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Abstract: With the existence of the social customs or norms, Naylor
demonstrates a possibility of stable long-run equilibrfigs@pport for
a strike in a labor market, and this implies that at least smdiwidu-
als will behave cooperatively and hence the prisonershtia could
be escaped. In this paper, using an agent-based simulabdelrm
which artificial adaptive agents have mechanisms of deatisiaking
and learning based on neural networks and genetic algasjtiveacom-
pare the results of our simulation analysis with that of tteghrematical
model by Naylor. In particular, while Naylor's model is bdsen ra-
tionality as it relates to individual utility maximizatipmgents behave
adaptively in our agent-based simulation model; agentsrdakisions
by trial and error, and they learn from experiences to makiebdeci-
sions.
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1 Introduction

In most mathematical models for analyzing social behavadrpeople, utility
functions of individuals are defined so as to meet sociabsitns to be ana-
lyzed, and it is assumed that individuals make choices miakign such utility
functions. For examining behavior of individuals with respto social norms,
Akerlof (1980) develops a model including a social repotaton the norm as
well as motivation of monetary rewards, and explains inmtday unemployment
by considering the social custom or norm of a fair wage. Inntioglel, the per-
sonal tastes or attitudes toward the social norm are heteemyls, and the utility
function is designed so that individuals obtain a betteutaqoon if they obey the
norm, otherwise they must pay the penalty for disobeyinglé.shows that once
such a social norm is established, it may continue to beV@tbwith a stable
fraction of the population believing in it and also followgiit.

Various models for social norms related to the research srlakhave been
reported (Naylor, 1989; Hollander, 1990; Kandel and Laz&892; Barron and
Gjerde, 1997; Kubler, 2001; Huck et al., 2001). Naylor (Qpproposes a model
similar to that of Akerlof in order to explain the logic of ¢ettive strike action,
and then shows the effectiveness of an approach considbamgputation arising
from obedience of social norms. Kibler (2001) attemptsiogenize norms by
investigating how individuals, or groups of individualsyncbe influenced by the
two types of norms: bandwagon norms which are charactebyatie property
that once a critical number of norm followers is reached,répritation value of
norms increases sharply; and snob norms, which yield the repstation to the
followers when only a small number of people follow them. Kt al. (2001)
deal with the interplay between economic incentives andasoorms in firms,
and model the team production in a linear incentive scherntteavsocial norm.

Recently, approaches based on laboratory experimentgamakocial norms
have been attempted. Gachter and Fehr (1999) investigatmffact and the lim-
itations of social rewards on people’s behavior in the miovi of a public good,



and find that if subjects have some social familiarity witlcle@ther, approval

incentives generate a rise in cooperation. Rege and Ted@4{2also conduct
laboratory experiments on public goods, and argue thaatengeach player’s

identity and his contribution to the public good may incee&esluntary contribu-

tions. Nyborg and Rege (2003) study the formation of soadains for consid-

erate smoking behavior, and report the results with engdigeidence based on
interviews with many people.

Simulation is a growing field in the social sciences, andysislthrough the
use of simulation on the formation of social norms and celuras been devel-
oped. Based on theperson prisoner’s dilemma game, Axelrod (1986) considers
a norm game with a mechanism punishing players who disolgegdim, and in-
vestigates the dynamics of the norm by using a techniquealtiBonary theory.
Using a simulation model with many autonomous and adaptyeats, Axelrod
(1997a) examines how cultural regions emerge, develop sattte down from
viewpoints of differences of cultures and interaction amdmem. Bowles and
Gintis (2004) classify agents into three types by judgingtlier agents obey the
norm or not and whether they punish other agents who vidiateriot, and study
cooperation in the population by agent-based simulations.

Although the mathematical models by Akerlof (1980) and Ma{1989) reach
interesting results, it is assumed that players are rdtemmhmaximize their pay-
offs, and they can discriminate between two payoffs with auta difference.
Such optimization approaches are not always appropriatarfalyzing human
behaviors and social phenomena, and models based on adaehavior can be
alternatives to such optimization models. In these mode¢se exist two groups
of agents—those who believe the social norm and those whatdbatieve it—,
and the penalty to believers of the social norm for disobexies not the same as
that of nonbelievers. An individual who obeys the socialman the prior period
of the game is defined as a believer, and an individual whdé®it in the prior
period is defined as a nonbeliever. As Akerlof points out, &, it is natural to
suppose that the degree of belief of an individual who camtsto obey the social
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norm in the long run is not the same as that of an individual aieys it only in
the prior period.

To incorporate adaptive behaviors and the degree of bedsddbon an agent’s
history of actions, we employ a multi-agent simulation modegents in a simu-
lation model evaluate results of their decisions and reguidieies to choose one of
several alternatives as actual decision makers do. As oose@proaches based
on adaptive behavior models, Holland and Miller (1991)riptet most economic
systems as complex adaptive systems, and point out thatagions using ar-
tificial societies with adaptive agents is effective for lgses of such economic
systems. Axelrod (1997b) insists on the need for simulagioalysis in social
sciences, and states that the purposes of simulation aatgtude prediction,
performance, training, entertainment, education, proaf discovery. Brenner
(1998) examines the use of evolutionary algorithms in deci@nce studies, and
suggests that it is important to incorporate histories @&nag in simulation sys-
tems.

For the iterated prisoner’s dilemma game, Axelrod (198 @neixes the effec-
tiveness of strategies generated in an artificial socidkgysin which agents en-
dowed with strategies are adaptively evolved by using atgealkgorithm. Dorsey
et al. (1994) employ an artificial decision making mechanisimg neural net-
works to imitate the decision making of auctioneers, andgam@artificial agents’
behavior with that of real auctioneers which often deviabenfthe Nash equilib-
ria. To estimate bid functions of bidders, i.e., to estdioliee appropriate weights
of a neural network, they employ the genetic adaptive newatdork algorithm
based on genetic algorithms instead of the error backpadjmamgalgorithm which
is the most commonly used method.

Andreoni and Miller (1995) use genetic algorithms to modedidion making
in auctions. In a way similar to the approach of Dorsey etl#19¢), they compare
decisions of artificial adaptive agents with decisions ole®in the experiments
with human subjects, and find that the two types of decisignshb artificial
agents and the human subjects resemble each other. Ere\apogdrt (1998) in-
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vestigate a market entry game by using an adaptive learnatghibased on rein-
forcement learning proposed by Roth and Erev (1995). Rapepal. (2002) also
deal with market entry games. They compare decisions oédemnvexperiments
with human subjects with decisions of artificial adaptiverstg with a learning
mechanism using reinforcement learning, and analyze letapatterns on the
aggregate level.

Leshno et al. (2002) consider equilibrium problems in mag@ry games
through agent-based simulations with a decision makinghar@sm of agents
based on neural networks, and the neural networks aredraotdy some teacher
signals but by the outcomes of games. They compare thegedtite simulations
with the results of the experiments with human subjects gotedl by Sundali et
al. (1995), and find some similarities between phenomenlaeo$imulations and
the experiments. Nishizaki et al. (2005) investigate tliectiveness of a socio-
economic system for preserving the global commons by sitionlanalysis. A
number of attempts have been made for performing multi-dupged simulations
and developing the related techniques underlying the ifiteasdistributed artifi-
cial intelligence and multi-agent systems (Epstein ance\x1996; Conte et al.,
1997; Chellapilla and Fogel, 1999; Downing et al., 2001; Masad Davidsson,
2001; BanerjeSen, 2002; Niv et al., 2002; Parsons et al.2;2Bfehman et al.,
2003).

In the model by Akerlof, a labor market is considered and tiwemtypes of
individuals, laborers and capitalists, are required, thiere is only one type of
individual in the model by Naylor. In this paper, we focus be tmodel by Nay-
lor because of relative simplicity and develop a multi-agsistem for simulation
analysis, in which agents behave adaptively and their foedidy respect to the
social norm is created by a series of actions in the long rutapfive behavior
of agents is implemented by incorporating mechanisms asaermaking and
learning based on neural networks and genetic algorithrasmg.the multi-agent
system, we compare the results of the model by Naylor witketaf the simula-
tions, and examine behavior of agents with respect to thialsoarm by varying
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values of several parameters. In section 2, we briefly revif@mvmathematical
model by Naylor and summarize the results of the study. Afterdescribe our
simulation system with its many adaptive artificial agentsection 3, we exam-
ine the results of the simulations in section 4. Finally,ectgn 5 we summarize
the results and findings from the simulations.

2 Themathematical model by Naylor

In the model by Naylor (1989), the utility involves the effed reputation arising
from obedience of the social norm in a way similar to that oeA&f (1980). An
individual obeys the social norm if the utility obtained ffinadoing so is at least
as great as the utility derived from not doing so. Otherwiemepr she disobeys
the social norm. The utility function of an individual hasdi@rguments: money
incomeM; reputationR; a decision variable with respect to obedience of the
social norm; a state variabkewith respect to the individual's belief of the social
norm; and the individual’s personal tastelr'hen, the utility function of individual

I is represented by

U =U(M,R sb,s). (1)

The personal tastg of individual i represents sensitivity concerning reputation
in a society, and it is assumed to be distributed uniformlghmintervalet, €H].
From the distribution of it follows that heterogeneous individuals are dealt with
in this model. Suppose that there exist two groups of agentsof which believes
the social norm, and one which does not believe it. Then, éisgnal tastes of
agents in the group of believers are larger than those inrthggf non-believers.
The money incomd/ is defined adl if the individual obeys the social norm
andw if the individual disobeys it; it is assumed thadt< w. In the context of
Naylor, the social norm is invoking workers to support aketrilf the individual
disobeys the social norm, the individual suffers disytiibnsequent upon the act
of disobedience. The disutility is a constarif the individual is a believer of the
social norm, and itig if a non-believer; it is assumed thgitc c. Then, the money
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incomeM is represented by
G=ds+w(l-s)—b(l—s)c—(1-b)(1-s)g, 2)

wheresis 1 if the individual obeys the social norm, and 0 if not; dnd 1 if the
individual is a believer, and O if not.

The utility from reputation accrues to individuals only whine individuals
obey the social norm, i.es= 1. It depends on the rate of obediencen the
population and the personal tastef individuali, and it is represented by

R = as|E;, (3)

whereaq is a coefficient of the reputation. The utiliB/from reputation increases
with the rate of obediengeand the personal taste
Then, the utility function is represented by

Ui = ds+w(1—s)+asig —b(1—s)c—(1—b)(1—-s)g. 4)

The behavior of an individual is determined by the utilitynétion (4), and it
depends on the belief of the social norm. If a belieivebeys the social norm,
i.e.,b=1ands= 1, then the beIieveirobtainsUibs: d -+ agjy; otherwisep=1
ands= 0, then the believerobtainsU”> = w— €. These values are compared and
then if UPS > UPS, the believeri obeys the social norm; otherwise, the believer
I disobeys it. Similarly, if a nonbelieveﬁobeys the social norm, i.eb,= 0 and
s=1, then the nonbelieveie_robtainsui—BS = d+ag; otherwisep =0 ands=0,
then the nonbelieve?obtainsui—ggz w—g. These values are compared and then
if Ui—BS > Ui—5§, the nonbelievefobeys the social norm; otherwise the nonbeligéver
disobeys it. The behavior of an individuahlso depends on the personal tagte
of self, and it can be represented graphically by Figure 1.

Anindividual’s personal tasteis uniformly distributed over the intervi-, €],
and the behavior of an individual is governed by the two higpke curves, as
seen in Figure 1. For the configuration of parameters givéngare 1, there are
multiple equilibria: the poinb, the intervalk-m and p-g. The rate of obedience
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Figure 1. The model by Naylor

W in the population increases in the intervap, and it decreases in the interval
g-0 as time goes on. The three main results of the study by Nagk89) are
summarized as follows.

(i) For particular configurations of parameters, three $ypieequilibria can be
found: the maintenance state of the social norm with higéeels of the
obedience rate (the intervialm), the maintenance state of the social norm
with lower levels of the obedience rate (the interpad), and the extinction
state of the social norm (the poiok

(i) Regardless of an individual’s belief with respect teethocial norm, the
obedience rate of the social norm increases with the peratty g, for
disobedience of the social norm.

(i) The obedience rate of the social norm increases wighgayoffd by obey-
ing the social norm, and it decreases with the payoHly disobeying the
social norm.



Naylor suggests that the existence of the social norm irelsoene social-
regarding individuals to behave cooperatively and hengeo&sibly escape the
prisoners’ dilemma.

3 An agent-based simulation system

Although the mathematical model by Naylor (1989) reachésr@sting results,
it is assumed that individuals are rational and maximizé thayoffs, and con-
sequently they can discriminate between two payoffs withiaute difference.
Such modeling of human behaviors might be not always apateptor analyz-
ing social phenomena. In contrast, models based on addmivavior can be
alternatives to such mathematical approaches. Furtherminile the penalty for
disobeying the social norm depends on the belief with rddpeit, the belief is
defined only by an action in the prior period. Namely, an irtinal who obeys
the social norm in the prior period is a believer of the soe@im and an individ-
ual who disobeys it in the prior period is a nonbeliever. Ih&ural to consider
that the belief of individuals who obey the social norm in liveg term is at vari-
ance with that of individuals who obey it only in the prior [wet. Akerlof (1980)
himself points out that the alternative expression of tHeebghould be extended.

In this paper, we examine the variances between those thdils and the al-
ternative expression of belief. Specifically, we employraidation model with
adaptive artificial agents. In our simulation model, eacenadhas a decision
making and learning mechanism based on neural networks geahetic algo-
rithm. We also assume that the personal tastekall the agents are uniformly
distributed over the intervgk", €M), and we restrict interaction between agents
within a group of agents with similar values of personaldast Namely, all of
the agents are divided into multiple groups in terms of theqeal tastes; agents
in a group are evolved independently of agents in the othmrg.

As we mentioned in the previous section, reinforcementniegr learning
classifier systems, neural networks, genetic algorithrtts, are applicable as



mechanisms for the learning of artificial agents. Becauselea with changes
and the development of social norms in this paper, we neechpday a model in

which decision making of an agent depends not only on theooutf an action

selected by the agent, but also on a social state such asehkéenbe rate of the
social norm. In reinforcement learning, learning of an ageeffected by revis-

ing the selection probabilities of strategies accordingheoutcomes of actions
selected by the agent. The learning classifier systems vduiokist of multiple

‘if-then’ rules receive information from the environmemichclassify states of the
environment; and the action given by the if-then rule matgta state of the en-
vironment is performed. According to rewards from the emwiment, a set of the
rules is evolved. In the learning system with decision mglkind learning mech-
anisms based on neural networks and genetic algorithmsogeeeby Nishizaki

(2007), an action of an agent is determined by an output ohé&wal network

which is a nonlinear function of multiple inputs, and thegraeters of the neu-
ral network are revised according to the outcomes of actidrike agent in the
framework of genetic algorithms.

Applicabilities of these methods of analyzing the socialnm@an be evalu-
ated as follows. For reinforcement learning, it is difficidtrelate the state of the
society to decisions of agents. It is natural to think that enhvironments varying
continuously, such as changes in and the development @&l smeims, it is appro-
priate to employ the learning system based on neural nesaaorll genetic algo-
rithms which outputs continuous real numbers rather tharlglrning classifier
systems with discrete outputs based on if-then rules. W wighe characteristics
of these methods, we employ the learning system based oalmaiworks and
genetic algorithms in this paper.

To examine changes in and development of the social norm¢taomaand a
payoff of an agent in the prior period, the belief of the ageith respect to the
social norm, actions and payoffs of the other agents, andledience rates of
the social norm in the population are used as inputs of theahaatwork, and an
action of the agent is determined as an output of the nonlineation embedded
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in the neural network. Moreover, the history of the agenttsoms is held together
with a chromosome of the agent for the genetic algorithm thadlegree of belief
with respect to the social norm is determined by using thhif actions.

A neural network which is the decision making mechanism aigemt is char-
acterized by the synaptic weights between two nodes anchthsholds for the
output functions of nodes, and these parameters are traatacchromosome in
the genetic algorithm. This evolutionary system with tharaénetworks and the
genetic algorithm reproduces dominant agents which tageogpiate actions for
the changing environment. Agents receive individual infation and external in-
formation such as societal states and actions of the otleetsgand they adapt to
the environment through a trial and error process. Agentsiwdan obtain higher
payoffs survive, and the society is constituted of such dami agents. Because
the knowledge of agents is accumulated and embedded in tampters of the
neural networks, the agents can learn collectively in tleging environment.

Brenner (1998) considers the use of evolutionary algostimsocial science
studies, and points out that a history of actions of agentsilshbe taken into
consideration in systems implemented for analyzing sqii@homena. In our
system for analyzing changes in and development of the lsumien, a history of
actions of an agent is held, and it determines the degreelief bath respect to
the social norm. Therefore, it can be said that our systernsistent with his
claim.

Because each agent has different personal tastes, theafiopuwf agents is
considered to be heterogeneous. In the context of the soarat analysis, we
think that there is hardly any opportunity for interacticgtlween agents with ex-
ceedingly different values of personal tastes. From thesvpoint, we divide the
population of agents into multiple subpopulations, andgenais allowed to in-
teract only within the same subpopulation. In contrast;iiéeand Mas (2008a,b)
investigate the performance of teams where agents witbrdift attributes inter-
act with each other. This aspect is also interesting in amadysocial norms, and
we investigate the influence of the interaction betweenrbgémeous agents on
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changes in and development of the social norm. To do so, wduobrsimula-
tions on the scope of interactions among agents, and exdminghe scope of
interactions influences changes in and development oflsumims.

3.1 Decision making by a neural network

An agent corresponds to a neural network which is charaetrby synaptic
weights between two nodes in the neural network and thrdshdbich are param-
eters for the output functions of nodes. Because a struofureural networks is
specified by the number of layers and the number of nodes mlager, an agent
is prescribed by the fixed number of parameters when thetstauis determined.
In our model, we provide strings composed of these parasigtentifying agents
and they are used as chromosomes of the agents in an argiciatic system.

Each agent chooses one of obedience or disobedience foodtz s80rm in
each period, and each of the groups with similar agents esahto that of agents
with larger payoffs. The neural network structure and chosome string are
depicted in Figure 2.

An output of a neural network is determined by a vector of tepthe synap-
tic weights, and the thresholds. The inputs of the neuraloit consist of the
following six values:

(i) The choice of ageritin the prior periods™™
(i) The obedience rate of the population in the prior perigf®
(i) The personal taste of agentsg;
(iv) The utility obtained by ageritin the prior periodi"™"
(v) The sum of utilities of all the agents in the prior periad°®?

(vi) The degree of belief of agentfor the social normb;.

12



hidden layer

input layer

prior

output layer

total
u

synaptic weight threshold personal taste

o] -~ - - - - - - oo - - - - - B

Figure 2: A neural network and the corresponding chromosome

It is natural to consider that decision making of an indidbdepends on ac-
tions of self and others in the previous periods. Theretbeeinput data of agemt
include (i) the prior choice of self, and (ii) the rate of obtte in the population
in the prior period. The prior choic®"* ¢ {0,1} of agenti is 1 if agenti obeys
the social norm, and 0 if agentlisobeys it, and the obedience raf&°" € [0, 1]
is considered an index of the social norm in the society, wsahe aggregated
information of actions of all the agents. Because the ytititthe case of obedi-
ence depends on (iii) the personal tagtef agenti concerning the reputation, it
is included in the set of input data. An agent behaves adaptiand the decision
depends on the utility obtained in the previous periods.aBse we suppose that
the decision of the agent also depends on the situation afiatgas well as the
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utility, (iv) the utility of agenti and (v) the sum of utilities of all the agents, which
can be interpreted as a certain societal situation, areded in the set of input
data. In our simulation model, the penalty for disobeyirggbcial norm depends
on the belief with respect to it, and then (vi) the belief oéag is also one of the
input data.

In the model by Naylor (1989), the beligfc {0,1} is defined only by an
action in the prior period. Namely is 1 if an individual obeys the social norm
in the prior period, and 0 if the individual disobeys it. Imtiast, we assume that
the belief with respect to the social norm is created by aesesf actions in the
long run, and define the degree of belief of ageas follows.

- (5367)/(30) ®

whered is a discount factor, and represents an action of an ageémneriods
before: 5 is 1 if the agent obeys the social norm, and O if the agent éig®b
it. Because B= 1, we haveb = s; if d = 0, which means that the definition of
belief (5) withd = 0 is reduced to that of the model by Naylor. Ass made
larger, the influence of actions in the past on the beliefeases in seriousness.
To connect the belief depending not only on the prior actiohdtso on actions
in wide-ranging past periods with the utility of an agent, define the following
utility function and employ it in our agent-based simulatgystem.

i =ds+w(1—s)+aste — (1-s){b(C—g)+g}. 6)

It follows that the penalty for disobeying the social normmiga in proportion to
the degree of belidh in this utility function.

Let Z¥ andw:, k=1,...,mP denote an input value and a synaptic weight of

j!
nodej in the hidden laye(p = 1) or the output laye(p = 2), and IetE)}-O denote a
threshold of nodg. Then an outputl)'jO of nodej is represented by

mP
of— 1 (kzlngzg . ef) | @)
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wheref is an output function which is a logistic functidiiz) = 1/(1+exp(—2z)).
As shown in Figure 2, there are two nodes in the output layetzen action of an
agent is determined by the two output values. Namely, if ﬁdee/of of output
node 1 is larger than or equal to the vah%eof output node 2, the agent obeys the
social norm, and otherwise the agent disobeys.

As we mentioned above, there are six units in the input lapdrtevo units
in the output layer. Letn be the number of units in the hidden layer. Then
because the number of synaptic weights s @d the number of units in the
hidden and the output layersts+ 2, the neural network corresponding to an agent
can be determined by the synaptic weigiMs| = 1,...,8m and the thresholds
6,1 =1,...,m+2. These parameters and the input values determine an action
of the agent, and the synaptic weights and the thresholdadjusted through
the genetic algorithm so that the initial population evslugo the population of
agents obtaining larger payoffs.

3.2 Evolutionary learning through the genetic algorithm

Each agent chooses between obedience and disobediengepevied, and the
agent obtains the utility defined by (6). By evaluating tigs arising from a
series of decisions by way of the fithess, the population eht&gevolves. The
structure of the simulation model is shown in Figure 3.

3.2.1 Initial population

A chromosome of an agent consists of the synaptic weights=1,...,8m, the
threshold®;, |1 =1,...,m+2 and the personal tastg it is represented by a string
like that of Figure 2. A population is composed fagents, and the personal
tastese;, i = 1,...,N are uniformly distributed over the intervi.2,1.2]. The
synaptic weightsy; and the thresholdg are initialized to be adjusted to a given
parametefy of the initial rate of obedience.

In an initial population, for any given initial rate of obediceyp, we set up the
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Figure 3: Flowchart of the simulation model

synaptic weights and the thresholds such Maf agents who are believets= 0,
obey the social norm, ard(1 — pp) agents who are non-believebs= 1, disobey

it. To do so, we first divide alN agents intdNpp agents with relatively larger per-
sonal tastes and(1— pp) agents with relatively narrower personal tastes. Then,
the synaptic weights and the thresholds are adjusted by tlsgnerror back prop-
agation algorithm (e.g. Hassoun (1995)) with the teachgrads shown in Table

1. Through this procedure, we can obtain an initial popafatvith the specified

initial rate of obedienceyp.

]
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Table 1: Teacher signals for the error back propagatiorriltgo

believers non-believers

g 1.0 0.0
uprlor UO*

& &*
Uiprlor d-+ Lo W— g—
ytow > (d+ apos) + 3 (W—g)*

b 1.0 0.0

01 1.0 0.0

02 0.0 10

* The teacher signals "', &; andU @ are the same both for believers and for
non-believers.

3.2.2 Genetic operations

Because the parametgrof agenti represents personal taste with respect to the
social norm, it is natural to suppose that there is hardlyaoportunity for agents
with exceedingly different values of the parameter to imtémwith one another.
To implement such situations, we divide the population cfrdg into multiple
subpopulations, and an agent is allowed to interact onliivthe same subpop-
ulation. NamelyN agents are divided intM groups, and the following genetic
operations (e.g. Goldberg (1989)) are executed for eaalpgro

Reproduction As areproduction operator, the roulette wheel selectiadopted.
LetN’ =N/M denote the number of agents in each subpopulation. A chromes
of an agent is selected into the next generation by a rowdtées| with slots sized
by the probabilityp? = Ui/(ZiNz/l Ui), whereU; is a utility of agent at this period
and it is also interpreted as the fitness in the artificial gersgstem.

Crossover A single-point crossover operator is applied to any pairlobmo-
somes with the probability of crossovpef. A point of crossover on the chro-
mosomes is randomly selected and then two new chromosoreeseated by
swapping subchromosomes which are part of the right sideeobtiginal chro-
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mosomes from the selected point of crossover. A new pojmasi formed by
exchanging a specified rate of portions of the current pdipmdor that of the
modified population in which the crossover operation is ekt the rate is called
the generation gag. The utility of a newly created offspring by the crossover op
eration is determined by inheriting those of its parenthmproportion of sizes
of the swapped subchromosomes. An agent keeps the histacyionhs from past
periods. To create the history of the offspring, those offheents are also uti-
lized. It is determined by choosing from two series of actiohthe parents with
probabilities corresponding to the sizes of the swappedhsoimosomes.
Mutation With a given small probability of mutatiop™, each gene which repre-
sents a synaptic weighi;, a threshold®, or the personal tasgg in a chromosome
is randomly changed. If the selected genwjir ), it is replaced with a random
number in[—1,1], and if it isg;, it is replaced with a random number[h2,1.2].

4 Resultsof the ssmulations

4.1 Thedetailsof the ssmulations

We conduct the basic simulation comparing the results oNdwdor model with
those of our simulation model, and we also provide four sexpintary simula-
tions for the degree of belief with respect to the social ndha penalties for dis-
obeying the social norm, the payoffs by obeying and disaigethe social norm,
and the scope of interaction among agents. Then, we arraegeltowing five

simulations.

(i) SimulationBasis Comparison between the model by Naylor and our simu-
lation model.

(i) SimulationBelief Degree of belief with respect to the social norm.
(i) Simulation Penalty Penalties for disobeying the social norm.
(iv) SimulationPayoft Payoffs by obeying and disobeying the social norm.
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(v) Simulationinteraction Scope of interaction among agents.

In SimulationBasis the same setting as that of the model by Naylor is used
in our agent-based simulation system, and we examine whetheot the three
types of equilibria obtained in the model by Naylor can beeobsd. We intro-
duce a parameter of the belief with respect to the social waioh is created by
a series of actions in the long run, and in Simulatigelief we examine the in-
fluence of the belief and the penalty defined by the belief erdécision making
of agents. We focus on the penalty for disobeying the socahrin Simulation
Penalty In the model by Naylor, it is concluded that reduction of fienalty
leads to a fall of the rate of obedience and increase of thalfyeleads to a rise
of it. We examine whether or not the results of SimulatiRemaltysupport this
conclusion. The pecuniary payoffs depend on choices oftadetween obedi-
ence and disobedience, and in SimulatRayoffwe focus on these payoffs. The
mathematical consideration by Naylor forms the conclusiat the obedience
rate of the social norm increases with the payoff by obeyirgsocial norm and
it decreases with the payoff by disobeying the social norre. WAfify this claim
through SimulatiorPayoft Belief and personal tastes of individuals are formed
by interacting with other people, and it is natural to sugpthsat such interac-
tions frequently occur among people with similar beliefpersonal tastes. From
this viewpoint, it is appropriate to restrict the scope démction among agents
in a simulation model with adaptive artificial agents. Bessin our simulation
model, interaction among agents is implemented as the igeoprations in the
evolutionary process, the genetic operations are perfmithin a subpopulation
of agents with similar personal tastes. In Simulatioteraction we examine the
influence of the scope of interaction among agents on mantanor extinction
of the social norm by varying the size of subpopulations.

The standard setting of the parameters of the utility fuumc{6) with the de-
gree of belief (5) used in the simulations is shown as foltows

pecuniary payoffs: d = 0.1 for obedience, w= 1.0 for disobedience;
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penalties: c= 0.7 for believers, = g= 0.6 for nonbelievers;
coefficient of reputation: o = 1.0;

discount factor: 0=0.0;

personal tastes: a random numben the interval[0.2,1.2].

Artificial adaptive agents have a mechanism of decision ngaknd learning
based on a neural network and a genetic algorithm, and thelaté setting of
the parameters of the neural network and the genetic digorig also given as

follows:

the number of nodes in the neural network:
6 in the input layer, 8 in the hidden layer, 2 inthe output faye
the number of individuals (agentsiN = 10000;
the number of subpopulations: M = 100;
the parameters of genetic operations:
crossovep® = 0.6, mutationp™ =0.01, generation gag= 0.5.

4.2 Simulation Basis

In SimulationBasis the standard setting of the parameters is employed, and we
perform 11 treatments of the simulation with the initialeratf obedience in the
society frompp = 0.0 to o = 1.0 at intervals of QL. In particular, for the treat-
ments where there are multiple states of convergence, weiexturther trials of
the simulation with different values of the initial rate dbexlience. Each treat-
ment is performed 100 runs, and we observe transitions afaeeof obedience
in the whole population and measure the time needed for cgenee. Because
of the fact that until 1500 periods have been performed,rafp@ratory runs con-
verge at certain levels of the obedience rate which meanxtiecgon and the
maintenance of the social norm. Accordingly, we set the makperiods of the
simulation at 2000 periods.

In Figure 4, we show the results of the four treatments of imeikation with
Mo = 0.2,0.3,0.4,1.0 which characterize the steady states of the simulatioch Ea
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of graphs on the left hand side depicts a transition of thel@nee rate of the
social norm. For the treatments jaf = 0.2,0.4,1.0, the transition shown in the
figure is one of 100 runs, and for the treatmenpgt= 0.3, two transitions are
shown because there are two levels at which the obediereeagatverges in the
long run. In graphs on the right hand side, we give the distitins of obedience
rates over the interval of the personal tag@g, 1.2]; the black curve is the av-
erage of 100 runs after period 100, and the gray curve is tbage after period
2000.

In the treatment ofy = 0.2, at the beginning of the simulation, the synaptic
weights and the thresholds of the neural network are adjustaising the error
back propagation algorithm such that agents with persasa¢s @ < g < 1.0
which account for 80% of the whole population disobey theadotwrm and the
rest of the agents with personal taste8 4 & < 1.2 obey it. As an example
shown in Figure 4(a), in each of the 100 runs of the treatmipg e 0.2, the rate
of obedience converges at almost 0% and the social norm lescertinct in the
long run. As seen in Figure 4(b), it is observed that 20% ofjtleeip of the agents
with personal tastesQ < g < 1.2 which obey the social norm at the beginning of
the simulation disobey it already after only period 100, alrdost all the agents
of the group eventually disobey it by the last period 2000.

In the treatment ofp = 0.3, as seen in Figure 4(c), there are two levels at
which the obedience rate converges in the long run: the eraamice state of the
social norm in which 80% of agents of the population obey ti@ad norm, and
the extinction state of the social norm in which all of theratgalisobey the social
norm. However, the maintaining state of the social norm iseolzed only one
time among the 100 runs. In fact, as seen in Figure 4(d), ormgeet follows that
a part of the group of agents with personal tast8s0¢; < 1.0 come to disobey
it after period 100, and finally at period 2000, almost all élgents disobey it.

In all the 100 runs of the treatment p§ = 0.4, as seen in Figure 4(e), the
rate of obediencel increases fromyy = 0.4 at the beginning to approximately
pn=0.78, and the social norm is maintained with a high level of thedience rate.
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As seen in Figure 4(f), although agents with personal tasfes € < 0.8 which
account for 60% of the population disobey the social norrhe@bieginning of the
simulation, a part of them, that is, agents with person&sad7 < €; < 0.8 begin
to obey it after period 100, and finally at period 2000, theuafon converges at
a state that agents with personal tastes 0.385 obey it with a probability of @
and over.

In each of the 100 runs of the treatmentpf= 1.0, the rate of obedience
decreases fromp = 1.0 at the beginning to approximatgly= 0.78. An example
is shown in Figure 4(g). The rate does not decrease any fuatie the social
norm is maintained with a high level of the obedience rateséemn in Figure 4(h),
although all the agents obey the social norm at the beginofinige simulation,
a part of the agents with personal taste3Q ¢; < 0.3 begin to disobey it after
period 100, and finally at period 2000, the population cogesrat a state that
agents with personal taste g; < 0.385 obey it with only a probability of @
and below. This state is the same as the steady state of #tmaet ofy = 0.4.

From the above observation, two types of the steady statesbaerved in the
results of the simulation. It follows that if the initial ebf obedience is smaller
than Q3, the social norm becomes extinct in the long run, and otiserthe social
norm is maintained at the obedience rate of abot80Lett® andt* denote the
steady states which mean the extinction and the mainteradribe social norm,
respectively. To explore a diverging point of the initiateaf obedience to the
two steady states and to measure the time needed for congdugithe steady
states, we perform further trials of the simulation stgytirom a large variety of
the initial rates of obedience. In Figure 5(a), we show thenlper of runs such
that the social norm is maintained for all treatments wiffedent initial rates of
obediencglp, and in Figure 5(b), the time needed for converging to thadste
states is shown for each of all the treatments. The time mktedeach the steady
states is measured as follows. We compute the fieard the standard deviation
o of the obedience rate after period 2000 for the 100 runs, afidedthe time
needed to reach the steady states as a minimal period thatéhef obediences
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Figure 5: The maintenance of the social norm and time to gtefdes

As seen in Figure 5(a), all of the treatmentgugfe [0.0,0.28] converge only
to the extinction state of the social nonf; the treatments ofiy € [0.30,0.37]
converge to either of the two steady statesndt*; and all of the treatments of
Ho € [0.38,1.0] converge to the maintenance state of the social mérr@oncern-
ing the time needed for converging to the steady states,asiad-igure 5(b),
in the treatments ofip € [0.31,0.40], it takes more than 500 periods to converge
to either of the two steady states, and it takes a long timi ttnet consequence
of the social norm—which is either extinction or maintenandecomes clear.
Viewing this situation from a different angle, we can intexfpthis to be that the
social norm is maintained at a lower level of the obedienteirathe short term.

To compare the results of the simulation with those of theheratatical model
by Naylor, first we summarize the equilibria of the mathecatmodel. (M1) If
the initial ratepp of obedience of a society is in the intery@l0,0.20), i.e., U €
[0.0,0.20), the rate of obedienge decreases and finally reaches the equilibrium
which means the extinction of the social nomns= 0, and it corresponds to the
point o in Figure 1. (M2) Ifyp € [0.20,0.355, the rate of obedience does not
change and it is in equilibrium, which corresponds to anypioi the intervalp-q
with the lower level of the obedience rate in Figure 1. (M3)d& (0.3550.845),
the rate of obedience increases and finally reaches thakequit which means
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the maintenance of the social norm= 0.845, and it corresponds to the pomt

in Figure 1. (M4) Ify € [0.8451.0], the rate of obedience does not change and
it is in equilibrium, which corresponds to any point in theeirval k-m with the
higher level of the obedience rate in Figure 1.

Next, we give a summary of the results of the simulation devid. (S1) If the
simulation starts from any initial rate of obedience in thieival[0.0,0.20), i.e.,
Ho € [0.0,0.20), the rate of obedience converges to the extinction stateeo$o-
cial normt°. Thus, the result of the simulation supports that of the eratitical
model. (S2) Ifu € [0.20,0.355, all of the treatments qfp € [0.20,0.30) converge
to the extinction state®, and some runs of the treatmentspgfe [0.30,0.355
reacht® and the others eventually arrive at the maintenance statieecgocial
normt*. Thus, the result of the simulation does not support the emattical
model’s result that the social norm is maintained in the lolsreel of the obedi-
ence rate. However, in the treatments@f [0.31,0.355, it takes more than 500
periods to converge to the steady states, and we can inténpesituation with
the lower level of the obedience rates as a short-term sitate. (S3) Ifp €
(0.355,0.845, in a small number of runs in the treatmentgugfe (0.355,0.37,
the social norm becomes extinct, but in most of the runs,do@bnorm is main-
tained at the higher level of the obedience rate. Thus,livid that the results of
the simulation support that of the mathematical model. (B4) € [0.8451.0],
the rate of obedienge decreases in all runs but the social norm is maintained at
the higher level of obedience rate, that is, the rate of advexli converges to'.
Although in one sense, because the social norm is maintamieé mathemati-
cal model, the results of the simulation support those ohtaghematical model.
However, in the sense that the rate of obedience does nogeltieom the initial
rate, the results of the simulation do not support thoseefriathematical model.

In the mathematical model, because believers and nonvbedigvith the same
personal tastes differ in their optimal actions when thedodrece rateu of the so-
ciety is in the intervalp-q or the intervak-min Figure 1 on the assumption that
individuals can discriminate between two utilities with @note difference, any
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point in the intervals becomes a state of equilibrium. Onatier hand, because
agents in the simulation model adaptively behave and agbtasing larger util-
ities are likely to survive, if an agent which has obtainedben utilities in the
short term comes to obtain higher utilities later, therenimie possibility that the
agent survives. Although if an agent which is a believerlokys the social norm,
the agent suffers disutility consequent upon the act oftdideence, the agent be-
comes a non-believer in the next period and the penalty &wlaiying the social
norm becomes small as long as the agent disobeys it. Theréfecause actions
of agents depend on the difference between the utility fenegcontinuing to
obey the social norm and the utility for agents continuinglisobey it over the
long run, it is thought that, in the simulation, there does east equilibria of
intervals such ap-q or k-min Figure 1.

Moreover, the equilibria of the interval-q in the mathematical model are
considered to be less stable than the intekwal because if the rate of obedience
deviates from the intervah-q even slightly, it goes to the pointa or o. In the
simulation, there exists a steady statecorresponding to the intervédm but a
steady state corresponding to the inteqya cannot be observed.

To compare behavior of agents in our simulation with thatnafividuals in
the mathematical model by Naylor, consider an agent withtikedly small per-
sonal tasteg; = 0.21, in the treatment of the initial rate of obedienge= 1.0.
The utility for obedience i8); = d + pgj = 0.1+ 1.0- 0.21= 0.31,; the utility just
after changing from obedience to disobediendegjiss w+c=1.0—0.7 = 0.3;
and the utility for continuing disobediencelis=w+g=1.0-0.6=0.4. In
the mathematical model, an individual with the same peldaste obeys the so-
cial norm because the utility of. 81 for obedience is larger than that o80 for
disobedience. On the other hand, because in the simuldt@avior of agents
Is characterized by trial and error, some agents that ob#eedocial norm may
disobey it in the next period. Such agents obtathdf utility by continuing dis-
obedience and consequently they may obtain larger usiliian utilities obtained
by agents continuing to obey the social norm. Thus, it isdliaatageous in an
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evolutionary viewpoint that agents with small values ofgoeral tastes such as
€ = 0.21 continue obeying the social norm, and there is little clkatmat such
agents can survive in the long run.

The pointmof an equilibrium in the mathematical modeljg",e™) = (0.845,
0.355). At this point a non-believer obtains the same utility ipestive of his or
her choice between the actions. Thus, frath= 1.2 — €™, we haved + pMe™ =
d+(1.2—eMeM=w+g= 0.4 and therefor¢p™ ™) = (0.8450.355). In the
simulation model with adaptive artificial agents, it is tigbtithat it is an even
chance that agents with personal tastes around a certalerba@lues™ obey the
social norm. There is a larger chance of obedience for art ag#ma larger value
of personal tastes tha#, and conversely an agent with a smaller value of personal
tastes thag* is likely to disobey it. The individual obedience rate of atgwith
the personal tastein the long run can be estimated as a certain nonlinear fumcti
f(g;€*) like the gray curve depicted in Figure 4(f) or 4(h). Providedt such a
function f (g;€*) is given, the rate of obedience in the society can be obtdiged
computingu(e*) = f01.'2.2 f(g;€*)de. Particularly in the setting of this simulation,
we have a pair of the obedience rate and the border value qietsmnal taste
(L = p(e*),e*) = (0.78,0.385) satisfyingd + p(e*)e* = w+g = 0.4, as seen in
the steady state represented by the gray curve of Figurer/{{h). The obedience
rate u* = 0.78 of the steady state" is slightly smaller than the obedience rate
U™ = 0.845 of the equilibriumm, and the border valug’ = 0.385 of the personal
taste is larger than the border vakie= 0.355 of the equilibriunm.

The result of the simulation suggests that when a social nemmaintained,
a section of individuals who do not care about their repatadisobey it. That
is, there does not exist a society where all the individubksyahe social norm.
Moreover, the results also suggest that even if in the sbort there exists a social
norm supported by a small number of people like a situatisresponding to the
interval p-q in the mathematical model, there is little chance that susbaal
norm would be maintained in the long run.
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4.3 Simulation Belief

In the simulation model, the degree of belief (5) is deteediby a series of an
agent’s actions in the long run, and the agent obtainsyu(ti} depending on the
degree of belief. In SimulatioBelief we examine the influence of the belief and
the penalty based on the belief on decision making of aggntsatying a value
of the discount factor for past actions.

To make results of the simulation clearer, we expand themiffce between
the penalties andg for believers and nonbelievers by changing them foom0.7
andg = 0.6 of the standard setting to—= 0.7 andg = 0.55. For each of the three
treatments of the discount factde= 0.0,0.5,0.9, we conduct trials with the initial
rate of obedience fromp = 0.0 to Y = 1.0 at intervals of QL, and each trial is
performed for 100 runs. The results of the simulation arevshio Figure 6. In
Figure 6, the horizontal axis is the initial rate of obedireand the vertical axis
is the number of runs such that the social norm is maintaimedng the 100
runs. In Figure 7, we give transitions of the obedience ratetfe treatments of
0 = 0.0 andd = 0.9 which start from the initial rate of obedienpg = 1.0. For
the treatments od = 0.9, the transition shown in the figure is one of 100 runs,
and for the treatment @ = 0.0, two transitions are shown because there are two
levels at which the obedience rate converges in the longTha.broken lines in
the graphs show the rate of obediepce 0.7, which means the lower limit of the
equilibria with the higher level of the obedience rate in thathematical model
for the parameters of this simulation; the ratquef 0.7 corresponds to a poim
in Figure 1.

As can be seen in Figure 6, the frequency of maintenance afdtial norm
increases as the discount factor rises. For the treatmént @9, the social norm
is maintained in all of the 100 runs when the initial rate odience is larger than
0.6, Yo > 0.6, and for the treatment &= 0.0, even if the initial rate of obedience
is larger than 7, po > 0.7, the social norm becomes extinct in 10 runs among
the 100 runs. In the two runs depicted in Figure 7(a), botthefrt temporarily
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converge at aroung = 0.7 until period 400, and thereafter in one of them the
social norm is maintained to the end of the simulation, buthm other one, it
suddenly decreases after period 1300 and finally becomegexthe transition
shown in Figure 7(b) converges to the steady state untilrer@eriod 600. From
the transitions of (a) and (b) in Figure 7, it is observed thatrate of obedience
in the treatment 0d = 0.0 converges quickly but it is unstable, compared with the
treatment od = 0.9.

To examine stability of maintenance of the social norm iradleive conduct
treatments of the discount factor frads= 0.0 tod = 0.9 at intervals of L, fixing
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the initial rate of obedience ap = 1.0; each treatment is performed 100 runs.
The frequency of maintenance of the social norm is shown guiriei 8, and the
mean and the standard deviation of runs where the social iromaintained is

shown in Figure 9.
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As seen in Figures 8 and 9, as the discount fadtes made larger, which
means that the influence of actions from the past on the dediebmes serious,
the frequency of maintenance and the mean value of the obsdrate increases
and its standard deviation decreases. The reason for this that the fluctuation
in utility by changing actions is small when the discountiéads large. For the
treatment o® = 0.0, it follows that the degree of beliéfis defined only by one
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action in the prior period, and becauses 0 or 1, the penalty for a shift of actions
from obedience to disobedience is larger than that of therrent ofd = 0.5 or

0 = 0.9. Thus, behavior of agents is likely to settle either to obeto disobey,
and as seen in Figure 7, the time needed to reach the steselyisiareases with
the value ofd. In the treatment 0d = 0.0, because of the above mentioned rea-
son, actions chosen by agents are likely to be one-sideldk ifate of obedience
becomes less than a certain level, the social norm can beexiinet even with a
high initial rate of obedience as seen Figure 7(a) becaugedftochastic repro-
duction based on the roulette wheel selection in the a#lfgenetic system.

We summarize the results of SimulatiBeliefas follows. When the degree
of belief is determined by a series of an agent’s actionseridhg run, it is likely
that the rate of obedience rises and the state of the artgmzety remains stable.
On the other hand, for the case where the degree of belietésndmed only by
one action in the prior period, there is some chance thatdbialsnorm becomes
extinct even if the initial rate of obedience is sufficieridyge, and it is observed
that the variance of the rate of obedience is large even indake of maintenance
of the social norm. Namely, if agents act myopically, thathe discount factor is
small, uncertainty or diversity of existence of the soc@alm increases.

4.4 Simulation Penalty

In SimulationPenalty we focus on the penalty for disobeying the social norm.
There are two types of penalties for disobeying the sociahno the model by
Naylor: the penalty to believers and the penaltyto non-believers. In our sim-
ulation model, we employ a similar setting, thatdss the penalty to agents with
the degree of belidh = 1 andg is the penalty to agents with the degree of belief
b = 0. In the model by Naylor, it is concluded that the decreasthefpenalty
leads to a fall of the rate of obedience and the increase gbehalty leads to a
rise of it. We examine whether or not the results of Simurafenaltysupport
this conclusion.
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We conduct two treatments ofandg. For each of them, the discount factor is
set atd = 0.0 andd = 0.9: 6 = 0.0 where the degree of belief is determined only
by one action in the prior perio®;= 0.9 where the degree of belief is determined
by a series of an agent’s actions in the long run. In the treatw four trials
c = 0.60, 065, 070, Q75 are performed, fixing a = 0.6. In the treatmeng,
four trialsg = 0.55, 060, 065, 070 are performed, fixing at= 0.7. Each set of
trails is performed 100 runs. The results are shown in Fggileand 11. In both
of the figures, the horizontal axis is the initial rate of oleede and the vertical
axis is the number of runs such that the social norm is maietkamong the 100
runs. Moreover, the rate of obedience only in runs such tiasbcial norm is
maintained is shown in Figures 12 and 13.
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Figure 10: The maintenance number of the norm with respdbetpenalties

As seen in (b) of Figure 10, for the treatmentofith = 0.9, an increase of
the penaltyc for agents with the degree of belief= 1 evidently leads to a rise of
the maintenance number of the social norm. For the treatofemvith 6 = 0.0,

a similar phenomenon can be only just observed but theretisinoh difference
between the trials = 0.65, 070, and 075. We can observe a similar result in
Figure 12; ind = 0.9, an increase of the penaltycauses the rate of obedience to
rise, and i = 0.0, the difference of the rate of obedience betweer0.65, 070,
and Q75 is not clear. The reason for these facts is supposed as/lIConsider
an agent which continues obeying the social norm. If the adsobeys in the
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Figure 12: The rate of obedience with respect to the pesaltie

next period, although the agent is affected by the permadiyly one period in the
case ofd = 0.0, it continues to suffer the penalties closectover many periods
in the case od = 0.9. Thus, in the treatment af with & = 0.0, it is supposed
that variation in the value af does not have a large influence on the maintenance
number of the social norm and the rate of obedience.
As seen in Figure 11, for the treatmenigdfoth withd = 0.0 and withd = 0.9,

an increase of the penalgyfor agents with the degree of belibf= 0 leads to a
rise of the maintenance number of the social norm. Thererdiyhany difference
between the cases df= 0.0 andd = 0.9 in the trials ofg = 0.70,0.65,0.60, and

the variation of the discount factdidoes not have much effect on the maintenance

number of the social norm when the gap g is relatively small. In the trial of
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Figure 13: The rate of obedience with respect to the pesatie

g = 0.55 with d = 0.0, the maintenance number of the social norm does not reach
100 even if the initial rate of obedience is larger than 60 p > 0.6. As seen

in Figure 13, an increase gdfleads to a rise of the obedience rate in runs where
the social norm is maintained, and only in the triabof 0.55, there exists some
difference in the rate of obedience betwéen 0.0 andd = 0.9.

From the above analysis, it is found that variation in theigaifg has a larger
impact on the maintenance number of the social norm and teeofabedience
than that ofc. To examine this fact in detail, we give the maintenance remob
the social norm among the total 1100 runs for each of thenreats with a rate
of obedience fromup = 0.0 to o = 1.0 at intervals of QL in Table 2, where the
results of the treatments of= 0.70 andg = 0.60 are arranged in the same column
because these valuesméndg are the standard setting.

Table 2: Fluctuations in the maintenance number of the booran respect to the
penaltiegyandc

c 0.75 0.70 0.65 0.6
0=0.0 702 701 701 700
0=0.9 725 718 702 700

g 0.70 0.65 0.60 0.55
0=0.0 900 800 701 473
0=0.9 893 801 718 588

34



As seen in Table 2, for the casesd®# 0.0 andd = 0.9, the differences be-
tweenc = 0.75 andc = 0.65, which shift 0.05 from the standard setting 0.70,
are 1 and 23, respectively. On the other hand, the diffeeehebveery = 0.65
andg = 0.55 are 327 and 213, respectively. From this fact, it is fourat &in
increase of the penalty leads to a rise of the maintenance number of the social
norm effectively, compared with the increase of the penaltfhe penaltyc to
agents withb = 1 motivates them to continue obeying, and it has an influence
on the utility only when agents continuing to obey switch isotbeying. In con-
trast, the penaltg to agents withh = 0 motivates them to merely obey the social
norm. In the simulation, behavior of agents is charactdrizg trial and error,
and therefore they are likely to change their actions. Cqunsetly, it is supposed
that variation in the value af does not have a large influence on the maintenance
number of the social norm and the rate of obedience, compethd.

4.5 Simulation Payoff

SimulationPayoffdeals with the payofti obtained by obeying the social norm
and the payoffv obtained by disobeying the social norm. In the model by Naylo
itis concluded that the obedience rate of the social normeases with the payoff
d and it decreases with the payeff We examine whether or not the results of the
simulation support this claim.

Because the discount facidhas no connection with the payotfandwin the
definition (6) of the utilityU; of an agent, in SimulatioRayoff we perform only
cases o® = 0.0. In the treatment of obedience paydifthree trialsd = 0.20,
0.10, Q00 are performed, fixingv at 10. In the treatment of the disobedience
payoffw, three trialsw = 0.9, 10, 11 are also performed, fixing at 0.1. Each
of the trials with an initial rate of obedience frqup = 0.0 to o = 1.0 at intervals
of 0.1 is performed 100 runs; altogether it comes to 1100 runs.r@$dts of the
simulation are shown in Figures 14 and 15. The graphs (a)efiglures show
the number of runs such that the social norm is maintainechgrtite 100 runs
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for each of the different initial rategy; the graphs (b) of the figures show the
rate of obedience in runs where the social norm is maintaimid results of the
treatments ofl = 0.0 andw = 1.1 are not shown in the figures because the social
norm is not maintained for any of the 1100 runs. Furthermtweompare the
result of the treatment afwith that of the treatment af, we give the maintenance
number of the social norm among the total 1100 runs in Table 3.
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Figure 14: Frequency of maintenance with respect to andateeaf obedience
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Figure 15: Frequency of maintenance and the rate of obegliettb respect to
the payoffsw

As seen in Figure 14, for the treatmentdf an increase of the obedience
payoff d leads to a rise of the maintenance number of the social nomgh,ita
also leads to a rise of the obedience rate. In contrast, friguré 15, for the
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Table 3: Fluctuations in frequency of maintenance of theasoorm with respect
to the payoffd andw

d 0.2 0.1 0.0
frequency 897 701 0
w 0.9 1.0 1.1
frequency 900 701 0

treatment ofw, it is apparent that an increase of the disobedience paygsults
in a fall of the maintenance number of the social norm, andsib éeads to a
fall of the obedience rate. Thus, it follows that these rissaf the simulation
support the conclusion of the mathematical model by Nayksom Table 3, it
Is also observed that the results of the treatmerd afe similar to that of the
treatment ofw, and therefore it is found that a gap betwekandw which means
a pecuniary incentive to disobey the social norm has anteffemaintenance of
the social norm. Thus, as the valuewof d grows large, the social norm is likely
to become extinct because the pecuniary incentive to dysbtsestrong, and vice

versa.

4.6 Simulation Interaction

Because interaction among agents in our artificial agem¢sys implemented as
the genetic operations in the evolutionary process, tleeantion is limited within
a subpopulation of agents with similar personal tastesirtrutationInteraction
we verify whether or not the maintenance of the social norpedds on the scope
of interaction among agents, and if so, we examine how thpesobinteraction
influences maintenance or extinction of the social norm.

In the simulations described in the previous sectidhsgents in the whole
population are divided intM groups, and each group is a subpopulation within
which the genetic operations are executed. In Simuldtitaraction we vary the
number of groupsv, and conduct three treatmerits= 1, 10, 100, fixing the
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number of agents a = 10000. Each of the treatments starts at the initial rate
of obedience oflp = 0.5, and it is performed 100 runs. In the treatmiht 1,
there is only one subpopulation, and the genetic operadom®xecuted in the
whole population of agents with personal tastes in thewat€0.2,1.2]. For the
treatmentdv = 10 andM = 100, after the personal tastes of all the agents are
uniformly distributed in the intervgD.2,1.2], in the treatmeni = 10, subpopu-
lations are formed by dividing the inten@l 2, 1.2] into 10 subintervals, and in the
treatmentM = 100, subpopulations are formed by dividing the intef@e2, 1.2]

into 100 subintervals. Therefore, for the treatmevits- 1, 10, 100, the lengths
of the subintervals arg®"9" = 1.0,0.1,0.01, respectively. In Figure 16, we show
the final frequency distribution of the obedience rate armdfital distribution of

the personal tastes after period 2000.
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Figure 16: The results of Simulatidnteraction

For the treatmenM = 100 with £'®"9"" = 0.01, as mentioned in Simulation
Basis because the rate of obedience starts fpgra- 0.5 at the beginning of the
simulation, the final rate of obedience after period 2000veayes in rates of
obedience fronmu= 0.7 top= 0.9. As seen in Figure 16(b), the personal taste is
almost uniformly distributed even at the end of the simolatbecause the whole
population is divided into a large number of subpopulations

For the treatmentl = 10 with €®"9"= 0.1, as seen in Figure 16(a), the dis-
tribution of the rate of obedience at the end of the simutalias two peaks; there
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are high frequencies in the intervd0,0.2] and[0.4,0.7]. It is supposed that
the former peak indicates the extinction of the social nonchthe latter indicates
the maintenance of it. Compared with the treatmdnt 100, as seen in Figure
16(b), the distribution of the personal tastes of the treatrivi = 10 is slightly
biased toward lower values. In two thirds of the 100 runs,pesonal taste is
almost uniformly distributed to the end of the simulationaal as the treatment
M = 100 and the social norm is maintained. In the rest of the tinesjistribution
of the personal tastes is slightly biased toward lower \sglaad the social norm
becomes extinct in the long run.

For the trialM = 1 with "9t = 1 as seen in Figure 16(a), the distribution
of the rate of obedience at the end of the simulation has twkgehere are high
frequencies in the interval6.0,0.2] and[0.8,1.0]. The former peak is higher than
the latter one, and the latter peak shifts to the right hadé, iompared with the
treatmentM = 10. This means that the rate of obedience is higher than b ot
treatments when the social norm is maintained. The disgtabwof the personal
tastes concentrates in the inter{@R, 0.3], except for a small portion frore =
1.1 tog = 1.2. Because in the treatmelt = 1, interaction among agents is
not restricted and the scope of interaction is equivalethéowhole population,
most of the agents with higher values of personal tasteshypay attention to
the reputation arising from obedience of the social norm dbsurvive in the
long run. Consequently in most part of the runs the sociahn@ecomes extinct.
However, it is interesting that inversely in a small part lo¢ tuns, agents with
higher values of personal tastes hold a majority and thebkoorm is maintained
with high rates of obedience in the long run.

The results of Simulatioiteractionare summarized as follows. When the
scope of interaction is extremely restricted, maintenamextinction of the social
norm depends on the initial rate of obedience and unceytaimdut outcomes of
the simulation is not very high. When the scope of interacisobroad, although
the social norm is likely to become extinct generally, thee raf obedience is
high if the social norm is maintained; on the whole the uraiety of outcomes
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increases.

5 Conclusions

In this paper, we have developed a simulation system whéfeial agents act
adaptively and their belief depends on a series of actionsde-ranging past pe-
riods. Using the system, we have compared the results of dtleematical model
by Naylor with those of the simulations. Furthermore, weéhexamined the in-
fluence of the scope of interaction among agents. The resiulkee simulations
roughly support the claim from the mathematical model by INiagxcept for the
existence of the equilibria with lower rates of obedience mraintenance at high
obedience rates such as 100%. When the degree of beliefeisrdeed by a se-
ries of an agent’s actions in the long run, the obedienceofatee social norm in
the artificial society rises and uncertainty or diversityhin the existence of the
social norm decreases. From the simulation for the scopat@faction, we have
found that if the scope of interaction is broad, the sociaimis likely to become

extinct generally and uncertainty of states of the artifisteiety increases.
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