaf node with the subset (called leaf-cluster) of records satisfying all tests on the

path from the root to the leaf. Every leaf-cluster is labeled as one of the value of the target

attribute on the basis of the target value distribution in the leaf-cluster.

For each record, at an intermediate node (initially at the root node), we check the test of the

node to find out which branch a given record should move to. If a record satisfies a test, it goes

down one branch. Otherwise, it goes down the other branch. The record is recursively checked

at intermediate nodes and finally reaches a leaf node. Each leaf lists a predicted value for the

target attribute that is appropriate to the test conditions along the path to that leaf. We can

predict the value of the target attribute for a given record as the value given at the associated

leaf.

Example 4.1 Assume a customer profile database in Table 4.1. In the table, the “Item A”

indicates whether the customer purchase the item or not, “O,” indicates the customer purchased

the item while “X” indicates the customer did not. Figure 4.1 is a decision tree that models and

predicts the Item A of the customer profile database. Each leaf lists a predicted value for the

Item A. Each test conditions along the path to a leaf is one of typical model for the Item A. We

can use the tree to predict the (unknown) value of the Item A for a given record whose values

for conditional attributes, which are used for predicates in the tests, are known. For example, a

∗The author assumes a tree is a binary tree structure in this dissertation.

83

84 CHAPTER 4. DECISION TREE

Table 4.1: Customer Profile Database (Training Data)

CustomerID Sex Age Occupation · · · Item A · · · Amount Purchase

001 Female 20 Office Worker · · · O · · · 30000

002 Male 20 Other · · · X · · · 24000

003 Male 40 Teacher · · · O · · · 78000

004 Female 30 Office Worker · · · X · · · 12000

· ·

30?t[Age] ≤

{Female}?t[Sex] ∈

Yes

...

No

Yes No

Yes No

Yes No

...

…?

…?

Prediction:
Item A
O

Prediction:
Item A
O

Prediction:
Item A
X

Figure 4.1: Decision Tree for ”Item A”

customer whose Age is 15 and Sex is Female goes to the left node at the test associated with the

root node. Then, at the next node, it goes to the left and reaches the leaf node whose predicted

value is “O.” [EOE]

4.1 Construction of Tree Models

If a training data whose value of the target attribute is given, we can construct a decision tree by

using discriminant rules for the target attribute that can be found from the training data. For a

given training data, we want to construct a compact tree as possible. Unfortunately, if we want to

minimize the total sum of the lengths of exterior paths, the problem of constructing the minimum

decision tree which completely classify a given data is known to be NP-hard [HR76, GJ79]. It

is also believed that it is NP-hard if the minimization objective is the “size,” i.e., the number

of nodes of the tree.

4.1. CONSTRUCTION OF TREE MODELS 85

0) Algorithm GreedyTreeConst(D) {
1) Read all records in D to R.

2) Split(R)

3) }
4) Function Split(S) {
5) If (S satisfies stopping condition) {
6) Set a label of this leaf node.

7) Return.

8) }
9) Examine all possible tests on each categorical attribute.

10) Examine all possible tests on each numeric attribute.

11) Set the optimal test to the test of this node.

12) Split S into Sleft and Sright by the optimal test.

13) Split(Sleft)

14) Split(Sright)

15) }

Figure 4.2: Algorithm of Greedy Tree Construction

However, in practical applications, classification accuracy for unknown data is more impor-

tant than the complete classification of a given data. Therefore, despite the NP-hardness of the

problem, many practical solutions [BFOS84, Qui86b, QR89, Qui93] have been proposed in the

literature. Among them, the C4.5 program [Qui93] applies a heuristic, which greedily constructs

a decision tree in a top-down manner according to a criterion based on the mutual information.

At each internal node, the heuristic examines all the possible tests, and chooses the one for

which the associated splitting of the set of records attains the minimum entropy value.

The greedy construction method proposed by Quinlan can also be applied for various criteria

like the ones in Section 3.2.1. The classic greedy recursive partitioning strategy for constructing

a decision tree can be summarized as the algorithm GreedyTreeConst in Figure 4.2.

In the greedy tree construction, we find the optimal discriminant rule for test at each node.

The author explored how we can find the optimal rule in Section 3.3 and 3.4. We stop splitting

a tree if a set, S, satisfies one of stopping conditions. In general, the stopping conditions are as

follows:

• Set Size Condition

The number of records in S becomes negligible.

• Accuracy Condition

For a decision tree, all values of the target attribute becomes the same or one dominant

value in S is much more frequent than the other values.

86 CHAPTER 4. DECISION TREE

• Dividability Condition

We can not find any predicate that divide S on the domain of all conditional attributes.

Most of the tree construction algorithms assume a binary tree structure. Some commercial

systems like C4.5 [Qui93] construct n-nary tree structure, some nodes in which are divided into

n segments, one for each distinct value of the categorical conditional attribute that is used for

corresponding predicate in the node.

4.2 Prediction Accuracy

One of the most important purpose to construct decision trees from given training database is to

predict unknown value of the target attribute. For a record whose value of the target attribute is

unknown but values of other necessary conditional attributes are known, we can apply a decision

tree to find which leaf node of the tree the record is classified. In each leaf node of a tree, there

is a representative value for the target attribute and the value is used for prediction of records

that are classified into the node.

Now the problem is how credible the predicted value is. One of a good measure for estimating

the credibility is prediction accuracy of decision trees.

One of the most popular method to evaluate prediction accuracy is so called cross validation.

In the cross validation, we divide a training database whose value of target attribute are known

into two datasets. Then, we construct a tree from one of the two datasets. We predict value of

the target attribute for each record in the other dataset, we call the set “validation set,” and

examine the prediction.

For a decision tree, we compute the following ratio of the number of records that are mis-

classified over the number of all data in the validation set, and call the ratio the error ratio of

the decision tree. A misclassified record is a record such that predicted value for the record is

different from actual value of the record.

Accuracy of Decision Trees:

number of misclassified records in the validation set

number of records in the validation set

By evaluating accuracy for a validation set, we can analogically estimate the credibility of

the predicted value of decision trees for records whose value of the target attribute is unknown.

4.3 Pruning

We have examined the prediction accuracy of a decision tree by using public datasets, “diabetes”

provided in the following WWW site:

http://www.ics.uci.edu/∼mlearn/MLRepository.html

In the experiment, we made a huge tree for each data and examined its accuracy against

both training set and validation set. Then, we pruned its leaves little by little and examined

4.3. PRUNING 87

Classification Tree Size LargeSmall

E
rr

o
r

R
at

io

.24

.27

.26

.25

.28

.29

.30

.31

.32 Pima diabetes

Validation Set

Training Set

Figure 4.3: Tree Size and Prediction Accuracy

the smaller tree of each size. Figure 4.3 shows how the accuracy of trees change depending on

the size.

In general, training data contains some noisy records caused by input failures, strange in-

stance and so forth. If we strictly classify such training data and make large trees, trees tend

to fit even for such noisy records. As the results, such trees overfit for the training data and

prediction accuracy for validation set become worse. As in the figure, the accuracy for the vali-

dation set becomes better if we prune some leaves, while the accuracy for training set becomes

better if we increase the size of the tree.

In order to avoid the overfitting, many techniques, which we call pruning, have been proposed

in the literature [Min89]. There are roughly two types of pruning techniques. One, called

prepruning or stopping, is to stop expanding leaves earlier before a tree becomes too large. The

other, called postpruning, is to remove some of the expanded leaves from a large tree. The former

method saves wasteful time for unnecessary expansions. On the other hand, the latter achieves

more reliable results in many practical cases even though it needs the unnecessary expansions.

4.3.1 Prepruning

Quinlan proposed a prepruning method for classification problems in [Qui86a]. In the greedy

construction of a tree, the method stop expanding a node based on χ2 test. Assume we focus on

a node whose corresponding dataset is R consists of |R| records. Let pi(S) denote the relative

frequency in a set S with which the target attribute takes the i-th value. Suppose that R is

divided into two subsets named S and S̄. The χ2 denote

∑

i

|S|(pi(S)− pi(R))2 + |S̄|(pi(S̄)− pi(R))2

pi(R)
.

88 CHAPTER 4. DECISION TREE

... ...

Node 1
Training:

O=50, X=50
Prediction: O
#Err: 50

Validation �

O=28, X=24
#Err: 24

1

2

3 4

5 6

7

Node 2
Training:

O=40, X=20
Prediction: O
#Err: 20

Validation �

O=20, X=12
#Err: 12

Node 3
Training:

O=30, X=0
Prediction: O
#Err: 0

Validation �

O=16, X=4
#Err: 4

Node 5
Training:

O=10, X=0
Prediction: O
#Err: 0

Validation �

O=2, X=4
#Err: 4

Node 4
Training:

O=10, X=20
Prediction: X
#Err: 10

Validation �

O=4, X=8
#Err: 4

Node 6
Training:

O=0, X=20
Prediction: X
#Err: 0

Validation �

O=2, X=4
#Err: 2

Node 7
Training:

O=10, X=30
Prediction: X
#Err: 10

Validation �

O=8, X=12
#Err: 8

Figure 4.4: Classification of Validation Set

Lower χ2 values support with higher confidence the hypothesis that the data distributions in R

and in R’s two child subsets are independent. Put another way, lower χ2 values mean that the

splitting of R is less effective. We, therefore, give a (user defined) threshold for χ2 so that we

stop expanding the node if χ2 is less than the threshold. Higher thresholds are more likely to

stop generating subtrees and thereby producing smaller decision trees.

Though the prepruning methods can reduce computation time, the accuracy of the trees

produced by postpruning is, in general, higher than that of prepruned trees. Moreover, recent

computational power allows us to spend time for unnecessary expansion of nodes. Therefore,

postpruning methods becomes very popular.

4.3.2 Reduced Error Pruning

One of the most popular postpruning method is reduced-error pruning [Qui87]. To explain the

method, assume a decision tree in Figure 4.4. The tree predicts a target attribute that has two

values, “O” and “X.” We apply a validation set to the tree and the prediction result for each

node is shown in the figure.

For each intermediate node, the reduced-error pruning compares the error at the node to the

sum of the error of its all descendant leaf nodes. For example, if we examine the node 4, the

error of the node (for the validation set) is 4 and the sum of error of the node 5 and the node

6 is 6. Therefore, we can reduce the error for the validation set by pruning the node 5 and the

4.4. MULTIVARIATE DECISION TREES 89

node 6. The reduced-error pruning eliminate all of such nodes.

4.3.3 Cost Complexity Pruning

Breiman et al. considered another popular postpruning method called cost-complexity pruning

that compares the complexity of a tree and the error rate [BFOS84]. In the cost-complexity

pruning, we use a following function evaluating error cost and complexity of subtree for each

node:

sum of error in descendant leaf nodes

number of records
+ α ∗ (number of descendant leaf nodes)

where α is a weight parameter for the number of leaf nodes. We can change the weight for the

complexity in the function by the parameter.

For example, the cost of the node 4, the node 5, and the node 6 in Figure 4.4 is
(

0
10

10
100

+
0
20

20
100

)
+ α ∗ 2.

If we prun the node 5 and the node 6, the cost becomes
(

10
30

30
100

)
+ α ∗ 1.

In the example, we will prun the node 5 and the node 6 if α ≥ 0.1. We construct trees with

various size with various α. We apply the validation set to the trees and find the most accurate

tree and its α value.

In addition to the mentioned postpruning methods, Quinlan proposed a method, which does

not use a validation set to find adequate size of a tree, called pessimistic pruning [Qui87, Qui93].

Mehta et al. proposed a method based on the minimum description length (MDL) principle

[MRA95].

4.4 Multivariate Decision Trees

The author explores an improvement to the standard strategy of selecting internal-node tests

during the decision tree construction. In particular, conventional tree construction algorithms

often use a test on a numerical conditional attribute with a cut value within the range of the

conditional attribute that splits data into those below the cut value and those above. Such a

test is called a “guillotine-cut.” However, for the case when two numerical conditional attributes

have a non-linear correlation with respect to the target attribute, trees with guillotine-cuts tend

to become large and such large trees are in general inaccurate. In such a case, a test with a

two-dimensional region for splitting data into two subsets may be more natural and effective.

4.4.1 Trees with Region Rules

Quinlan [Qui93] pointed out that the approach that use discriminant rules on a single numerical

conditional attribute has a serious problem if a pair of attributes is correlated. For example, let us

90 CHAPTER 4. DECISION TREE

consider two numerical attributes, “height (cm)” and “weight (kg),” in a health check database.

Obviously, these attributes have a strong correlation. Indeed, the region 0.85 ∗ 22 ∗ height2 <

weight < 1.15 ∗ 22 ∗ height2 and its complement provide a popular criterion for separating

healthy patients from patients who need dietary cures. As the example shown in Figure 1.7 in

Section 1.2.2, the enclosed gray region shows the “healthy” region. However, if we construct a

decision tree for classifying patients by using guillotine cutting, its subdivision is complicated and

the size of the tree becomes very large, and hence, it becomes hard to recognize the substantial

rule.

In order to handle the correlation problems, the author added region rules for all pairs (A,A′)

of correlated attributes, and construct a decision tree by using the optimal region rule at each

step of the greedy tree construction. As a special case of region rules, we also consider rules of

the form (t[A] ∈ I) for a range I in order to develop our system.

We specify a number N ≤ √
n, and construct an almost equi-depth ordered bucketing of

records for each numeric attribute A. That is, we construct buckets BA
1 , · · · , BA

N each of which

contains approximately n/N records, satisfying t[A] ≤ t′[A] for every t ∈ BA
i , t′ ∈ BA

j and i < j.

We can use the efficient randomized algorithm mentioned in Section 2.2.2 for constructing such

a bucketing.

For a pair of numeric attributes A and A′, we have a pixel grid G of size N ×N generated

as a Cartesian product of the buckets. We consider a family R of grid regions of G. For each

R ∈ R, we consider a splitting that divides data into those inside the region R and those outside

the region. Let Ropt be the region of R that maximizes one of objective functions defined in

Section 3.2. The region Ropt and the associated splitting are called the optimal region with

respect to R and the pair of attributes (A,A′). The author proposed decision trees that use

such optimal regions for tests at internal nodes of the trees.

Since the regions separated by guillotine cutting and those separated by line cutting are very

special cases of connected x-monotone regions, our method can find a region rule with better

objective function values at each step of the greedy tree construction. Hence, we can almost

always create a smaller tree. In the example in Figure 1.7, the rule 0.85∗22∗height2 < weight <

1.15 ∗ 22 ∗ height2 itself defines an x-monotone region, and hence we can create a nice decision

tree of height two, i.e., with the root and two leaves.

One defect of our approach is that the rule (t[A], t[A′]) ∈ R is sometimes hard to describe.

However, we can describe the rule by combining a visualization system. Figure 4.5 is a graphical

view of an x-monotone region in a decision tree which was constructed from a “diabetes” diag-

nosis dataset, which is in the UCI repository [BM98]. The visualization system uses red color

level and brightness to show characteristics of each pixel. The red level indicates the probability

of a positive, or negative, patient in each pixel, and the brightness indicates the number of

patients in each pixel. The data in the node are partitioned according to whether they are in

the x-monotone region Ropt or not. In this example, the near-triangle region Ropt corresponds

to the cluster of patients less likely to be positive for diabetes.

4.4. MULTIVARIATE DECISION TREES 91

Figure 4.5: X-monotone Region Splitting

92 CHAPTER 4. DECISION TREE

4.4.2 Record Density of a Pixel

If we consider regions for tests in a decision tree, we have to adjust some inherent tuning

parameters of regions in addition to the choice of region families.

We uniformly distribute each numeric attribute into N ordered buckets. Next, for each pair

of numeric attributes, we create an N ×N pixel grid G. The average number of records in each

pixel on G, which we call the record density, influences the accuracy of the trees. Using a lower

record density is likely to make the trees overfit the training dataset, while a coarse grid with a

higher record density often fails to find variously shaped regions.

We empirically found that a record density ranging from five to ten gives accurate results

for test datasets, and we therefore use a record density of five or ten in the later experimental

section. The experimental results for a record density of five show the effects of relatively fine

grid regions, while those for a record density of ten show the effects of coarse grid regions.

In the process of generating trees, the number of records becomes smaller at nodes lower in

the tree. In order to guarantee a record density of five or ten, we are forced to use a coarse grid,

say 2 × 2, which is too rough to generate interesting regions. If we have to use a coarse grid

whose size is less than 5× 5, we employ guillotine-cut splitting instead.

4.5 Experiments

4.5.1 Prediction Accuracy

In this subsection, we describe several experimental results to examine classification accuracy of

trees with region splitting by using cross validation test.

Ten-fold Cross-Validation Test

We performed the following ten-fold cross validation test:

• Randomly divide the original dataset into ten almost equal-sized subsets.

• Take the union of nine subsets and use the union as the training dataset to generate a

decision tree that splits data by guillotine cutting, x-monotone regions, rectilinear regions,

or rectangular regions.

• Use the remaining one subset as the test dataset to evaluate the decision tree generated by

the training dataset. Compute the ratio of the number of test records that are misclassified

to the number of all data in the test dataset, and call the ratio the error ratio of the decision

tree against the test dataset.

• Repeat the above steps ten times, and then calculate the average of all the error ratios.

4.5. EXPERIMENTS 93

Pruning

From a training dataset, we can generate larger decision trees by expanding leaves as much as

possible. Larger decision trees can correctly classify data in the training dataset with higher

accuracy, but they are likely to overfit the training dataset, and therefore provide higher error

ratios against the test dataset.

We need some criterion for when to stop expanding a decision tree, and we employ the χ2

test to control tree size [Qui86a]. We used χ2 thresholds ranging from 0 to 45. The accuracy

critically depends upon the χ2 critical value that is selected. Unfortunately, we do not have a

theoretical method to predict the optimal, or critical, value of χ2. To the best of our knowledge,

this problem is neither solved nor well studied in the literature of research on decision trees.

We adopt a naive heuristic method, named multi-trial method, in which we construct trees for

a few number of χ2 values, test the trees using the ten-fold cross validation, and select the one

with the best accuracy. Although our method uses a portion, 1/10 in our experiment, of the

dataset as the test data for the decision trees, we think it is practically sufficient to use 9/10 of

the dataset for the training data of the decision trees.

Datasets

We used several public datasets, summarized in Table 4.2, which were acquired from the UCI

Machine Learning Repository [BM98]. Since this experiment was to examine our method for

handling numeric rules and its effectiveness, we chose these datasets because all the conditional

attributes were numeric. For records that have null value, we assigned the average value of the

attribute to those missing values.

If we use small datasets, we have to use small pixel grids, say 5× 5 or a little larger. Such

small pixel grids are inadequate for comparing various region families. Moreover, such notchy

grid regions reduce the accuracy even if they can capture correlations. Therefore, we eliminated

small datasets from the repository. However, we included some datasets that are small in the

above sense, to obtain as broad an evaluation as possible. Note that numerical values in the

“german credit” dataset are discrete.

For the datasets whose number of categories in the target attribute is more than three, we

employed hand probing in the multidimensional space.

Classification Capability

Figure 4.6 shows the ten-fold cross validation result of the “breast-cancer-wisconsin” dataset in

Table 4.2. In the figure, line labeled “Rectilinear (dens5),” for example, shows the average error

ratio against the test dataset of decision trees using rectilinear convex region splitting with a

pixel density of 5, for various χ2 stopping values ranging from 0 to 45. For smaller χ2 values,

we have decision trees so much larger that their error ratios are relatively high and overfit the

training dataset. In general, we have to make larger decision trees as the number of categories

94 CHAPTER 4. DECISION TREE

Table 4.2: Summary of Classification Datasets

Dataset #categories #records #attributes

breast-cancer-wisconsin 2 699 9

german credit 2 1000 24

liver disorder 2 345 6

pima diabetes 2 768 8

balance scale 3 625 4

waveform 3 5000 20

waveform-+noise 3 5000 40

vehicle 4 846 18

segmentation 7 2310 19

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0 5 10 15 20 25 30 35 40 45

E
rr

or
 r

at
io

Chi square

Breast cancer wisconsin

X-monotone (dens5)
X-monotone (dens10)

Rectilinear (dens5)
Rectilinear (dens10)
Rectangular (dens5)

Rectangular (dens10)
Guillotine

Figure 4.6: Accuracy for “breast cancer wisconsin”

in the target attribute increases.

In the figure, the error ratio of the decision tree for χ2 = 45 has the lowest value, 4.15%. On

the other hand, the lines labeled “guillotine” show the cases in which we use guillotine cutting

instead of region splitting. For the “breast-cancer-wisconsin” dataset, the lowest error ratio of

those decision trees with guillotine cutting is 5.72%.

For the other datasets, we performed the same analysis, which shows the same general trends

as Figure 4.6 (i.e., generally, a lower error for rectilinear (dens 5) over alternatives across weight

values, and similar shape curves for each method due to under and overfitting). All the graphs

of the cross validation results are shown in Appendix A.1.

Table 4.3 and 4.4 summarize the results of the ten-fold cross validation results of the datasets

in Table 4.2. As regions for splitting datasets, we used x-monotone regions, rectilinear convex

regions, and rectangular regions. The pixel density was set to 5 or 10. We compute the lowest

error ratio for each type of splitting and the average number of leaves in the accurate trees. In

the table, the lowest error ratio for each dataset is underlined. Observe that results of region

4.5. EXPERIMENTS 95

Table 4.3: Summary of Classification Accuracy (1)

Rectilinear X-monotone

dens. 5 dens. 10

Dataset Err(%) Size Err(%) Size Err(%) Size

breast-cancer-wisconsin 4.15 3.3 4.29 3.5 5.01 3.4

german credit 23.80 3.6 27.90 4.3 27.30 3.8

liver disorder 38.83 3.2 33.36 11.4 34.81 2.0

pima diabetes 25.12 2.1 26.02 7.0 24.47 4.5

balance scale 15.52 34.7 18.24 14.5 15.52 34.7

waveform 20.98 33.2 21.18 27.4 21.74 46.9

waveform-+noise 21.80 34.6 21.32 38.6 22.54 30.3

vehicle 28.47 12.2 29.68 77.1 30.02 17.0

segmentation 4.37 53.7 5.06 58.2 4.81 57.9

splitting are more accurate than guillotine cutting in most cases.

All of the cross validation results from datasets using diverse conditions can be summarized

as follows:

• Table 4.3 and 4.4 show that the rectilinear convex region splitting with pixel density 5 won

over the guillotine cutting on eight of nine datasets. Moreover, it won over all of other

region splittings except the rectilinear convex region splitting with pixel density 10 on six

data sets.

• The graphs show that if we use x-monotone regions with a low pixel density, it tends

to give high error ratio because of overfitting. In contrast, rectilinear convex regions are

robust even if we use a low pixel density.

• The χ2 value giving the most accurate result highly depend on both datasets and con-

struction methods.

Another Pruning Method

A defect of constructing the decision tree by using χ2 based pruning together with the multi-trial

method is that we need to construct trees for several χ2 values. In our actual implementation,

we first construct the decision tree for the smallest χ2 value, and then prune it to obtain trees

with larger χ2 values; therefore, construct unnecessarily huge tree for the smallest χ2 value, and

slow down the processing time.

Although it is ideal to find out a more sophisticated method to predict a critical value of χ2

from the experiment; however, the experimental results, given in Figure 4.6 and other figures in

Appendix A.1, show that the accuracy curve highly depends on the dataset, and behaves too

wild to guess a nice function on the data parameters such as data size, number of attributes,

96 CHAPTER 4. DECISION TREE

Table 4.4: Summary of Classification Accuracy (2)

Rectangular Guillotine

Dataset Err(%) Size Err(%) Size

breast-cancer-wisconsin 4.58 4.0 5.72 19.2

german credit 26.90 4.6 25.60 12.8

liver disorder 31.08 2.0 34.87 3.0

pima diabetes 23.69 4.6 26.82 4.4

balance scale 19.34 44.7 20.95 48.8

waveform 22.36 65.1 22.74 91.7

waveform-+noise 22.94 67.7 24.36 91.7

vehicle 27.65 38.9 26.23 94.0

segmentation 4.89 65.3 4.50 71.1

and number of categories, to predict the optimal value of χ2. The investigation into such a

prediction function remains a major open problem in both theory and practice.

In this subsection, we describe our experiment on another pruning strategy, in which we need

not construct a unnecessarily huge tree, and compare the accuracy to the multi-trial method.

Training and Validation Set Method

A popular approach for the problem to determine whether to expand a node or not during

construction of a decision tree is the training and validation set method, in which we separate

an available dataset into two distinct subsets and then use one to expand a leaf and the other

to evaluate the expansion [Mit97]. Among many possible implementations of the training and

validation set method, we adopt the following algorithm:

• We separate the available records into two distinct sets, a training set and a validation

set. The validation set contains about one third of all the available records.

• We construct the decision tree on the training set top-down using the entropy heuristic,

in which we stop the expansion using the validation given below.

• Suppose that a node (parent node) in the decision tree is split into two children. We

compute the number of misclassified records in the validation set for each of the parent

node and two children. If the splitting does not reduce the number of misclassified records,

then we abandon the splitting and stop expanding at the parent node. Otherwise, we

continue expanding the tree recursively.

We evaluate the effectiveness of this approach by using the cross validation test. Table 4.5

shows the error ratio and the average number of leaves of the pruned trees. The result shows

that although the training and validation set method is sometimes better or competitive, the

multiple trial method using χ2 validation clearly wins on several datasets.

4.5. EXPERIMENTS 97

Table 4.5: Classification Accuracy for Pruned Trees

X-monotone Rectilinear Rectangular Guillotine

Dataset Err Size Err Size Err Size Err Size

breast-cancer-wisconsin 3.86 4.0 3.72 4.1 6.14 3.9 7.29 5.6

german credit 28.10 4.2 28.40 4.3 27.60 5.3 26.40 8.2

liver disorder 38.00 2.0 38.00 2.0 38.00 2.0 37.44 4.5

pima diabetes 28.67 5.4 29.59 4.1 29.70 5.0 24.86 8.4

balance scale 19.98 15.8 19.98 15.8 22.40 11.1 26.24 12.5

waveform 23.28 64.5 23.98 65.2 23.84 82.6 29.50 63.4

waveform-+noise 23.82 54.6 22.96 60.5 25.02 66.7 25.08 92.3

vehicle 34.65 17.3 33.69 18.2 33.80 27.5 47.10 11.7

segmentation 24.46 21.4 21.95 22.0 22.12 22.3 32.25 14.2

4.5.2 Performance Results

In this section, we examine the overall performance in the tree construction. At each node

of a decision tree, we first prepare the grid, and then compute the optimal region. The grid

preparation is not expensive, because it can be done by scanning all the records at a node just

once. The problem is that we have to calculate the optimal regions for all pairs (permutations for

x-monotone regions) of two numerical attributes. Thus, the number of attributes dramatically

affects the overall performance.

Table 4.6 compares the time (sec.) taken to construct trees by using datasets with different

numbers of records. We randomly selected records from the “waveform” dataset to generate

datasets having different numbers of records, and used those datasets to construct decision trees

by performing region splitting with a pixel density of 5 and conventional guillotine cutting. We

used the first eight numerical attributes as the conditional attributes, in order to simplify the

experiment, and compared the time taken to construct pruned trees. The results show that

the tree construction time is a little more than our scale estimation, because trees from larger

datasets tend to become bigger.

Table 4.7, on the other hand, compares the performance using datasets with different num-

bers of attributes. We used 3000 records from the “waveform” dataset, and constructed trees

using the first N numerical attributes. Observe that the time complexity is almost linear in the

square of the number of attributes. In case of guillotine cutting trees, the test optimization cost

is so small that time taken to construct a tree depends mainly on its final tree size.

98 CHAPTER 4. DECISION TREE

Table 4.6: Decision Tree Construction Time (1)

#records X-monotone Rectilinear Guillotine

1000 58 27 8

2000 163 66 14

3000 273 106 19

4000 425 165 26

5000 613 244 49

Table 4.7: Decision Tree Construction Time (2)

#attributes X-monotone Rectilinear Guillotine

4 87 35 14

6 163 70 23

8 273 106 19

10 410 152 15

12 522 204 18

Chapter 5

Regression Tree

Like a decision tree, a regression tree is a tree structured model for values of a target attribute in

a relational table. We call it a regression tree if a target attribute is numerical, while a decision

tree is a model for a categorical target attribute. Figure 5.1 is a regression tree that models and

predicts the Amount Purchase of the customer profile database in Table 4.1.

5.1 Regression Rules

If a training data whose value of the target attribute is given, we can construct a regression tree

by using discriminant rules for the target attribute that can be found from the training data.

For a given training data, we want to construct a compact tree as possible. However, same as

the decision tree construction, problem of constructing the minimum regression tree is NP-hard.

Therefore, we greedily construct a regression tree in a top-down manner according to a criterion

that is designed for regression problems.

5.1.1 Criterion of Regression Rules

The target attribute A of regression problems is numerical. For regression problems, criterion

of rules can be defined as functions of two dimensional stamp points, x(S) = (|S|, ∑t∈S t[A]).

Mean Squared Error

To predict or model the numerical target attribute, we prefer the rule that most reduces variance

of the target attribute and use an objective function called the mean square error function. If a

rule discriminates S from S̄ in R, the mean square error function is defined as follows:

MSE(x(S)) = MSE(S; S̄)

=
∑

t∈R(t[A]− µ(R))2

|R|

−
∑

t∈S(t[A]− µ(S))2 +
∑

t∈S̄(t[A]− µ(S̄))2

|R|

99

100 CHAPTER 5. REGRESSION TREE

20?t[Age] ≤

Teacher}? Worker,{Office

on]t[Occupati

∈

Yes

...

No

Yes No Yes No

...

…?

Prediction:
Amount Purchase
20000

Prediction:
Amount Purchase
40000

Figure 5.1: Regression Tree for ”Amount Purchase”

In the definition, µ(S) is the mean value of the target attribute A in S, i.e., µ(S) =

(1/|S|)∑t∈S t[A] assuming |S| 6= 0.

For regression problems, we prefer higher values of the mean squared error function. Among

all possible rules on a conditional attribute, we call the rule that has the highest value of the

function the optimal rule. If we assume a categorical conditional attribute C that has n distinct

values, there are O(2n) rules, and thus, there are O(2n) stamp points in the two dimensional

space. Similarly, there are O(n2) stamp points for a numerical conditional attributes that has

n values. The optimization problem is to find a stamp point whose mean squared error is the

smallest among all possible points.

In the definition of the mean squared error function,
∑

t∈R
(t[A]−µ(R))2

|R| is invariant of a choice

of x(S). Therefore, we focus on
∑

t∈S(t[A]− µ(S))2 +
∑

t∈S̄(t[A]− µ(S̄))2

|R| ,

which we denote by U(x(S)), or U(x) in short.

In order to examine the value of U(x) for a stamp point x, we have to scan entire relation

R. Since we have to compute U(x) frequently and |R| can be huge in data mining applications,

the computation cost for U(x) is not affordable.

Interclass Variance Function

For easier computation of the value group V ⊂ dom(C) that minimizes U(x), we introduce

V ar(x(S)) = V ar(S; S̄) = |S|(µ(S)− µ(R))2 + |S̄|(µ(S̄)− µ(R))2,

which we call the interclass variance. The following theorem shows that the value group V ,

whose stamp point is x, that maximizes V ar(x) also minimizes U(x).

5.1. REGRESSION RULES 101

Theorem 5.1 The maximization of V ar(x(S)) is equivalent to the minimization of U(x(S)).

[EOT]

Proof:

V ar(x(S)) = |S|(µ(S)− µ(R))2 + |S̄|(µ(S̄)− µ(R))2

= −|R|µ(R)2 + (|S|µ(S)2 + |S̄|µ(S̄)2)

Since −|R|µ(R)2 is invariant with respect to the choice of x, the maximization of V ar(x(S)) is

equivalent to the maximization of (|S|µ(S)2 + |S̄|µ(S̄)2).

U(x(S)) =
∑

t∈S(t[A]− µ(S))2 +
∑

t∈S̄(t[A]− µ(S̄))2

|R|

=
∑

t∈R t[A]2 − (|S|µ(S)2 + |S̄|µ(S̄)2)
|R|

Since
∑

t∈R t[A]2 and |R| are independent of the choice of x, the minimization of U(x(S)) is

equivalent to the maximization of (|S|µ(S)2 + |S̄|µ(S̄)2), and therefore the maximization of

V ar(x(S)) is equivalent to the minimization of U(x(S)). [EOP]

Notice that we do not have to scan entire relation R to examine the value of V ar(x(S)), if

we precompute the coordinate values of all atomic stamp points.

5.1.2 Convexity

Next we consider how to compute the value group V ⊂ dom(C) that maximizes V ar(x(S)).

Observe that V ar(x(S)) is invariant if we replace t[A] by t[A]−µ(R) for each t ∈ R. Thus, after

this replacement, the value group maximizing V ar(x(S)) still gives the solution to the original

problem. Furthermore, this modification makes µ(R) = 0, and hence

V ar(x(S)) = |S|µ(S)2 + |S̄|µ(S̄)2.

Let x denote |S|, let y be
∑

t∈S t[A], and let M be |R|. Since |S|µ(S) + |S̄|µ(S̄) = |R|µ(R) = 0,

we have

V ar(x(S)) = V ar(x, y) = y2(
1
x

+
1

M − x
),

which we will denote by f(x, y).

Theorem 5.2 f(x, y) = y2(1
x + 1

M−x) is convex in the region M > x > 0; namely,

(1− γ)f(x1, y1) + γf(x2, y2) ≥ f((1− γ)x1 + γx2, (1− γ)y1 + γy2)

for 0 ≤ γ ≤ 1 and arbitrary points (x1, y1) and (x2, y2) such that M > x1, x2 > 0. [EOT]

Proof: Let ∆ denote a vector (δ1, δ2), and let Y be δ1x + δ2y. It is sufficient to show that for

any ∆, ∂2f(x, y)/∂Y 2 ≥ 0. First let us consider the case in which δ1, δ2 6= 0.

∂f(x, y)
∂Y

=
∂f(x, y)

∂x
· 1
δ1

+
∂f(x, y)

∂y
· 1
δ2

= y2(
−1
x2

+
1

(M − x)2
)

1
δ1

+ 2y(
1
x

+
1

M − x
)

1
δ2

102 CHAPTER 5. REGRESSION TREE

Next,

∂2f(x, y)
∂Y 2

= {y2(
2
x3

+
2

(M − x)3
)

1
δ1

+ 2y(
−1
x2

+
1

(M − x)2
)

1
δ2
} 1
δ1

+{2y(
−1
x2

+
1

(M − x)2
)

1
δ1

+ 2(
1
x

+
1

(M − x)
)

1
δ2
} 1
δ2

=
2
x

(
y

xδ1
− 1

δ2
)2 +

2
M − x

(
y

(M − x)δ1
+

1
δ2

)2

≥ 0

Next, when δ1 6= 0 and δ2 = 0,

∂2f(x, y)
∂Y 2

= y2(
2
x3

+
2

(M − x)3
)

1
δ1

2 ≥ 0.

We can similarly prove the case in which δ1 = 0 and δ2 6= 0. [EOP]

Thanks to this property, the optimal point that gives the optimal rule must be a point of

the convex hull of all stamp points in the two dimensional space. The problem now becomes

how to find the optimal point of the convex hull efficiently.

In classification problems where k = 2, there is an efficient O(n log n) algorithm for finding

the optimal value group V . For the optimal range or region, there are efficient convex hull

search algorithms mentioned in Section 3.4. We can simply apply this efficient algorithm for the

optimization problem of the regression problems.

5.1.3 Experiments

Rules on categorical conditional attributes can efficiently computed in O(n log n) time by the

Greedy-Enumeration algorithm in Figure 3.1. Therefore, in this section, we examined per-

formance of our algorithm for finding the optimal region that minimizes the mean squared error.

Computing One Optimal Region

We generated our test data, in the form of an N×N grid, as follows: We first generated random

numbers uniformly distributed in [N2, 2N2] and assigned them to the number of records in each

pixel. We then assigned 1, · · · , N2 as the sum of the target values in a pixel, from a corner

pixel to the central one, proceeding in a spiral fashion. These test data were generated so that

the number of points on the convex hull increased sub-linearly to N , by the square root of the

number of pixels. We examined the CPU time taken to compute the optimal region and the

number of hand probing needed to find the region. We performed all experiments on an IBM

RS/6000 workstation with a 604e3 332 MHz CPU and 768 MB of main memory, running under

the AIX 4.2 operating system.

Table 5.1 shows the time (sec.) and number of hand probing that were required in the guided

branch and bound algorithm to find the optimal x-monotone (or respectively rectilinear convex,

or rectangular) region that minimizes the mean squared error. It shows that the number of hand

5.2. MULTIVARIATE REGRESSION TREES 103

Table 5.1: Time for Computing the Optimal Region in Regression (1)

X-monotone Rectilinear Rectangular

#pixel time #hand-probe time #hand-probe time #hand-probe

102 0.0117 29 0.0148 22 0.00282 17

202 0.0522 36 0.120 30 0.0146 23

302 0.112 35 0.444 33 0.0429 24

402 0.193 34 1.04 32 0.0951 24

502 0.372 42 2.27 35 0.199 27

0

20

40

60

80

100

40^2 80^2 120^2 160^2 200^2

tim
e

[s
ec

]

resolution

X monotone
Rectangler
Rectlinear

Figure 5.2: Time for Computing the Optimal Region in Regression (2)

probing increases very slowly thanks to the guided branch and bound algorithm. Figure 5.2

confirms that the CPU time follows our scale estimation.

At the root of a regression tree, we may need a large number of pixels to guarantee the

specified record density. The number of records, however, decreases in the lower parts of the

tree, and the number of pixels soon becomes less than 20×20 for most datasets; hence computing

the optimal rectilinear convex region is generally not costly according to Table 5.1.

5.2 Multivariate Regression Trees

The author explores an improvement to the standard strategy of selecting internal-node tests

during the regression tree construction. Conventional tree construction algorithms often use a

test on a numerical conditional attribute with a cut value called “guillotine-cut.” However, for

the case when two numerical conditional attributes have a non-linear correlation with respect to

104 CHAPTER 5. REGRESSION TREE

the target attribute, trees with guillotine-cuts tend to become large and such large trees are in

general inaccurate. In such a case, a test with a two-dimensional region for splitting data into

two subsets may be more natural and effective. Therefore, the author proposed a regression tree

by using the optimal region rule at each step of the tree construction.

Same as the multivariate decision trees in the previous chapter, we specify a number N ≤ √
n,

and construct an almost equi-depth ordered bucketing of records for each numeric attribute A.

For a pair of numeric attributes A and A′, we have a pixel grid G of size N ×N generated as a

Cartesian product of the buckets. We consider a family R of grid regions of G. For each R ∈ R,

we consider a splitting that divides data into those inside the region R and those outside the

region. Let Ropt be the region of R that maximizes the interclass variance function. The region

Ropt and the associated splitting are called the optimal region with respect to R and the pair of

attributes (A, A′). The author proposed regression trees that use such optimal regions for tests

at internal nodes of the trees.

5.2.1 Spline Interpolation of Grid Regions

We compute the optimal region on the discretized pixel grid. However, such grid regions tend

to be too coarse to describe regions if there are not enough records. In such cases, we can use

an interpolation technique to get smooth regions. Since the number of records becomes smaller

at nodes lower in trees, interpolation techniques are indispensable. Especially for regression

problem, such interpolation techniques are effective as we empirically proved in Section 5.3.

The optimal region on a pixel grid is expressed by a disjunction of the form (a1 < x < a2)

and (b1 < y < b2). Therefore, we can plot two points (a1+a2
2 , b1) (a1+a2

2 , b2) for each column

of the grid region. Then, we compute a smooth region based on those points.

We compute two kinds of spline curves, spline1 and spline2, of interpolated regions from a

set of points on a pixel grid. Figure 5.3 shows examples of the two kinds of interpolated regions.

In each pixel grid, the gray pixel grid region shows the optimal region. The points on the border

of the gray region are used to compute the interpolated region.

Figure 5.4 illustrates how to compute a spline curve based on a set of points. We first order

points of the set by x values and make a point sequence. Then, we split the point sequence into

several intervals as in the figure. For spline1, we cut the sequence at the x value for each point.

For spline2, we use the middle value of each two consecutive points in the sequence. For each

interval i, we define a polynomial function of the form fi(x) = ax3 + bx2 + cx + d where a, b, c,

and d are constants, and xi ≤ x ≤ xi+1 for spline1, and xi+xi+1

2 ≤ x ≤ xi+1+xi+2

2 for spline2.

Each polynomial function, say fi(x), of spline1 is defined so that the following conditions

are satisfied.

• fi(x) must pass through xi and xi+1. (xi = (xi, yi) is the i-th point of a point sequence.)

• f ′i(xi+1) = f ′i+1(xi+1). (f ′i(x) is the 1st derivative of fi(x).)

• f ′′i (xi+1) = f ′′i+1(xi+1). (f ′′i (x) is the 2nd derivative of fi(x).)

5.2. MULTIVARIATE REGRESSION TREES 105

spline1 spline2

Figure 5.3: Interpolated Regions

spline1 spline2

f1(x) f2(x) f3(x)f1(x) f2(x) f3(x) f4(x)

x1 x2 x3 x4 x5 (x1+x2)/2
(x2+x3)/2

(x3+x4)/2
(x4+x5)/2

Figure 5.4: Spline Interpolation

106 CHAPTER 5. REGRESSION TREE

Table 5.2: Summary of Regression Datasets

Dataset #records #attrs

add10 9792 10

abalone 4177 8

kin-8fh 8192 8

kin-8fm 8192 8

kin-8nh 8192 8

kin-8nm 8192 8

pumadyn-8fh 8192 8

pumadyn-8fm 8192 8

pumadyn-8nh 8192 8

pumadyn-8nm 8192 8

Each polynomial function of spline2 satisfies the following conditions.

• fi(x) must pass through xi+xi+1

2 and xi+1+xi+2

2 .

• f ′i(
xi+1+xi+2

2) = f ′i+1(
xi+1+xi+2

2) = yi+2−yi+1

xi+2−xi+1
.

Though interpolated regions may be worse than the original pixel grid regions with respect to

the mean squared error of training datasets, those interpolated regions are much more accurate

for test datasets, as we will show in the experimental results.

5.3 Experiments

5.3.1 Prediction Accuracy

We performed a ten-fold cross validation test for regression trees.

Datasets

We used several public datasets, summarized in Table 5.2, which were acquired from the following

WWW site:

http://www.cs.utoronto.ca/~ delve/data/datasets.html.

We chose these datasets because almost all the attributes are numerical. As regions for

splitting the datasets, we used x-monotone regions, rectilinear regions, and rectangular regions,

and we assigned a value of 5 or 10 for the pixel density.

Minimal Potential Error

To examine the minimal potential error of trees, we performed the following ten-fold cross

validation tests for each of the 10 datasets.

5.3. EXPERIMENTS 107

1. We randomly divided the original dataset into ten almost-equal-sized subsets.

2. We excluded one subset and used the other nine subsets as the training dataset to generate

regression trees with each of 4 types of splitting: guillotine cuts, x-monotone regions,

rectilinear convex regions, and rectangular regions.

3. We used the excluded subset as the test dataset to evaluate the regression tree, and

computed the mean squared error against the test dataset. The absolute value of the mean

squared error varies depending on the sample dataset. To compare the mean squared errors

of different dataset, we used a “normalized” version called the relative mean squared error

of a regression tree, which is defined as the mean squared error divided by the variance of

the target attribute.

4. We returned to Step 2 and excluded a different subset. If there is no remaining subset for

the test dataset, then we calculated the average and standard deviation of the ten results.

To examine the effectiveness of region splitting and eliminate the effect of pruning, we gen-

erated a number of regression trees for various values of the weight parameter, and then we

compared the best accuracy of those various-sized regression trees. We call the best accuracy

the minimal potential error.

For instance, let us consider the “abalone” dataset. Figure 5.5 shows how the relative mean

squared error changes according to the value of the weight parameter. The graph for “Rectilinear

(dens 5)” shows the average relative mean squared errors of the regression trees with rectilinear

convex regions for a record density of five, and we see that the relative mean squared error is

the smallest when the weight parameter is 0.006. Observe that the value increases for weight

parameters less than 0.006, which indicates that the regression tree becomes larger and overfits

the training data. Similarly, for x-monotone region splitting, rectangular region splitting, and

guillotine cut splitting, we can find the respective regression tree with the smallest relative mean

squared error. For the other datasets, we performed the same analysis (See Figures A.3, A.4

and A.5 in Appendix A.2).

Tables 5.3 to 5.5 summarize the results, showing the pairs of the average relative mean

squared error and the average number of leaves for trees constructed with the best parameter

values, i.e., weight parameter α and pixel density. The number in each parenthesis is the

standard deviation over the ten results of cross validation. We underlined the smallest relative

mean squared error among all split strategies (x-monotone, rectilinear convex, rectangular, and

guillotine) for each dataset. Almost universally, the rectilinear, spline2 method yields the lowest

error rates across all domains. While we do not indicate the significance of differences between

methods within a domain because cross validation violates sample independence assumptions,

the number of “wins” across domains for rectilinear, spline2 with respect to any other method

is significant by a sign test at the 0.05 level (N = 10), though if kin-8XX and pumadyn-8XX are

not considered independent, then the number of wins for rectilinear, spline2 is only marginally

significant by a sign test (N = 4) with respect to each alternative strategy.

108 CHAPTER 5. REGRESSION TREE

Table 5.3: Minimal Potential Error (X-monotone)

Pixel Grid

Dataset Err Size

abalone .523 (.0397) 10.0 (0.63)

add10 .141 (.00854) 117.6 (4.34)

kin-8fh .450 (.0331) 49.5 (3.20)

kin-8fm .224 (.0132) 157.8 (8.35)

kin-8nh .661 (.0538) 35.7 (1.79)

kin-8nm .497 (.0270) 57.0 (3.19)

pumadyn-8fh .410 (.0187) 8.0 (0.00)

pumadyn-8fm .0607 (.00726) 15.9 (0.49)

pumadyn-8nh .350 (.0272) 7.8 (0.40)

pumadyn-8nm .0526 (.00415) 20.0 (0.63)

Spline1

Dataset Err Size

abalone .523 (.0481) 9.1 (0.83)

add10 .135 (.00870) 147.7 (12.1)

kin-8fh .449 (.0281) 38.8 (2.32)

kin-8fm .222 (.0172) 95.2 (3.46)

kin-8nh .648 (.0520) 43.0 (4.88)

kin-8nm .487 (.0212) 63.4 (4.92)

pumadyn-8fh .405 (.0232) 8.0 (0.00)

pumadyn-8fm .0588 (.00587) 16.0 (0.00)

pumadyn-8nh .344 (.0260) 8.3 (0.64)

pumadyn-8nm .0487 (.00362) 39.4 (3.72)

Spline2

Dataset Err Size

abalone .505 (.0490) 8.6 (.917)

add10 .127 (.00969) 126.5 (9.87)

kin-8fh .444 (.0190) 39.0 (1.55)

kin-8fm .211 (.0127) 95.2 (3.54)

kin-8nh .625 (.0374) 32.2 (1.89)

kin-8nm .465 (.0206) 62.8 (4.02)

pumadyn-8fh .403 (.0206) 8.0 (0.00)

pumadyn-8fm .0574 (.00585) 17.0 (0.77)

pumadyn-8nh .341 (.0250) 10.3 (0.90)

pumadyn-8nm .0480 (.00338) 35.1 (2.70)

5.3. EXPERIMENTS 109

Table 5.4: Minimal Potential Error (Rectilinear)

Pixel Grid

Dataset Err Size

abalone .522 (.0436) 8.8 (0.98)

add10 .121 (.00618) 121.3 (8.00)

kin-8fh .433 (.0241) 59.8 (2.14)

kin-8fm .196 (.0106) 138.7 (4.45)

kin-8nh .613 (.0437) 30.1 (2.07)

kin-8nm .450 (.0365) 93.1 (3.27)

pumadyn-8fh .401 (.0208) 8.0 (0.00)

pumadyn-8fm .0600 (.00628) 15.8 (0.40)

pumadyn-8nh .339 (.0287) 8.1 (0.30)

pumadyn-8nm .0501 (.00373) 26.6 (1.36)

Spline1

Dataset Err Size

abalone .500 (.0427) 9.9 (0.94)

add10 .118 (.00719) 127.4 (6.83)

kin-8fh .419 (.0274) 55.7 (1.85)

kin-8fm .197 (.00865) 115.2 (5.31)

kin-8nh .608 (.0422) 33.7 (2.57)

kin-8nm .451 (.0234) 51.7 (1.19)

pumadyn-8fh .400 (.0199) 8.2 (0.40)

pumadyn-8fm .0581 (.00545) 16.3 (0.64)

pumadyn-8nh .335 (.0260) 8.0 (0.00)

pumadyn-8nm .0471 (.00428) 40.5 (4.15)

Spline2

Dataset Err Size

abalone .489 (.0463) 8.8 (0.75)

add10 .114 (.00458) 123.9 (6.76)

kin-8fh .412 (.0223) 55.3 (2.93)

kin-8fm .193 (.00793) 150.6 (6.59)

kin-8nh .610 (.0388) 47.7 (2.41)

kin-8nm .440 (.0265) 67.1 (3.91)

pumadyn-8fh .400 (.0178) 8.0 (0.00)

pumadyn-8fm .0572 (.00575) 19.5 (1.36)

pumadyn-8nh .333 (.0274) 8.3 (0.46)

pumadyn-8nm .0468 (.00456) 39.4 (2.33)

110 CHAPTER 5. REGRESSION TREE

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 0.002 0.004 0.006 0.008 0.01 0.012

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r
on

 te
st

Weight parameter

abalone

X-monotone (dens 10)
Rectilinear (dens 5)

Rectangular (dens 10)
Guillotine

Figure 5.5: Accuracy for “abalone”

Table 5.5: Minimal Potential Error (Conventional)

Rectangular

Dataset Err Size

abalone .536 (.0352) 10.1 (0.700)

add10 .156 (.00932) 148.9 (5.36)

kin-8fh .460 (.0256) 69.9 (3.33)

kin-8fm .257 (.0186) 162.1 (3.88)

kin-8nh .618 (.0398) 37.9 (1.81)

kin-8nm .477 (.0217) 59.5 (3.47)

pumadyn-8fh .409 (.0223) 19.8 (1.36)

pumadyn-8fm .0655 (.00494) 62.6 (3.61)

pumadyn-8nh .353 (.0304) 27.3 (2.00)

pumadyn-8nm .0541 (.00335) 99.9 (2.47)

Guillotine

Dataset Err Size

abalone .539 (.0480) 38.9 (2.51)

add10 .185 (.00746) 540.2 (7.19)

kin-8fh .479 (.0299) 128.3 (3.41)

kin-8fm .249 (.0164) 919.9 (7.91)

kin-8nh .655 (.0389) 88.4 (6.23)

kin-8nm .541 (.0499) 203.6 (7.49)

pumadyn-8fh .410 (.0184) 26.2 (2.09)

pumadyn-8fm .0632 (.00683) 153.9 (5.09)

pumadyn-8nh .355 (.0317) 44.1 (1.45)

pumadyn-8nm .0535 (.00367) 185.0 (4.94)

5.3. EXPERIMENTS 111

Error Rates of Pruned Trees

For minimal potential error, the weight parameter value and record density value giving the

minimum error ratio greatly depends on the dataset and construction method. In comparison of

the error rate, we use a separate dataset, designated as the validation set, to find the adequate

weight and density values for pruning.

We reserved one subset as the validation set, which is arbitrarily chosen from the nine training

subsets during each trial of the ten-fold cross validation. That is, we used eight subsets for tree

building and used one subset for finding the parameters, i.e., the weight parameter and the

record density. We pruned a regression tree by the best parameter setting for the validation set

and examined its error rate for the remaining test sets.

Tables 5.6-5.8 summarizes the results of the ten-fold cross validation experiments.

The cross validation results can be summarized as follows:

• X-monotone and rectilinear convex regions attain more accurate and smaller trees than

conventional trees (at marginal significance for error rate by a sign test).

• Spline interpolation makes region splitting more accurate. Even though the spline2 sacri-

fices training accuracy (see Section 5.2.1), it attains the most accurate results (for tests)

in most of the cases.

• Rectilinear regions are robust even if we use a low record density. Therefore, the results of

a record density of five were more accurate than those of a record density of ten in most

of the cases. As a result, rectilinear convex regions won over all of other splitting methods

on all datasets.

• In case of x-monotone regions, on the other hand, using a low record density tends to give

a higher error ratio because of overfitting. Therefore, the results for a record density of

ten were more accurate than those for a record density of five in most of the cases.

• By using a validation set, we found parameter values that attained to satisfactory results

as regards accuracy.

112 CHAPTER 5. REGRESSION TREE

Table 5.6: Error of Pruned Tree (X-monotone)

Pixel Grid

Dataset Err Size

abalone .535 (.0573) 10.6 (4.27)

add10 .141 (.00986) 119.7 (26.1)

kin-8fh .465 (.0233) 45.8 (18.0)

kin-8fm .240 (.0194) 148.1 (89.9)

kin-8nh .683 (.0348) 31.7 (11.4)

kin-8nm .503 (.0315) 46.4 (11.9)

pumadyn-8fh .416 (.0243) 7.90 (1.14)

pumadyn-8fm .0611 (.00348) 17.9 (3.75)

pumadyn-8nh .349 (.0242) 7.90 (1.04)

pumadyn-8nm .0546 (.00568) 31.2 (9.31)

Spline1

Dataset Err Size

abalone .530 (.0615) 10.5 (4.30)

add10 .138 (.0145) 134.1 (23.9)

kin-8fh .453 (.0187) 42.5 (9.70)

kin-8fm .240 (.0129) 122.4 (34.8)

kin-8nh .655 (.0303) 32.8 (10.0)

kin-8nm .493 (.0322) 53.6 (17.5)

pumadyn-8fh .410 (.0246) 8.90 (1.04)

pumadyn-8fm .0601 (.00515) 19.1 (6.04)

pumadyn-8nh .343 (.0190) 9.1 (2.66)

pumadyn-8nm .0508 (.00529) 41.3 (11.3)

Spline2

Dataset Err Size

abalone .519 (.0432) 8.6 (1.56)

add10 .131 (.0108) 108.7 (18.2)

kin-8fh .448 (.0148) 47.1 (20.8)

kin-8fm .234 (.0126) 144.8 (63.4)

kin-8nh .644 (.0393) 34.5 (21.3)

kin-8nm .476 (.0241) 70.1 (36.6)

pumadyn-8fh .402 (.0232) 8.30 (0.46)

pumadyn-8fm .0584 (.00398) 16.4 (2.54)

pumadyn-8nh .343 (.0195) 9.1 (2.07)

pumadyn-8nm .0503 (.00409) 39.7 (16.0)

5.3. EXPERIMENTS 113

Table 5.7: Error of Pruned Tree (Rectilinear)

Pixel Grid

Dataset Err Size

abalone .511 (.0585) 9.00 (1.73)

add10 .122 (.00880) 115.6 (12.9)

kin-8fh .439 (.0268) 55.6 (20.7)

kin-8fm .213 (.0130) 137.2 (58.3)

kin-8nh .620 (.0246) 36.9 (10.0)

kin-8nm .459 (.0218) 54.6 (17.3)

pumadyn-8fh .406 (.0253) 8.10 (0.54)

pumadyn-8fm .0605 (.00396) 17.3 (2.05)

pumadyn-8nh .338 (.0208) 8.2 (0.75)

pumadyn-8nm .0524 (.00546) 37.1 (12.5)

Spline1

Dataset Err Size

abalone .501 (.0584) 9.90 (4.46)

add10 .121 (.00634) 111.8 (17.0)

kin-8fh .437 (.0209) 46.1 (10.8)

kin-8fm .208 (.0168) 115.8 (26.1)

kin-8nh .620 (.0169) 40.8 (18.1)

kin-8nm .461 (.0142) 63.2 (14.2)

pumadyn-8fh .402 (.0257) 8.30 (0.90)

pumadyn-8fm .0595 (.00378) 22.6 (6.30)

pumadyn-8nh .338 (.0200) 9.1 (1.58)

pumadyn-8nm .0483 (.00540) 33.9 (9.36)

Spline2

Dataset Err Size

abalone .511 (.0472) 14.9 (13.5)

add10 .117 (.00673) 124.3 (19.5)

kin-8fh .431 (.0256) 52.8 (16.8)

kin-8fm .211 (.0195) 130.2 (57.2)

kin-8nh .615 (.0182) 37.9 (8.67)

kin-8nm .456 (.0273) 60.3 (10.1)

pumadyn-8fh .400 (.0231) 7.80 (0.60)

pumadyn-8fm .0580 (.00345) 17.5 (1.86)

pumadyn-8nh .336 (.0228) 10.3 (2.05)

pumadyn-8nm .0482 (.00453) 33.7 (9.00)

114 CHAPTER 5. REGRESSION TREE

Table 5.8: Error of Pruned Tree (Conventional)

Rectangular

Dataset Err Size

abalone .554 (.0859) 15.0 (3.13)

add10 .164 (.00747) 177.6 (36.4)

kin-8fh .473 (.0353) 60.0 (14.5)

kin-8fm .257 (.0193) 156.6 (43.2)

kin-8nh .633 (.0290) 36.4 (12.9)

kin-8nm .490 (.0281) 58.2 (10.6)

pumadyn-8fh .414 (.0307) 18.8 (2.75)

pumadyn-8fm .0653 (.00409) 56.8 (5.60)

pumadyn-8nh .353 (.0188) 23.9 (4.59)

pumadyn-8nm .0584 (.00592) 84.7 (18.9)

Guillotine

Dataset Err Size

abalone .545 (.0701) 30.2 (9.31)

add10 .191 (.00748) 425.6 (124.2)

kin-8fh .490 (.0200) 121.7 (62.2)

kin-8fm .252 (.0133) 800.0 (289.3)

kin-8nh .641 (.0210) 87.2 (20.3)

kin-8nm .533 (.0326) 125.7 (55.8)

pumadyn-8fh .408 (.0239) 24.9 (4.18)

pumadyn-8fm .0646 (.00467) 99.8 (21.4)

pumadyn-8nh .365 (.0203) 46.6 (14.9)

pumadyn-8nm .0566 (.00512) 190.1 (68.3)

5.3. EXPERIMENTS 115

Table 5.9: Regression Tree Construction Time (1)

#records X-monotone Rectilinear Guillotine

2000 33.3 31.5 4.10

4000 80.2 80.1 9.65

6000 130 136 15.9

8000 180 188 22.8

Table 5.10: Regression Tree Construction Time (2)

#attributes X-monotone Rectilinear Guillotine

4 58.7 64.4 17.7

6 85.8 91.8 19.3

8 128 136 20.8

10 180 186 22.3

5.3.2 Performance Results

The next experiment examines the overall performance, CPU time taken, in tree construction.

At each node of a regression tree, we first prepared grid regions for each combination of numeric

attributes, and then computed the optimal region. The grid preparation can be done by scanning

all the records at a node just once. However, we have to examine all pairs (permutations for

x-monotone regions) of two numeric attributes to find the optimal region. Thus, in general, the

number of attributes dramatically affects the performance if we use region splitting.

Table 5.9 compares the time (sec.) taken to construct trees by using datasets with different

numbers of records. We randomly selected records from the “add10” dataset to generate datasets

having different numbers of records, and used those datasets to construct a regression tree by

performing region splitting with a record density of five. We compared the time taken to

construct unpruned large trees using x-monotone (spline2) regions, rectilinear convex (spline2)

regions, and guillotine cuts. The result shows that tree construction time is a little more than

our scale estimation, because trees from larger datasets tend to become larger.

Table 5.10, on the other hand, compares the performance using datasets with different num-

bers of attributes. We used 8000 records from the “add10” dataset, and constructed trees using

N numerical attributes in the dataset. Though the time complexity for finding the optimal

region in each split is almost linear of the combinations (permutations) of attributes, the overall

tree construction time seems to increase sub-linearly relative to the number of combinations.

One of the main reasons is that the cost of computing the optimal region is not dominant if

there are few attributes.

116 CHAPTER 5. REGRESSION TREE

Chapter 6

Conclusion

In many businesses, information or knowledge that can be extracted from databases are impor-

tant with no doubt. Therefore, data mining technologies have attracted many enterprises that

use databases or data warehouses.

Data mining covers technologies for finding, frequent or rare patterns, modeling and pre-

dicting value of an attribute, grouping or clustering data, classifying data, and so forth. Most

of these have been widely studied in the field of databases, statistics, and machine learning.

Data mining, in general, is focusing on efficiency so that we can handle emerging huge databases

whose size is too large to be processed by the conventional techniques.

In this dissertation, the author explores modeling and prediction tasks for classification and

regression problems. The most important problem in such tasks is how to find good discriminant

rules. Many researches have been investigated in machine learning, database, and statistics

literatures.

In general, a database contains several attributes and among them, there are correlated

attributes. Especially for numerical attributes, we have to handle correlated attributes. There-

fore, some researches have been focusing on rules that can be defined on multiple attributes, i.e.,

multivariate rules. Most of the researches considered linear multivariate discriminant rules and

are effective only for linear correlations. However, we have various correlations that can not be

handled by conventional methods. In addition, recent databases or data warehouses contain a

lot of attributes and there are many correlated numerical and categorical attributes. Therefore,

methods for handling correlated attributes become much more important.

The author proposed efficient algorithms for finding discriminant multivariate rules that can

be used for huge databases. In particular, for each pair of correlated numerical attributes, the

author proposed to use regions on the two dimensional plain of the pair of attributes. By using

regions, we can handle correlations with various shapes, which can be non-linear ones. Moreover,

we can find and grasp how the data is correlated through the two dimensional visualization,

which is important for data analysts who want some insights in the correlations. The author also

considered efficient algorithms for finding multivariate rules on multiple categorical conditional

attributes.

117

118 CHAPTER 6. CONCLUSION

The author used such multivariate discriminant rules for classification and regression trees.

Diverse experiments confirm that the use of region splitting gives compact and accurate regres-

sion trees in many domains.

6.1 Remarks from Experiments

Experiments using diverse datasets confirmed that classification and regression trees with region

splitting appear to be more accurate and smaller than conventional ones. However, in order to

use region splitting, we have to spend additional computation time that is proportional to the

number of combinations of numerical conditional attributes.

In the experiments for classification, as can be seen in Figures A.1 and A.2, the results

show the substantial capability of our method. Moreover, in experiments, the pruned trees

shown in Table 4.5, achieved greater error reduction, especially in cases where there were a

sufficient number of records. As for the experiments for regression problems, region splitting trees

generally reduced the error ratio by around 10 to 20%. One case of which achieves 48% reduction.

Those reductions suggest the advantages of region splitting trees. In many applications, the

improvements will be worth the computational cost if there are not too many numeric attributes.

Another important advantage of region splitting is comprehensibility of correlations among

conditional attributes, which we did not evaluate objectively. Though the optimal region in each

node of a tree itself is complicated, arguably we can easily understand two-dimensional visual

representations like examples in Section 1.2.2.

By introducing region splitting in classification and regression trees, we have to consider

additional parameters: record density, type of regions, and type of splines. Choice of those

parameters affects construction time and prediction accuracy of the trees.

As for the types of splines, the computational costs of the three types, including no interpo-

lation, are small and negligible. The spline2 achieved better results than the others in almost all

datasets and experimental conditions. We examined the effectiveness of interpolation in classi-

fication problems. Since target attribute has categorical values, in most of the cases there are

only a few values, we could not find notable difference in accuracy.

As for the other experimental conditions, there are tradeoffs. If we use lower record density,

we can find finer pixel regions. However, it takes much time and it tends to overfit if record

density is too fine or if the number of records is too small. According to the experimental results,

we should use a record density of more than five. Since the number of records becomes smaller

in the lower nodes of a tree, the pixel grid becomes too coarse with less than five by five. In

such cases, we abandoned region splitting and used conventional guillotine cutting.

An x-monotone region can express more variety of shapes than a rectilinear region. However,

it often overfits, especially when we use a low record density. In the experiments, because of

overfitting, the accuracy results of x-monotone regions are worse than that of rectilinear regions.

If we use an x-monotone region, we should use a record density of more than ten. A notable

6.2. RECENT PROGRESS IN MODELING AND PREDICTION TASKS 119

advantage of using x-monotone regions is their fast computation time. If the number of records

becomes huge, say more than a million, it is better to use x-monotone regions.

6.2 Recent Progress in Modeling and Prediction Tasks

6.2.1 Fast Tree Construction Algorithms

Classification and regression trees have been one of the most popular models for approximat-

ing value of the target attribute. Therefore, some researchers have been focusing on fast tree

construction algorithms, which work for huge databases.

Recently, Mehta et al. [MAR96] proposed an efficient scalable implementation called SLIQ.

It maintains a data structure called attribute lists, one for each conditional attribute, and it

computes the optimal rule for a node by scanning the attribute lists once. Once we construct

the attribute lists, we do not have to scan the database. Therefore, SLIQ can handle a database

with 10 million records and 400 attributes. Later, Shafer et al. parallelized implementation of

SLIQ [SAM96] and called it SPLINT.

Gehrke et al. [GRG98] proposed another scalable implementation called RainForest. Rain-

Forest adaptively changes a data management method based on the size of main memory and

training data during the tree construction. Gehrke et al. [GGRL99] also considered another

efficient tree construction method that constructs an initial tree by using small sample data and

then refines the tree by using other sample. The idea of using small sample for a huge database

was also proposed by Breiman [Bre99] before their method.

Rastogi and Shim [RS98] considered a method to construct and prune classification trees to

eliminate time for pruning phase of conventional tree construction methods.

6.2.2 Toward Accurate Predictions

Technologies for accurate prediction are also popular research area in machine learning, data

mining, and statistics. Among them, as technologies that are strongly related to classification

and regression trees, Freund and Schapire proposed an accurate classification system AdaBoost

that used a method called boosting [FS97]. Boosting is a prediction method based on weighted

majority voting. It constructs strong classifier, i.e., classification system, by combining a col-

lection of weak classifiers. AdaBoost initially assign an equal weight to each record. Then, it

generates a classifier whose error ratio of which is smaller than that of random guessing. Next, it

increases weights of misclassified records to relatively higher than the others. AdaBoost iterates

the weight process several times. Then, it performs weighted majority voting by classifiers and

predicts unknown target value.

Though the boosting is not a mechanism for classification and regression trees, trees are suit-

able for weak classifiers of the boosting because trees can be easily constructed. Breiman [Bre96],

he called it bagging, proposed such a strong classifier based on classification and regression trees.

Quinlan also applied the technique and proposed C5.0 [Qui96].

120 CHAPTER 6. CONCLUSION

6.2.3 Other Progresses

There are some progresses for handling correlated attributes. Since those are related works of

this dissertation, the author summarized the related works and compared with the proposed

algorithms in Section 3.3.1 and 3.4.3. Notice that the problem for finding discriminant rules for

multiple categorical conditional attributes are essentially the same as the problem for finding

rules for single categorical conditional attribute that has many distinct values. Therefore, the

author also compared with the technologies for such equivalent problem in Section 3.3.1.

All of the related works and the proposed works in this dissertation assumed correlations on

multiple categorical conditional attributes or multiple numerical conditional attributes. Brim

et al. [BRS99] considered multivariate rules on both categorical and numerical conditional at-

tributes. However, they did not consider optimization based on classification and regression

criteria. The problem of how to find such multivariate rule on categorical and numerical at-

tributes efficiently is still open.

6.3 Future Direction

The proposed algorithms for finding discriminant rules on categorical conditional attributes can

find high quality rules than any other conventional methods for small number of classes, i.e., the

number of distinct values of the target categorical attribute. In this case, the high quality rules

are the rules that achieve high values of objective functions for classification and regression.

If the number of classes becomes larger, for example more than 10, the algorithms do not

perform well. No other algorithm can perform well in such condition so far. Therefore, the

problem is still open for the case when the number of classes is large. However, we do not often

use such categorical attribute as the target attribute for classification tasks in practice. For a

regression problem, we can treat the problem as a two classes classification problem. Therefore,

we have efficient algorithms such as the method of Breiman et al. [BFOS84].

As for numerical conditional attributes, the author proposed to use pixel grid regions as

discriminant rules for classification and regression problems. The author proposed efficient

algorithms for computing high quality x-monotone, rectilinear, and rectangular regions. We

can express various types of non-linear correlation on two numerical conditional attributes.

If we consider non-linear correlation on more than two numerical conditional attributes, the

complexity of the optimization problem becomes exponentially harder than the case of two

attributes. A heuristic proposed by Ittner and Schlosser [IS96] is an alternative to the problem,

though it abandons the optimality. Same as the case of categorical conditional attributes, when

the number of classes becomes large, the optimization problem becomes much harder and the

problem is still open so far.

Bibliography

[AAD+96] Sameet Agrawal, Rakesh Agrawal, Prasad M. Deshpande, Ashish Gupta, Jeffrey F.

Naughton, Raghu Ramakrishnan, and Sunita Sarawagi. On the computation of

multidimensional aggregates. In Proceedings of the 22nd VLDB Conference, pages

506–521, 1996.

[AAP98] Ramesh Agarwal, Charu Aggarwal, and V. V. V. Prasad. Efficiently mining long

patterns from databases. In Proceedings of the ACM SIGMOD Conference on

Management of Data, pages 85–93, 1998.

[ACKT96] Tetsuo Asano, Danny Chen, Naoki Katoh, and Takeshi Tokuyama. Polynomial-

time solutions to image segmentations. In Proceedings of the ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 104–113, 1996.

[AIS93a] Rakesh Agrawal, Tomasz Imielinski, and Arum Swami. Database mining: A per-

formance perspective. IEEE Transactions on Knowledge and Data Engineering,

5(6):914–925, December 1993.

[AIS93b] Rakesh Agrawal, Tomasz Imielinski, and Arum Swami. Mining association rules

between sets of items in large databases. In Proceedings of the ACM SIGMOD

Conference on Management of Data, pages 207–216, 1993.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association

rules. In Proceedings of the 20th VLDB Conference, pages 487–499, 1994.

[AS96] Rakesh Agrawal and John Shafer. Parallel mining of association rules. IEEE

Transactions on Knowledge and Data Engineering, 8(6), December 1996.

[AT94a] Tetsuo Asano and Takeshi Tokuyama. Partial construction of an arrangement of

lines and its application to optimal partitioning of bichromatic point set. IEICE

Transactions E, 77:595–600, 1994.

[AT94b] Tetsuo Asano and Takeshi Tokuyama. Topological walk revisited. In Proceedings of

the Canadian Conference on Computational Geometry (CCCG), pages 1–6, 1994.

121

122 BIBLIOGRAPHY

[BA99] Roberto J. Bayardo and Rakesh Agrawal. Mining the most interesting rules. In

Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data

Mining, pages 145–154, 1999.

[Bay98] Roberto J. Bayardo. Efficiently mining long patterns from databases. In Pro-

ceedings of the ACM SIGMOD Conference on Management of Data, pages 85–93,

1998.

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.

Learnability and the vapnik-chervonenkis dimension. Journal of the ACM, 36:929–

965, 1989.

[BFOS84] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone.

Classification and Regression Trees. Wadsworth, 1984.

[BM98] Catherine L. Blake and Christopher J. Merz. UCI repository of machine learning

databases, 1998.

[BMS97] Sergay Brin, Rajeev Motowani, and Craig Silverstein. Beyond market basket:

Generalizing association rules to correlations. In Proceedings of the ACM SIGMOD

Conference on Management of Data, pages 265–276, 1997.

[BMUT97] Sergay Brin, Rajeev Motowani, Jeffery Ullman, and Shalom Tsur. Dynamic itemset

counting and implication rules for market basket data. In Proceedings of the ACM

SIGMOD Conference on Management of Data, pages 255–264, 1997.

[Bre96] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, August 1996.

[Bre99] Leo Breiman. Pasting small votes for classification in large databases and on-line.

Machine Learning, 36(1/2):85–103, 1999.

[BRS99] Sergey Brin, Rajeev Rastogi, and Kyuseok Shim. Mining optimized gain rules for

numeric attributes. In Proceedings of the ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, pages 135–144, 1999.

[BU95] Carla E. Brodley and Paul E. Utgoff. Multivariate decision trees. Machine Learn-

ing, 19:45–77, 1995.

[DE93] David P. Dobkin and David Eppstein. Computing the discrepancy. In Proceedings

of the ACM Symposium on Computational Geometry, pages 47–52, 1993.

[DEY86] David Dobkin, Herbert Edelsbrunner, and Chee-Keng Yap. Probing convex poly-

topes. In Proceedings of the ACM Symposium on Theory of Computing, pages

387–392, 1986.

BIBLIOGRAPHY 123

[FMMT96a] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.

Constructing efficient decision trees by using optimized association rules. In Pro-

ceedings of the VLDB Conference, pages 146–155, 1996.

[FMMT96b] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.

Data mining using two-dimensional optimized association rules: Scheme, algo-

rithms, and visualization. In Proceedings of the ACM SIGMOD Conference on

Management of Data, pages 13–23, 1996.

[FMMT96c] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.

Finding optimal intervals using comptational geometry. In Proceedings of the In-

ternational Symposium on Algorithm and Computing, pages 55–64, 1996.

[FMMT96d] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.

Mining optimized association rules for numeric attributes. In Proceedings of the

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

pages 182–191, 1996.

[FMMT96e] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.

Sonar: System for optimized numeric association rules. In Proceedings of the ACM

SIGMOD Conference on Management of Data, page 553, 1996.

[FMMT99] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.

Mining optimized association rules for numeric attributes. Journal of Computer

and System Sciences, 58(1):1–12, February 1999.

[FMMT01] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.

Data mining using two-dimensional optimized association rules. ACM Transactions

on Database Systems, 26:179–213, 2001.

[FPSSU96] Usama Fayyad, Gregory Piatetsky-Shapiro, Padhr Smyth, and Ramasamy Uthu-

rusamy. Advances in Knowledge Discovery and Data Mining. MIT Press, Cam-

bridge, MA., 1996.

[FS97] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of Computer and System

Sciences, 55(1):119–139, August 1997.

[GBLP95] Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data cube:

A relational aggregation operator generalizing group-by, cross-tab, and sub-totals.

Technical report, Microsoft, November 1995.

[GGRL99] Johannes Gehrke, Venkatesh Ganti, Raghu Ramakrishnan, and Wei-Yin Loh.

BOAT - optimistic decision tree construction. In Proceedings of the ACM SIG-

MOD Conference on Management of Data, pages 169–180, 1999.

124 BIBLIOGRAPHY

[GHQ95] Ashish Gupta, Venky Harinarayan, and Dallan Quass. Aggregate-query processing

in data warehousing environments. In Proceedings of the 21st VLDB Conference,

pages 358–369, 1995.

[GJ79] Michael R. Garey and David S. Johnson. Computer and Intractability. A Guide to

NP-Completeness. W. H. Freeman, 1979.

[GRG98] Johannes Gehrke, Raghu Ramakrishnan, and Venkatesh Ganti. RainForest - a

framework for fast decision tree construction of large datasets. In Proceedings of

the VLDB Conference, pages 416–427, 1998.

[Han98] David J. Hand. Data mining: Statistics and more? The American Statistician,

52(2), May 1998.

[HII95] Susumu Hasegawa, Hiroshi Imai, and Masaki Ishiguro. ε-approximations of k-label

spaces. Theoretical Computer Science, 137:145–157, 1995.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. In Proceedings of the ACM SIGMOD Conference on Management of

Data, pages 1–12, 2000.

[HR76] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees

is np-complete. Information Processing Letters, 5:15–17, 1976.

[HRU96] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing data

cubes efficiently. In Proceedings of the ACM SIGMOD Conference on Management

of Data, pages 205–216, 1996.

[HW87] David Haussler and Emo Welzl. Epsilon-nets and simplex range queries. Discrete

and Computational Geometry, 2:127–151, 1987.

[Inm92] William H. Inmon. Building the Data Warehouse. John Wiley & Sons, 1992.

[IS96] Andreas Ittner and Michael Schlosser. Non-linear decision trees – NDT. In Proceed-

ings of the International Conference on Machine Learning, pages 252–258, 1996.

[LHM99] Bing Liu, Wynne Hsu, and Yiming Ma. Pruning and summarizing the discov-

ered associations. In Proceedings of the ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, pages 125–134, 1999.

[MAR96] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. SLIQ: A fast scalable clas-

sifier for data mining. In Proceedings of the International Conference on Extending

Database Technology EDBT, pages 18–32, 1996.

[MFMT97] Yasuhiko Morimoto, Takeshi Fukuda, Shinichi Morishita, and Takeshi Tokuyama.

Implementation and evaluation of decision trees with range and region splitting.

Constraint, An International Journal, 2(3/4):401–427, December 1997.

BIBLIOGRAPHY 125

[MIM97] Yasuhiko Morimoto, Hiromu Ishii, and Shinichi Morishita. Efficient construction

of regression trees with range and region splittng. In Proceedings of the VLDB

Conference, pages 166–175, 1997.

[Min89] John Mingers. An empirical comparison of pruning methods for decision tree

induction. Machine Learning, 4:227–243, 1989.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[MP91] Patrick M. Murphy and Michael J. Pazzani. Id2-of-3: Constructive induction of m-

of-n concepts for discriminators in decision trees. In Proceedings of the International

Wrokshop on Machine Learning, pages 183–187, 1991.

[MRA95] Manish Mehta, Jorma Rissanen, and Rakesh Agrawal. MDL-based decision tree

pruning. In Proceedings of the International Conference on Knowledge Discovery

and Data Mining, pages 216–221, 1995.

[MS00] Shinichi Morishita and Jun Sese. Traversing itemset lattice with statistical metric

pruning. In Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems (PODS-00), pages 226–236, 2000.

[PCY95] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An effective hash-based algo-

rithm for mining association rules. In Proceedings of the ACM SIGMOD Conference

on Management of Data, pages 175–186, 1995.

[PS85] Franco P. Preparata and Michael I. Shamos. Computational Geometry, An Intro-

duction. Springer-Verlag, 1985.

[PS91] Gregory Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules.

In Knowledge Discovery in Databases, pages 229–248, 1991.

[PSF91] Gregory Piatetsky-Shapiro and William J. Frawley, editors. Knowledge Discovery

in Databases. AAAI Press, 1991.

[QR89] J. Ross Quinlan and Ronald L. Rivest. Inferring decision trees using minimum

description length principle. Information and Computation, 80:227–248, 1989.

[Qui86a] J. Ross Quinlan. The effect of noise on concept learning. Machine Learning An

Artificial Intelligence Approach, 2:149–166, 1986.

[Qui86b] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[Qui87] J. Ross Quinlan. Simplifying decision trees. International Journal of Man-Machine

Studies, 27:221–234, 1987.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

126 BIBLIOGRAPHY

[Qui96] J. Ross Quinlan. Bagging, boosting, and C4. 5. In Proceedings of the National

Conference on Artificial Intelligence and the Innovative Applications of Artificial

Intelligence Conference, pages 725–730. AAAI Press / MIT Press, 1996.

[RS98] Rajeev Rastogi and Kyuseok Shim. PUBLIC: A decision tree classifier that in-

tegrates building and pruning. In Proceedings of the VLDB Conference, pages

404–415, 1998.

[SA96] Ramakrishnan Srikant and Rakesh Agrawal. Mining quantitative association rules

in large relational tables. In Proceedings of the ACM SIGMOD Conference on

Management of Data, pages 1–12, 1996.

[SAM96] John Shafer, Rakesh Agrawal, and Manish Mehta. SPRINT: A scalable parallel

classifier for data mining. In Proceedings of the VLDB Conference, pages 544–555,

1996.

[SK96] Takayuki Shintani and Masaru Kitsuregawa. Hash based parallel algorithms for

mining association rules. In Proceedings of International Conference on Parallel

and Distributed Information Systems, pages 19–30, 1996.

[STA98] Sanita Sawaragi, Shiby Thomas, and Rakesh Agrawal. Integrating association

rule mining with relational database systems: Alternatives and implications. In

Proceedings of the ACM SIGMOD Conference on Management of Data, pages 343–

354, 1998.

[YFM+97] Kunikazu Yoda, Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and

Takeshi Tokuyama. Computing optimized rectilinear regions for association rules.

In Proceedings of the International Conference on Knowledge Discovery and Data

Mining (KDD-97), pages 96–103, 1997.

[ZPOL97] Mohammed J. Zaki, Srinivansan Parthasarathy, Mitsunori Ogihara, and Wei Li.

New algorithms for fast discovery of association rules. In Proceedings of the Inter-

national Conference on Knowledge Discovery and Data Mining (KDD-97), pages

283–286, 1997.

Appendix A

Detailed Experimental Results

A.1 Cross Validation Results for Classification

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0 5 10 15 20 25 30 35 40 45

E
rr

or
 r

at
io

Chi square

Breast cancer wisconsin

X-monotone (dens5)
X-monotone (dens10)

Rectilinear (dens5)
Rectilinear (dens10)
Rectangular (dens5)

Rectangular (dens10)
Guillotine

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0 5 10 15 20 25 30 35 40 45

E
rr

or
 r

at
io

Chi square

German numer

X-monotone (dens5)
X-monotone (dens10)

Rectilinear (dens5)
Rectilinear (dens10)
Rectangular (dens5)

Rectangular (dens10)
Guillotine

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0 5 10 15 20 25 30 35 40 45

E
rr

or
 r

at
io

Chi square

Liver disorder

X-monotone (dens5)
X-monotone (dens10)

Rectilinear (dens5)
Rectilinear (dens10)
Rectangular (dens5)

Rectangular (dens10)
Guillotine

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0 5 10 15 20 25 30 35 40 45

E
rr

or
 r

at
io

Chi square

Pima diabetes

X-monotone (dens5)
X-monotone (dens10)

Rectilinear (dens5)
Rectilinear (dens10)
Rectangular (dens5)

Rectangular (dens10)
Guillotine

Figure A.1: Prediction Accuracy for Classification Problem (1)

127

128 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0 5 10 15 20 25 30 35 40 45

E
rr

or
 r

at
io

Chi square

Balance

X-monotone (dens5)
X-monotone (dens10)

Rectilinear (dens5)
Rectilinear (dens10)
Rectangular (dens5)

Rectangular (dens10)
Guillotine

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

0.26

0 5 10 15 20 25 30 35 40 45

E
rr

or
 r

at
io

Chi square

Waveform

X-monotone (dens5)
X-monotone (dens10)

Rectilinear (dens5)
Rectilinear (dens10)
Rectangular (dens5)

Rectangular (dens10)
Guillotine

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0 5 10 15 20 25 30 35 40 45

E
rr

or
 r

at
io

Chi square

Waveform-+noise

X-monotone (dens5)
X-monotone (dens10)

Rectilinear (dens5)
Rectilinear (dens10)
Rectangular (dens5)

Rectangular (dens10)
Guillotine

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0 5 10 15 20 25 30 35 40 45

E
rr

or
 r

at
io

Chi square

Vehicle

X-monotone (dens5)
X-monotone (dens10)

Rectilinear (dens5)
Rectilinear (dens10)
Rectangular (dens5)

Rectangular (dens10)
Guillotine

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 5 10 15 20 25 30

E
rr

or
 r

at
io

Chi square

Segmentation

X-monotone (dens5)
X-monotone (dens10)

Rectilinear (dens5)
Rectilinear (dens10)
Rectangular (dens5)

Rectangular (dens10)
Guillotine

Figure A.2: Prediction Accuracy for Classification Problem (2)

A.2. CROSS VALIDATION RESULTS FOR REGRESSION 129

A.2 Cross Validation Results for Regression

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 0.002 0.004 0.006 0.008 0.01 0.012

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r
on

 te
st

Weight parameter

abalone

X-monotone (dens 10)
Rectilinear (dens 5)

Rectangular (dens 10)
Guillotine

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r
on

 te
st

Weight parameter

add10

X-monotone (dens 5)
Rectilinear (dens 5)

Rectangular (dens 5)
Guillotine

Figure A.3: Prediction Accuracy for Regression Problem (1)

130 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r
on

 te
st

Weight parameter

kin-8fh

X-monotone (dens 10)
Rectilinear (dens 5)

Rectangular (dens 10)
Guillotine

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r
on

 te
st

Weight parameter

kin-8fm

X-monotone (dens 10)
Rectilinear (dens 5)

Rectangular (dens 5)
Guillotine

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r
on

 te
st

Weight parameter

kin-8nh

X-monotone (dens 10)
Rectilinear (dens 10)

Rectangular (dens 10)
Guillotine

0.4

0.45

0.5

0.55

0.6

0.65

0 0.001 0.002 0.003 0.004 0.005 0.006

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r
on

 te
st

Weight parameter

kin-8nm

X-monotone (dens 10)
Rectilinear (dens 5)

Rectangular (dens 5)
Guillotine

Figure A.4: Prediction Accuracy for Regression Problem (2)

A.2. CROSS VALIDATION RESULTS FOR REGRESSION 131

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r
on

 te
st

Weight parameter

pumadyn-8fh

X-monotone (dens 10)
Rectilinear (dens 10)

Rectangular (dens 10)
Guillotine

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r
on

 te
st

Weight parameter

pumadyn-8fm

X-monotone (dens 5)
Rectilinear (dens 5)

Rectangular (dens 5)
Guillotine

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r
on

 te
st

Weight parameter

pumadyn-8nh

X-monotone (dens 10)
Rectilinear (dens 5)

Rectangular (dens 5)
Guillotine

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r
on

 te
st

Weight parameter

pumadyn-8nm

X-monotone (dens 5)
Rectilinear (dens 5)

Rectangular (dens 5)
Guillotine

Figure A.5: Prediction Accuracy for Regression Problem (3)

