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1 Introduction

In most mathematical models for analyzing social behaviorsof people, utility

functions of individuals are defined so as to meet social situations to be ana-

lyzed, and it is assumed that individuals make choices maximizing such utility

functions. For examining behavior of individuals with respect to social norms,

Akerlof (1980) develops a model including a social reputation on the norm as

well as motivation of monetary rewards, and explains involuntary unemployment

by considering the social custom or norm of a fair wage. In themodel, the per-

sonal tastes or attitudes toward the social norm are heterogeneous, and the utility

function is designed so that individuals obtain a better reputation if they obey the

norm, otherwise they must pay the penalty for disobeying it.He shows that once

such a social norm is established, it may continue to be followed with a stable

fraction of the population believing in it and also following it.

Various models for social norms related to the research by Akerlof have been

reported (Naylor, 1989; Holländer, 1990; Kandel and Lazear, 1992; Barron and

Gjerde, 1997; Kübler, 2001; Huck et al., 2001). Naylor (1989) proposes a model

similar to that of Akerlof in order to explain the logic of collective strike action,

and then shows the effectiveness of an approach consideringthe reputation arising

from obedience of social norms. Kübler (2001) attempts to endogenize norms by

investigating how individuals, or groups of individuals, can be influenced by the

two types of norms: bandwagon norms which are characterizedby the property

that once a critical number of norm followers is reached, thereputation value of

norms increases sharply; and snob norms, which yield the most reputation to the

followers when only a small number of people follow them. Huck et al. (2001)

deal with the interplay between economic incentives and social norms in firms,

and model the team production in a linear incentive scheme with a social norm.

Recently, approaches based on laboratory experiments analyzing social norms

have been attempted. Gachter and Fehr (1999) investigate the impact and the lim-

itations of social rewards on people’s behavior in the provision of a public good,
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and find that if subjects have some social familiarity with each other, approval

incentives generate a rise in cooperation. Rege and Telle (2004) also conduct

laboratory experiments on public goods, and argue that revealing each player’s

identity and his contribution to the public good may increase voluntary contribu-

tions. Nyborg and Rege (2003) study the formation of social norms for consid-

erate smoking behavior, and report the results with empirical evidence based on

interviews with many people.

Simulation is a growing field in the social sciences, and analysis through the

use of simulation on the formation of social norms and cultures has been devel-

oped. Based on then-person prisoner’s dilemma game, Axelrod (1986) considers

a norm game with a mechanism punishing players who disobey the norm, and in-

vestigates the dynamics of the norm by using a technique of evolutionary theory.

Using a simulation model with many autonomous and adaptive agents, Axelrod

(1997a) examines how cultural regions emerge, develop, andsettle down from

viewpoints of differences of cultures and interaction among them. Bowles and

Gintis (2004) classify agents into three types by judging whether agents obey the

norm or not and whether they punish other agents who violate it or not, and study

cooperation in the population by agent-based simulations.

Although the mathematical models by Akerlof (1980) and Naylor (1989) reach

interesting results, it is assumed that players are rational and maximize their pay-

offs, and they can discriminate between two payoffs with a minute difference.

Such optimization approaches are not always appropriate for analyzing human

behaviors and social phenomena, and models based on adaptive behavior can be

alternatives to such optimization models. In these models,there exist two groups

of agents—those who believe the social norm and those who do not believe it—,

and the penalty to believers of the social norm for disobedience is not the same as

that of nonbelievers. An individual who obeys the social norm in the prior period

of the game is defined as a believer, and an individual who disobeys it in the prior

period is defined as a nonbeliever. As Akerlof points out, however, it is natural to

suppose that the degree of belief of an individual who continues to obey the social
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norm in the long run is not the same as that of an individual whoobeys it only in

the prior period.

To incorporate adaptive behaviors and the degree of belief based on an agent’s

history of actions, we employ a multi-agent simulation model. Agents in a simu-

lation model evaluate results of their decisions and revisepolicies to choose one of

several alternatives as actual decision makers do. As concerns approaches based

on adaptive behavior models, Holland and Miller (1991) interpret most economic

systems as complex adaptive systems, and point out that simulations using ar-

tificial societies with adaptive agents is effective for analysis of such economic

systems. Axelrod (1997b) insists on the need for simulationanalysis in social

sciences, and states that the purposes of simulation analysis include prediction,

performance, training, entertainment, education, proof and discovery. Brenner

(1998) examines the use of evolutionary algorithms in social science studies, and

suggests that it is important to incorporate histories of agents in simulation sys-

tems.

For the iterated prisoner’s dilemma game, Axelrod (1987) examines the effec-

tiveness of strategies generated in an artificial social system, in which agents en-

dowed with strategies are adaptively evolved by using a genetic algorithm. Dorsey

et al. (1994) employ an artificial decision making mechanismusing neural net-

works to imitate the decision making of auctioneers, and compare artificial agents’

behavior with that of real auctioneers which often deviate from the Nash equilib-

ria. To estimate bid functions of bidders, i.e., to establish the appropriate weights

of a neural network, they employ the genetic adaptive neuralnetwork algorithm

based on genetic algorithms instead of the error backpropagation algorithm which

is the most commonly used method.

Andreoni and Miller (1995) use genetic algorithms to model decision making

in auctions. In a way similar to the approach of Dorsey et al. (1994), they compare

decisions of artificial adaptive agents with decisions observed in the experiments

with human subjects, and find that the two types of decisions by the artificial

agents and the human subjects resemble each other. Erev and Rapoport (1998) in-
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vestigate a market entry game by using an adaptive learning model based on rein-

forcement learning proposed by Roth and Erev (1995). Rapoport et al. (2002) also

deal with market entry games. They compare decisions observed in experiments

with human subjects with decisions of artificial adaptive agents with a learning

mechanism using reinforcement learning, and analyze behavioral patterns on the

aggregate level.

Leshno et al. (2002) consider equilibrium problems in market entry games

through agent-based simulations with a decision making mechanism of agents

based on neural networks, and the neural networks are trained not by some teacher

signals but by the outcomes of games. They compare the results of the simulations

with the results of the experiments with human subjects conducted by Sundali et

al. (1995), and find some similarities between phenomena of the simulations and

the experiments. Nishizaki et al. (2005) investigate the effectiveness of a socio-

economic system for preserving the global commons by simulation analysis. A

number of attempts have been made for performing multi-agent based simulations

and developing the related techniques underlying the ideasfrom distributed artifi-

cial intelligence and multi-agent systems (Epstein and Axtell, 1996; Conte et al.,

1997; Chellapilla and Fogel, 1999; Downing et al., 2001; Moss and Davidsson,

2001; BanerjeSen, 2002; Niv et al., 2002; Parsons et al., 2002; Sichman et al.,

2003).

In the model by Akerlof, a labor market is considered and thentwo types of

individuals, laborers and capitalists, are required, while there is only one type of

individual in the model by Naylor. In this paper, we focus on the model by Nay-

lor because of relative simplicity and develop a multi-agent system for simulation

analysis, in which agents behave adaptively and their belief with respect to the

social norm is created by a series of actions in the long run. Adaptive behavior

of agents is implemented by incorporating mechanisms of decision making and

learning based on neural networks and genetic algorithms. Using the multi-agent

system, we compare the results of the model by Naylor with those of the simula-

tions, and examine behavior of agents with respect to the social norm by varying
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values of several parameters. In section 2, we briefly reviewthe mathematical

model by Naylor and summarize the results of the study. Afterwe describe our

simulation system with its many adaptive artificial agents in section 3, we exam-

ine the results of the simulations in section 4. Finally, in section 5 we summarize

the results and findings from the simulations.

2 The mathematical model by Naylor

In the model by Naylor (1989), the utility involves the effect of reputation arising

from obedience of the social norm in a way similar to that of Akerlof (1980). An

individual obeys the social norm if the utility obtained from doing so is at least

as great as the utility derived from not doing so. Otherwise,he or she disobeys

the social norm. The utility function of an individual has five arguments: money

incomeM; reputationR; a decision variables with respect to obedience of the

social norm; a state variableb with respect to the individual’s belief of the social

norm; and the individual’s personal tasteε. Then, the utility function of individual

i is represented by

Ui = U(M,R,s,b,εi). (1)

The personal tasteεi of individual i represents sensitivity concerning reputation

in a society, and it is assumed to be distributed uniformly inthe interval[εL,εH ].

From the distribution ofε it follows that heterogeneous individuals are dealt with

in this model. Suppose that there exist two groups of agents:one of which believes

the social norm, and one which does not believe it. Then, the personal tastes of

agents in the group of believers are larger than those in the group of non-believers.

The money incomeM is defined asd if the individual obeys the social norm

andw if the individual disobeys it; it is assumed thatd ≤ w. In the context of

Naylor, the social norm is invoking workers to support a strike. If the individual

disobeys the social norm, the individual suffers disutility consequent upon the act

of disobedience. The disutility is a constant ¯c if the individual is a believer of the

social norm, and it is ¯g if a non-believer; it is assumed that ¯g< c̄. Then, the money
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incomeM is represented by

G = ds+w(1−s)−b(1−s)c̄− (1−b)(1−s)ḡ, (2)

wheres is 1 if the individual obeys the social norm, and 0 if not; andb is 1 if the

individual is a believer, and 0 if not.

The utility from reputation accrues to individuals only when the individuals

obey the social norm, i.e.,s = 1. It depends on the rate of obedienceµ in the

population and the personal tasteεi of individual i, and it is represented by

R= αsµεi, (3)

whereα is a coefficient of the reputation. The utilityR from reputation increases

with the rate of obedienceµ and the personal tasteεi .

Then, the utility function is represented by

Ui = ds+w(1−s)+αsµεi −b(1−s)c̄− (1−b)(1−s)ḡ. (4)

The behavior of an individual is determined by the utility function (4), and it

depends on the belief of the social norm. If a believeri obeys the social norm,

i.e.,b = 1 ands= 1, then the believeri obtainsUbs
i = d+αεiµ; otherwise,b = 1

ands= 0, then the believeri obtainsUbs̄
i = w− c̄. These values are compared and

then if Ubs
i ≥ Ubs̄

i , the believeri obeys the social norm; otherwise, the believer

i disobeys it. Similarly, if a nonbeliever̄i obeys the social norm, i.e.,b = 0 and

s= 1, then the nonbeliever̄i obtainsU b̄s
ī = d+αεīµ; otherwise,b = 0 ands= 0,

then the nonbeliever̄i obtainsU b̄s̄
ī = w− ḡ. These values are compared and then

if U b̄s
ī ≥U b̄s̄

ī , the nonbeliever̄i obeys the social norm; otherwise the nonbelieverī

disobeys it. The behavior of an individuali also depends on the personal tasteεi

of self, and it can be represented graphically by Figure 1.

An individual’s personal tasteε is uniformly distributed over the interval[εL,εH],

and the behavior of an individual is governed by the two hyperbolic curves, as

seen in Figure 1. For the configuration of parameters given inFigure 1, there are

multiple equilibria: the pointo, the intervalsk-m andp-q. The rate of obedience
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Figure 1: The model by Naylor

µ in the population increases in the intervalm-p, and it decreases in the interval

q-o as time goes on. The three main results of the study by Naylor (1989) are

summarized as follows.

(i) For particular configurations of parameters, three types of equilibria can be

found: the maintenance state of the social norm with higher levels of the

obedience rate (the intervalk-m), the maintenance state of the social norm

with lower levels of the obedience rate (the intervalp-q), and the extinction

state of the social norm (the pointo).

(ii) Regardless of an individual’s belief with respect to the social norm, the

obedience rate of the social norm increases with the penalty, c̄ or ḡ, for

disobedience of the social norm.

(iii) The obedience rate of the social norm increases with the payoffd by obey-

ing the social norm, and it decreases with the payoffw by disobeying the

social norm.
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Naylor suggests that the existence of the social norm induces some social-

regarding individuals to behave cooperatively and hence topossibly escape the

prisoners’ dilemma.

3 An agent-based simulation system

Although the mathematical model by Naylor (1989) reaches interesting results,

it is assumed that individuals are rational and maximize their payoffs, and con-

sequently they can discriminate between two payoffs with a minute difference.

Such modeling of human behaviors might be not always appropriate for analyz-

ing social phenomena. In contrast, models based on adaptivebehavior can be

alternatives to such mathematical approaches. Furthermore, while the penalty for

disobeying the social norm depends on the belief with respect to it, the belief is

defined only by an action in the prior period. Namely, an individual who obeys

the social norm in the prior period is a believer of the socialnorm and an individ-

ual who disobeys it in the prior period is a nonbeliever. It isnatural to consider

that the belief of individuals who obey the social norm in thelong term is at vari-

ance with that of individuals who obey it only in the prior period. Akerlof (1980)

himself points out that the alternative expression of the belief should be extended.

In this paper, we examine the variances between those individuals and the al-

ternative expression of belief. Specifically, we employ a simulation model with

adaptive artificial agents. In our simulation model, each agent has a decision

making and learning mechanism based on neural networks and agenetic algo-

rithm. We also assume that the personal tastesε of all the agents are uniformly

distributed over the interval[εL,εH ], and we restrict interaction between agents

within a group of agents with similar values of personal tastesεi . Namely, all of

the agents are divided into multiple groups in terms of the personal tastes; agents

in a group are evolved independently of agents in the other groups.

As we mentioned in the previous section, reinforcement learning, learning

classifier systems, neural networks, genetic algorithms, etc. are applicable as
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mechanisms for the learning of artificial agents. Because wedeal with changes

and the development of social norms in this paper, we need to employ a model in

which decision making of an agent depends not only on the outcome of an action

selected by the agent, but also on a social state such as the obedience rate of the

social norm. In reinforcement learning, learning of an agent is effected by revis-

ing the selection probabilities of strategies according tothe outcomes of actions

selected by the agent. The learning classifier systems whichconsist of multiple

‘if-then’ rules receive information from the environment and classify states of the

environment; and the action given by the if-then rule matching a state of the en-

vironment is performed. According to rewards from the environment, a set of the

rules is evolved. In the learning system with decision making and learning mech-

anisms based on neural networks and genetic algorithms developed by Nishizaki

(2007), an action of an agent is determined by an output of theneural network

which is a nonlinear function of multiple inputs, and the parameters of the neu-

ral network are revised according to the outcomes of actionsof the agent in the

framework of genetic algorithms.

Applicabilities of these methods of analyzing the social norm can be evalu-

ated as follows. For reinforcement learning, it is difficultto relate the state of the

society to decisions of agents. It is natural to think that, for environments varying

continuously, such as changes in and the development of social norms, it is appro-

priate to employ the learning system based on neural networks and genetic algo-

rithms which outputs continuous real numbers rather than the learning classifier

systems with discrete outputs based on if-then rules. In view of the characteristics

of these methods, we employ the learning system based on neural networks and

genetic algorithms in this paper.

To examine changes in and development of the social norm, an action and a

payoff of an agent in the prior period, the belief of the agentwith respect to the

social norm, actions and payoffs of the other agents, and theobedience rates of

the social norm in the population are used as inputs of the neural network, and an

action of the agent is determined as an output of the nonlinear function embedded
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in the neural network. Moreover, the history of the agent’s actions is held together

with a chromosome of the agent for the genetic algorithm, andthe degree of belief

with respect to the social norm is determined by using the history of actions.

A neural network which is the decision making mechanism of anagent is char-

acterized by the synaptic weights between two nodes and the thresholds for the

output functions of nodes, and these parameters are treatedas a chromosome in

the genetic algorithm. This evolutionary system with the neural networks and the

genetic algorithm reproduces dominant agents which take appropriate actions for

the changing environment. Agents receive individual information and external in-

formation such as societal states and actions of the other agents, and they adapt to

the environment through a trial and error process. Agents which can obtain higher

payoffs survive, and the society is constituted of such dominant agents. Because

the knowledge of agents is accumulated and embedded in the parameters of the

neural networks, the agents can learn collectively in the changing environment.

Brenner (1998) considers the use of evolutionary algorithms in social science

studies, and points out that a history of actions of agents should be taken into

consideration in systems implemented for analyzing socialphenomena. In our

system for analyzing changes in and development of the social norm, a history of

actions of an agent is held, and it determines the degree of belief with respect to

the social norm. Therefore, it can be said that our system is consistent with his

claim.

Because each agent has different personal tastes, the population of agents is

considered to be heterogeneous. In the context of the socialnorm analysis, we

think that there is hardly any opportunity for interaction between agents with ex-

ceedingly different values of personal tastes. From this viewpoint, we divide the

population of agents into multiple subpopulations, and an agent is allowed to in-

teract only within the same subpopulation. In contrast, Flache and Mäs (2008a,b)

investigate the performance of teams where agents with different attributes inter-

act with each other. This aspect is also interesting in analyzing social norms, and

we investigate the influence of the interaction between heterogeneous agents on
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changes in and development of the social norm. To do so, we conduct simula-

tions on the scope of interactions among agents, and examinehow the scope of

interactions influences changes in and development of social norms.

3.1 Decision making by a neural network

An agent corresponds to a neural network which is characterized by synaptic

weights between two nodes in the neural network and thresholds which are param-

eters for the output functions of nodes. Because a structureof neural networks is

specified by the number of layers and the number of nodes in each layer, an agent

is prescribed by the fixed number of parameters when the structure is determined.

In our model, we provide strings composed of these parameters identifying agents

and they are used as chromosomes of the agents in an artificialgenetic system.

Each agent chooses one of obedience or disobedience for the social norm in

each period, and each of the groups with similar agents evolves into that of agents

with larger payoffs. The neural network structure and chromosome string are

depicted in Figure 2.

An output of a neural network is determined by a vector of inputs, the synap-

tic weights, and the thresholds. The inputs of the neural network consist of the

following six values:

(i) The choice of agenti in the prior period:sprior
i

(ii) The obedience rate of the population in the prior period: µprior

(iii) The personal taste of agenti: εi

(iv) The utility obtained by agenti in the prior period:Uprior
i

(v) The sum of utilities of all the agents in the prior period:U total

(vi) The degree of belief of agenti for the social norm:bi.

12



input layer

hidden layer

output layer

s i

kj
w

o

θ j

θ

θ1

θm

11 θ1

synaptic weight threshold

i

u i

w 12w θ2

1

1

1

2

1

θ
2

2

1

jl
w2

1

o
2

prior

µ

ε

u
total

b i

1 1 1 1 ε

personal taste

2

2

prior

prior

Figure 2: A neural network and the corresponding chromosome

It is natural to consider that decision making of an individual depends on ac-

tions of self and others in the previous periods. Therefore,the input data of agenti

include (i) the prior choice of self, and (ii) the rate of obedience in the population

in the prior period. The prior choicesprior
i ∈ {0,1} of agenti is 1 if agenti obeys

the social norm, and 0 if agenti disobeys it, and the obedience rateµprior ∈ [0,1]

is considered an index of the social norm in the society, which is the aggregated

information of actions of all the agents. Because the utility in the case of obedi-

ence depends on (iii) the personal tasteεi of agenti concerning the reputation, it

is included in the set of input data. An agent behaves adaptively, and the decision

depends on the utility obtained in the previous periods. Because we suppose that

the decision of the agent also depends on the situation of a society as well as the
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utility, (iv) the utility of agenti and (v) the sum of utilities of all the agents, which

can be interpreted as a certain societal situation, are included in the set of input

data. In our simulation model, the penalty for disobeying the social norm depends

on the belief with respect to it, and then (vi) the belief of agent i is also one of the

input data.

In the model by Naylor (1989), the beliefb ∈ {0,1} is defined only by an

action in the prior period. Namely,b is 1 if an individual obeys the social norm

in the prior period, and 0 if the individual disobeys it. In contrast, we assume that

the belief with respect to the social norm is created by a series of actions in the

long run, and define the degree of belief of agenti as follows.

bi =
( n

∑
t=1

stδt−1
)/( n

∑
t=1

δt−1
)

, (5)

whereδ is a discount factor, andst represents an action of an agentt periods

before: st is 1 if the agent obeys the social norm, and 0 if the agent disobeys

it. Because 00 = 1, we haveb = s1 if δ = 0, which means that the definition of

belief (5) with δ = 0 is reduced to that of the model by Naylor. Asδ is made

larger, the influence of actions in the past on the belief increases in seriousness.

To connect the belief depending not only on the prior action but also on actions

in wide-ranging past periods with the utility of an agent, wedefine the following

utility function and employ it in our agent-based simulation system.

Ui = ds+w(1−s)+αsµεi − (1−s){b(c̄− ḡ)+ ḡ}. (6)

It follows that the penalty for disobeying the social norm varies in proportion to

the degree of beliefb in this utility function.

Let zp
k andwp

k j, k = 1, . . . ,mp denote an input value and a synaptic weight of

node j in the hidden layer(p = 1) or the output layer(p = 2), and letθp
j denote a

threshold of nodej. Then an outputop
j of node j is represented by

op
j = f

(

mp

∑
k=1

wp
k jz

p
k −θp

j

)

, (7)
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where f is an output function which is a logistic functionf (z) = 1/(1+exp(−z)).

As shown in Figure 2, there are two nodes in the output layer, and an action of an

agent is determined by the two output values. Namely, if the valueo2
1 of output

node 1 is larger than or equal to the valueo2
2 of output node 2, the agent obeys the

social norm, and otherwise the agent disobeys.

As we mentioned above, there are six units in the input layer and two units

in the output layer. Letm be the number of units in the hidden layer. Then

because the number of synaptic weights is 8m and the number of units in the

hidden and the output layers ism+2, the neural network corresponding to an agent

can be determined by the synaptic weightswl , l = 1, . . . ,8m and the thresholds

θl , l = 1, . . . ,m+ 2. These parameters and the input values determine an action

of the agent, and the synaptic weights and the thresholds areadjusted through

the genetic algorithm so that the initial population evolves into the population of

agents obtaining larger payoffs.

3.2 Evolutionary learning through the genetic algorithm

Each agent chooses between obedience and disobedience every period, and the

agent obtains the utility defined by (6). By evaluating utilities arising from a

series of decisions by way of the fitness, the population of agents evolves. The

structure of the simulation model is shown in Figure 3.

3.2.1 Initial population

A chromosome of an agent consists of the synaptic weightswl , l = 1, . . . ,8m, the

thresholdsθl , l = 1, . . . ,m+2 and the personal tasteεi ; it is represented by a string

like that of Figure 2. A population is composed ofN agents, and the personal

tastesεi, i = 1, . . . ,N are uniformly distributed over the interval[0.2,1.2]. The

synaptic weightswl and the thresholdsθl are initialized to be adjusted to a given

parameterµ0 of the initial rate of obedience.

In an initial population, for any given initial rate of obedienceµ0, we set up the
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Figure 3: Flowchart of the simulation model

synaptic weights and the thresholds such thatNµ0 agents who are believers,b= 0,

obey the social norm, andN(1−µ0) agents who are non-believers,b= 1, disobey

it. To do so, we first divide allN agents intoNµ0 agents with relatively larger per-

sonal tastes andN(1−µ0) agents with relatively narrower personal tastes. Then,

the synaptic weights and the thresholds are adjusted by using the error back prop-

agation algorithm (e.g. Hassoun (1995)) with the teacher signals shown in Table

1. Through this procedure, we can obtain an initial population with the specified

initial rate of obedienceµ0.
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Table 1: Teacher signals for the error back propagation algorithm

believers non-believers

sprior
i 1.0 0.0

µprior µ0*
εi εi*

Uprior
i d+αµ0εi w− ḡ

U total ∑(d+αµ0εi)+∑(w− ḡ)*
bi 1.0 0.0
o1 1.0 0.0
o2 0.0 1.0

* The teacher signals ofµprior, εi andU total are the same both for believers and for
non-believers.

3.2.2 Genetic operations

Because the parameterεi of agenti represents personal taste with respect to the

social norm, it is natural to suppose that there is hardly anyopportunity for agents

with exceedingly different values of the parameter to interact with one another.

To implement such situations, we divide the population of agents into multiple

subpopulations, and an agent is allowed to interact only within the same subpop-

ulation. Namely,N agents are divided intoM groups, and the following genetic

operations (e.g. Goldberg (1989)) are executed for each group.

Reproduction As a reproduction operator, the roulette wheel selection isadopted.

LetN′ = N/M denote the number of agents in each subpopulation. A chromosome

of an agent is selected into the next generation by a roulettewheel with slots sized

by the probabilityps
i = Ui/(∑N′

i=1Ui), whereUi is a utility of agenti at this period

and it is also interpreted as the fitness in the artificial genetic system.

Crossover A single-point crossover operator is applied to any pair of chromo-

somes with the probability of crossoverpc. A point of crossover on the chro-

mosomes is randomly selected and then two new chromosomes are created by

swapping subchromosomes which are part of the right side of the original chro-
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mosomes from the selected point of crossover. A new population is formed by

exchanging a specified rate of portions of the current population for that of the

modified population in which the crossover operation is executed; the rate is called

the generation gapg. The utility of a newly created offspring by the crossover op-

eration is determined by inheriting those of its parents in the proportion of sizes

of the swapped subchromosomes. An agent keeps the history ofactions from past

periods. To create the history of the offspring, those of theparents are also uti-

lized. It is determined by choosing from two series of actions of the parents with

probabilities corresponding to the sizes of the swapped subchromosomes.

Mutation With a given small probability of mutationpm, each gene which repre-

sents a synaptic weightwl , a thresholdθl or the personal tasteεi in a chromosome

is randomly changed. If the selected gene iswl or θl , it is replaced with a random

number in[−1,1], and if it isεi , it is replaced with a random number in[0.2,1.2].

4 Results of the simulations

4.1 The details of the simulations

We conduct the basic simulation comparing the results of theNaylor model with

those of our simulation model, and we also provide four supplementary simula-

tions for the degree of belief with respect to the social norm, the penalties for dis-

obeying the social norm, the payoffs by obeying and disobeying the social norm,

and the scope of interaction among agents. Then, we arrange the following five

simulations.

(i) SimulationBasis: Comparison between the model by Naylor and our simu-

lation model.

(ii) SimulationBelief: Degree of belief with respect to the social norm.

(iii) SimulationPenalty: Penalties for disobeying the social norm.

(iv) SimulationPayoff: Payoffs by obeying and disobeying the social norm.
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(v) SimulationInteraction: Scope of interaction among agents.

In SimulationBasis, the same setting as that of the model by Naylor is used

in our agent-based simulation system, and we examine whether or not the three

types of equilibria obtained in the model by Naylor can be observed. We intro-

duce a parameter of the belief with respect to the social normwhich is created by

a series of actions in the long run, and in SimulationBelief we examine the in-

fluence of the belief and the penalty defined by the belief on the decision making

of agents. We focus on the penalty for disobeying the social norm in Simulation

Penalty. In the model by Naylor, it is concluded that reduction of thepenalty

leads to a fall of the rate of obedience and increase of the penalty leads to a rise

of it. We examine whether or not the results of SimulationPenaltysupport this

conclusion. The pecuniary payoffs depend on choices of agents between obedi-

ence and disobedience, and in SimulationPayoffwe focus on these payoffs. The

mathematical consideration by Naylor forms the conclusionthat the obedience

rate of the social norm increases with the payoff by obeying the social norm and

it decreases with the payoff by disobeying the social norm. We verify this claim

through SimulationPayoff. Belief and personal tastes of individuals are formed

by interacting with other people, and it is natural to suppose that such interac-

tions frequently occur among people with similar beliefs orpersonal tastes. From

this viewpoint, it is appropriate to restrict the scope of interaction among agents

in a simulation model with adaptive artificial agents. Because in our simulation

model, interaction among agents is implemented as the genetic operations in the

evolutionary process, the genetic operations are performed within a subpopulation

of agents with similar personal tastes. In SimulationInteraction, we examine the

influence of the scope of interaction among agents on maintenance or extinction

of the social norm by varying the size of subpopulations.

The standard setting of the parameters of the utility function (6) with the de-

gree of belief (5) used in the simulations is shown as follows:

pecuniary payoffs: d = 0.1 for obedience, w = 1.0 for disobedience;
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penalties: ¯c = 0.7 for believers, ¯g = 0.6 for nonbelievers;

coefficient of reputation: α = 1.0;

discount factor: δ = 0.0;

personal tastes: a random numberεi in the interval[0.2,1.2].

Artificial adaptive agents have a mechanism of decision making and learning

based on a neural network and a genetic algorithm, and the standard setting of

the parameters of the neural network and the genetic algorithm is also given as

follows:

the number of nodes in the neural network:

6 in the input layer, 8 in the hidden layer, 2 in the output layer;

the number of individuals (agents):N = 10000;

the number of subpopulations: M = 100;

the parameters of genetic operations:

crossoverpc = 0.6, mutationpm = 0.01, generation gapg = 0.5.

4.2 Simulation Basis

In SimulationBasis, the standard setting of the parameters is employed, and we

perform 11 treatments of the simulation with the initial rate of obedience in the

society fromµ0 = 0.0 to µ0 = 1.0 at intervals of 0.1. In particular, for the treat-

ments where there are multiple states of convergence, we execute further trials of

the simulation with different values of the initial rate of obedience. Each treat-

ment is performed 100 runs, and we observe transitions of therate of obedience

in the whole population and measure the time needed for convergence. Because

of the fact that until 1500 periods have been performed, all preparatory runs con-

verge at certain levels of the obedience rate which mean the extinction and the

maintenance of the social norm. Accordingly, we set the maximal periods of the

simulation at 2000 periods.

In Figure 4, we show the results of the four treatments of the simulation with

µ0 = 0.2,0.3,0.4,1.0 which characterize the steady states of the simulation. Each
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of graphs on the left hand side depicts a transition of the obedience rate of the

social norm. For the treatments ofµ0 = 0.2,0.4,1.0, the transition shown in the

figure is one of 100 runs, and for the treatment ofµ0 = 0.3, two transitions are

shown because there are two levels at which the obedience rate converges in the

long run. In graphs on the right hand side, we give the distributions of obedience

rates over the interval of the personal tastes[0.2,1.2]; the black curve is the av-

erage of 100 runs after period 100, and the gray curve is the average after period

2000.

In the treatment ofµ0 = 0.2, at the beginning of the simulation, the synaptic

weights and the thresholds of the neural network are adjusted by using the error

back propagation algorithm such that agents with personal tastes 0.2 ≤ εi ≤ 1.0

which account for 80% of the whole population disobey the social norm and the

rest of the agents with personal tastes 1.0 ≤ εi ≤ 1.2 obey it. As an example

shown in Figure 4(a), in each of the 100 runs of the treatment of µ0 = 0.2, the rate

of obedience converges at almost 0% and the social norm becomes extinct in the

long run. As seen in Figure 4(b), it is observed that 20% of thegroup of the agents

with personal tastes 1.0≤ εi ≤ 1.2 which obey the social norm at the beginning of

the simulation disobey it already after only period 100, andalmost all the agents

of the group eventually disobey it by the last period 2000.

In the treatment ofµ0 = 0.3, as seen in Figure 4(c), there are two levels at

which the obedience rate converges in the long run: the maintenance state of the

social norm in which 80% of agents of the population obey the social norm, and

the extinction state of the social norm in which all of the agents disobey the social

norm. However, the maintaining state of the social norm is observed only one

time among the 100 runs. In fact, as seen in Figure 4(d), on average it follows that

a part of the group of agents with personal tastes 0.9≤ εi ≤ 1.0 come to disobey

it after period 100, and finally at period 2000, almost all theagents disobey it.

In all the 100 runs of the treatment ofµ0 = 0.4, as seen in Figure 4(e), the

rate of obedienceµ increases fromµ0 = 0.4 at the beginning to approximately

µ= 0.78, and the social norm is maintained with a high level of the obedience rate.
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(e) Transition of obedience:µ0 = 0.4
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(g) Transition of obedience:µ0 = 1.0
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Figure 4: Equilibria in the long run
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As seen in Figure 4(f), although agents with personal tastes0.2≤ εi ≤ 0.8 which

account for 60% of the population disobey the social norm at the beginning of the

simulation, a part of them, that is, agents with personal tastes 0.7≤ εi ≤ 0.8 begin

to obey it after period 100, and finally at period 2000, the population converges at

a state that agents with personal tastesεi ≥ 0.385 obey it with a probability of 0.8

and over.

In each of the 100 runs of the treatment ofµ0 = 1.0, the rate of obedience

decreases fromµ0 = 1.0 at the beginning to approximatelyµ= 0.78. An example

is shown in Figure 4(g). The rate does not decrease any further and the social

norm is maintained with a high level of the obedience rate. Asseen in Figure 4(h),

although all the agents obey the social norm at the beginningof the simulation,

a part of the agents with personal tastes 0.2 ≤ εi ≤ 0.3 begin to disobey it after

period 100, and finally at period 2000, the population converges at a state that

agents with personal tastes 0.2≤ εi ≤ 0.385 obey it with only a probability of 0.2

and below. This state is the same as the steady state of the treatment ofµ0 = 0.4.

From the above observation, two types of the steady states are observed in the

results of the simulation. It follows that if the initial rate of obedience is smaller

than 0.3, the social norm becomes extinct in the long run, and otherwise the social

norm is maintained at the obedience rate of about 0.78. Letτ0 andτ∗ denote the

steady states which mean the extinction and the maintenanceof the social norm,

respectively. To explore a diverging point of the initial rate of obedience to the

two steady states and to measure the time needed for converging to the steady

states, we perform further trials of the simulation starting from a large variety of

the initial rates of obedience. In Figure 5(a), we show the number of runs such

that the social norm is maintained for all treatments with different initial rates of

obedienceµ0, and in Figure 5(b), the time needed for converging to the steady

states is shown for each of all the treatments. The time needed to reach the steady

states is measured as follows. We compute the meanθ and the standard deviation

σ of the obedience rate after period 2000 for the 100 runs, and define the time

needed to reach the steady states as a minimal period that therate of obediencesµ
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of more than 90 runs are in the interval[θ−2σ,θ+2σ].
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Figure 5: The maintenance of the social norm and time to steady states

As seen in Figure 5(a), all of the treatments ofµ0 ∈ [0.0,0.28] converge only

to the extinction state of the social normτ0; the treatments ofµ0 ∈ [0.30,0.37]

converge to either of the two steady statesτ0 andτ∗; and all of the treatments of

µ0 ∈ [0.38,1.0] converge to the maintenance state of the social normτ∗. Concern-

ing the time needed for converging to the steady states, as seen in Figure 5(b),

in the treatments ofµ0 ∈ [0.31,0.40], it takes more than 500 periods to converge

to either of the two steady states, and it takes a long time until the consequence

of the social norm—which is either extinction or maintenance—becomes clear.

Viewing this situation from a different angle, we can interpret this to be that the

social norm is maintained at a lower level of the obedience rate in the short term.

To compare the results of the simulation with those of the mathematical model

by Naylor, first we summarize the equilibria of the mathematical model. (M1) If

the initial rateµ0 of obedience of a society is in the interval[0.0,0.20), i.e.,µ0 ∈

[0.0,0.20), the rate of obedienceµ decreases and finally reaches the equilibrium

which means the extinction of the social norm,µ = 0, and it corresponds to the

point o in Figure 1. (M2) If µ0 ∈ [0.20,0.355], the rate of obedience does not

change and it is in equilibrium, which corresponds to any point in the intervalp-q

with the lower level of the obedience rate in Figure 1. (M3) Ifµ0 ∈ (0.355,0.845),

the rate of obedience increases and finally reaches the equilibrium which means
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the maintenance of the social norm,µ = 0.845, and it corresponds to the pointm

in Figure 1. (M4) Ifµ0 ∈ [0.845,1.0], the rate of obedience does not change and

it is in equilibrium, which corresponds to any point in the interval k-m with the

higher level of the obedience rate in Figure 1.

Next, we give a summary of the results of the simulation as follows. (S1) If the

simulation starts from any initial rate of obedience in the interval[0.0,0.20), i.e.,

µ0 ∈ [0.0,0.20), the rate of obedience converges to the extinction state of the so-

cial normτ0. Thus, the result of the simulation supports that of the mathematical

model. (S2) Ifµ0∈ [0.20,0.355], all of the treatments ofµ0∈ [0.20,0.30) converge

to the extinction stateτ0, and some runs of the treatments ofµ0 ∈ [0.30,0.355]

reachτ0 and the others eventually arrive at the maintenance state ofthe social

norm τ∗. Thus, the result of the simulation does not support the mathematical

model’s result that the social norm is maintained in the lower level of the obedi-

ence rate. However, in the treatments ofµ0 ∈ [0.31,0.355], it takes more than 500

periods to converge to the steady states, and we can interpret this situation with

the lower level of the obedience rates as a short-term stablestate. (S3) Ifµ0 ∈

(0.355,0.845], in a small number of runs in the treatments ofµ0 ∈ (0.355,0.37],

the social norm becomes extinct, but in most of the runs, the social norm is main-

tained at the higher level of the obedience rate. Thus, it follows that the results of

the simulation support that of the mathematical model. (S4)If µ0 ∈ [0.845,1.0],

the rate of obedienceµ decreases in all runs but the social norm is maintained at

the higher level of obedience rate, that is, the rate of obedience converges toτ∗.

Although in one sense, because the social norm is maintainedin the mathemati-

cal model, the results of the simulation support those of themathematical model.

However, in the sense that the rate of obedience does not change from the initial

rate, the results of the simulation do not support those of the mathematical model.

In the mathematical model, because believers and non-believers with the same

personal tastes differ in their optimal actions when the obedience rateµ of the so-

ciety is in the intervalp-q or the intervalk-m in Figure 1 on the assumption that

individuals can discriminate between two utilities with a minute difference, any
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point in the intervals becomes a state of equilibrium. On theother hand, because

agents in the simulation model adaptively behave and agentsobtaining larger util-

ities are likely to survive, if an agent which has obtained smaller utilities in the

short term comes to obtain higher utilities later, there is some possibility that the

agent survives. Although if an agent which is a believer disobeys the social norm,

the agent suffers disutility consequent upon the act of disobedience, the agent be-

comes a non-believer in the next period and the penalty for disobeying the social

norm becomes small as long as the agent disobeys it. Therefore, because actions

of agents depend on the difference between the utility for agents continuing to

obey the social norm and the utility for agents continuing todisobey it over the

long run, it is thought that, in the simulation, there does not exist equilibria of

intervals such asp-q or k-m in Figure 1.

Moreover, the equilibria of the intervalp-q in the mathematical model are

considered to be less stable than the intervalk-m because if the rate of obedience

deviates from the intervalp-q even slightly, it goes to the pointsm or o. In the

simulation, there exists a steady stateτ∗ corresponding to the intervalk-m but a

steady state corresponding to the intervalp-q cannot be observed.

To compare behavior of agents in our simulation with that of individuals in

the mathematical model by Naylor, consider an agent with relatively small per-

sonal taste,εi = 0.21, in the treatment of the initial rate of obedienceµ0 = 1.0.

The utility for obedience isUi = d+µεi = 0.1+1.0 ·0.21= 0.31; the utility just

after changing from obedience to disobedience isUi = w+ c̄ = 1.0−0.7 = 0.3;

and the utility for continuing disobedience isUi = w+ ḡ = 1.0−0.6 = 0.4. In

the mathematical model, an individual with the same personal taste obeys the so-

cial norm because the utility of 0.31 for obedience is larger than that of 0.30 for

disobedience. On the other hand, because in the simulation,behavior of agents

is characterized by trial and error, some agents that obeyedthe social norm may

disobey it in the next period. Such agents obtain 0.4 of utility by continuing dis-

obedience and consequently they may obtain larger utilities than utilities obtained

by agents continuing to obey the social norm. Thus, it is disadvantageous in an
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evolutionary viewpoint that agents with small values of personal tastes such as

εi = 0.21 continue obeying the social norm, and there is little chance that such

agents can survive in the long run.

The pointmof an equilibrium in the mathematical model is(µm,εm) = (0.845,

0.355). At this point a non-believer obtains the same utility irrespective of his or

her choice between the actions. Thus, fromµm = 1.2− εm, we haved+µmεm =

d +(1.2− εm)εm = w+ ḡ = 0.4 and therefore(µm,εm) = (0.845,0.355). In the

simulation model with adaptive artificial agents, it is thought that it is an even

chance that agents with personal tastes around a certain border valueε∗ obey the

social norm. There is a larger chance of obedience for an agent with a larger value

of personal tastes thanε∗, and conversely an agent with a smaller value of personal

tastes thanε∗ is likely to disobey it. The individual obedience rate of agents with

the personal tasteε in the long run can be estimated as a certain nonlinear function

f (ε;ε∗) like the gray curve depicted in Figure 4(f) or 4(h). Providedthat such a

function f (ε;ε∗) is given, the rate of obedience in the society can be obtainedby

computingµ(ε∗) =
∫ 1.2

0.2 f (ε;ε∗)dε. Particularly in the setting of this simulation,

we have a pair of the obedience rate and the border value of thepersonal taste

(µ∗ = µ(ε∗),ε∗) = (0.78,0.385) satisfyingd+µ(ε∗)ε∗ = w+ ḡ = 0.4, as seen in

the steady state represented by the gray curve of Figure 4(f)or 4(h). The obedience

rateµ∗ = 0.78 of the steady stateτ∗ is slightly smaller than the obedience rate

µm = 0.845 of the equilibriumm, and the border valueε∗ = 0.385 of the personal

taste is larger than the border valueεm = 0.355 of the equilibriumm.

The result of the simulation suggests that when a social normis maintained,

a section of individuals who do not care about their reputation disobey it. That

is, there does not exist a society where all the individuals obey the social norm.

Moreover, the results also suggest that even if in the short term there exists a social

norm supported by a small number of people like a situation corresponding to the

interval p-q in the mathematical model, there is little chance that such asocial

norm would be maintained in the long run.
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4.3 Simulation Belief

In the simulation model, the degree of belief (5) is determined by a series of an

agent’s actions in the long run, and the agent obtains utility (6) depending on the

degree of belief. In SimulationBelief, we examine the influence of the belief and

the penalty based on the belief on decision making of agents by varying a value

of the discount factor for past actions.

To make results of the simulation clearer, we expand the difference between

the penalties ¯c andḡ for believers and nonbelievers by changing them from ¯c= 0.7

andḡ = 0.6 of the standard setting to ¯c = 0.7 andḡ = 0.55. For each of the three

treatments of the discount factorδ = 0.0,0.5,0.9, we conduct trials with the initial

rate of obedience fromµ0 = 0.0 to µ0 = 1.0 at intervals of 0.1, and each trial is

performed for 100 runs. The results of the simulation are shown in Figure 6. In

Figure 6, the horizontal axis is the initial rate of obedience and the vertical axis

is the number of runs such that the social norm is maintained among the 100

runs. In Figure 7, we give transitions of the obedience rate for the treatments of

δ = 0.0 andδ = 0.9 which start from the initial rate of obedienceµ0 = 1.0. For

the treatments ofδ = 0.9, the transition shown in the figure is one of 100 runs,

and for the treatment ofδ = 0.0, two transitions are shown because there are two

levels at which the obedience rate converges in the long run.The broken lines in

the graphs show the rate of obedienceµ= 0.7, which means the lower limit of the

equilibria with the higher level of the obedience rate in themathematical model

for the parameters of this simulation; the rate ofµ= 0.7 corresponds to a pointm

in Figure 1.

As can be seen in Figure 6, the frequency of maintenance of thesocial norm

increases as the discount factor rises. For the treatment ofδ = 0.9, the social norm

is maintained in all of the 100 runs when the initial rate of obedience is larger than

0.6, µ0 ≥ 0.6, and for the treatment ofδ = 0.0, even if the initial rate of obedience

is larger than 0.7, µ0 ≥ 0.7, the social norm becomes extinct in 10 runs among

the 100 runs. In the two runs depicted in Figure 7(a), both of them temporarily
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Figure 7: The transition of the rate of obedience

converge at aroundµ = 0.7 until period 400, and thereafter in one of them the

social norm is maintained to the end of the simulation, but inthe other one, it

suddenly decreases after period 1300 and finally becomes extinct. The transition

shown in Figure 7(b) converges to the steady state until around period 600. From

the transitions of (a) and (b) in Figure 7, it is observed thatthe rate of obedience

in the treatment ofδ = 0.0 converges quickly but it is unstable, compared with the

treatment ofδ = 0.9.

To examine stability of maintenance of the social norm in detail, we conduct

treatments of the discount factor fromδ = 0.0 toδ = 0.9 at intervals of 0.1, fixing
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the initial rate of obedience atµ0 = 1.0; each treatment is performed 100 runs.

The frequency of maintenance of the social norm is shown in Figure 8, and the

mean and the standard deviation of runs where the social normis maintained is

shown in Figure 9.
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Figure 9: Mean and standard deviation of the maintenance rate of the social norm

As seen in Figures 8 and 9, as the discount factorδ is made larger, which

means that the influence of actions from the past on the beliefbecomes serious,

the frequency of maintenance and the mean value of the obedience rate increases

and its standard deviation decreases. The reason for this fact is that the fluctuation

in utility by changing actions is small when the discount factor is large. For the

treatment ofδ = 0.0, it follows that the degree of beliefb is defined only by one
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action in the prior period, and becauseb is 0 or 1, the penalty for a shift of actions

from obedience to disobedience is larger than that of the treatment ofδ = 0.5 or

δ = 0.9. Thus, behavior of agents is likely to settle either to obeyor to disobey,

and as seen in Figure 7, the time needed to reach the steady states increases with

the value ofδ. In the treatment ofδ = 0.0, because of the above mentioned rea-

son, actions chosen by agents are likely to be one-sided, if the rate of obedience

becomes less than a certain level, the social norm can becomeextinct even with a

high initial rate of obedience as seen Figure 7(a) because ofthe stochastic repro-

duction based on the roulette wheel selection in the artificial genetic system.

We summarize the results of SimulationBelief as follows. When the degree

of belief is determined by a series of an agent’s actions in the long run, it is likely

that the rate of obedience rises and the state of the artificial society remains stable.

On the other hand, for the case where the degree of belief is determined only by

one action in the prior period, there is some chance that the social norm becomes

extinct even if the initial rate of obedience is sufficientlylarge, and it is observed

that the variance of the rate of obedience is large even in thecase of maintenance

of the social norm. Namely, if agents act myopically, that is, the discount factor is

small, uncertainty or diversity of existence of the social norm increases.

4.4 Simulation Penalty

In SimulationPenalty, we focus on the penalty for disobeying the social norm.

There are two types of penalties for disobeying the social norm in the model by

Naylor: the penalty ¯c to believers and the penalty ¯g to non-believers. In our sim-

ulation model, we employ a similar setting, that is, ¯c is the penalty to agents with

the degree of beliefb = 1 andḡ is the penalty to agents with the degree of belief

b = 0. In the model by Naylor, it is concluded that the decrease ofthe penalty

leads to a fall of the rate of obedience and the increase of thepenalty leads to a

rise of it. We examine whether or not the results of Simulation Penaltysupport

this conclusion.
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We conduct two treatments of ¯c andḡ. For each of them, the discount factor is

set atδ = 0.0 andδ = 0.9: δ = 0.0 where the degree of belief is determined only

by one action in the prior period;δ = 0.9 where the degree of belief is determined

by a series of an agent’s actions in the long run. In the treatment c̄, four trials

c̄ = 0.60, 0.65, 0.70, 0.75 are performed, fixing at ¯g = 0.6. In the treatment ¯g,

four trials ḡ = 0.55, 0.60, 0.65, 0.70 are performed, fixing at ¯c = 0.7. Each set of

trails is performed 100 runs. The results are shown in Figures 10 and 11. In both

of the figures, the horizontal axis is the initial rate of obedience and the vertical

axis is the number of runs such that the social norm is maintained among the 100

runs. Moreover, the rate of obedience only in runs such that the social norm is

maintained is shown in Figures 12 and 13.
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Figure 10: The maintenance number of the norm with respect tothe penalties ¯c

As seen in (b) of Figure 10, for the treatment of ¯c with δ = 0.9, an increase of

the penalty ¯c for agents with the degree of beliefb = 1 evidently leads to a rise of

the maintenance number of the social norm. For the treatmentof c̄ with δ = 0.0,

a similar phenomenon can be only just observed but there is not much difference

between the trials ¯c = 0.65, 0.70, and 0.75. We can observe a similar result in

Figure 12; inδ = 0.9, an increase of the penalty ¯c causes the rate of obedience to

rise, and inδ = 0.0, the difference of the rate of obedience between ¯c= 0.65, 0.70,

and 0.75 is not clear. The reason for these facts is supposed as follows. Consider

an agent which continues obeying the social norm. If the agent disobeys in the
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Figure 11: The maintenance number of the norm with respect tothe penalties ¯g
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Figure 12: The rate of obedience with respect to the penalties c̄

next period, although the agent is affected by the penalty ¯c only one period in the

case ofδ = 0.0, it continues to suffer the penalties close to ¯c over many periods

in the case ofδ = 0.9. Thus, in the treatment of ¯c with δ = 0.0, it is supposed

that variation in the value of ¯c does not have a large influence on the maintenance

number of the social norm and the rate of obedience.

As seen in Figure 11, for the treatment of ¯g both withδ = 0.0 and withδ = 0.9,

an increase of the penalty ¯g for agents with the degree of beliefb = 0 leads to a

rise of the maintenance number of the social norm. There is hardly any difference

between the cases ofδ = 0.0 andδ = 0.9 in the trials of ¯g = 0.70,0.65,0.60, and

the variation of the discount factorδ does not have much effect on the maintenance

number of the social norm when the gap ¯c− ḡ is relatively small. In the trial of
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Figure 13: The rate of obedience with respect to the penalties ḡ

ḡ = 0.55 withδ = 0.0, the maintenance number of the social norm does not reach

100 even if the initial rate of obedience is larger than 60%, i.e,µ0 ≥ 0.6. As seen

in Figure 13, an increase of ¯g leads to a rise of the obedience rate in runs where

the social norm is maintained, and only in the trial of ¯g = 0.55, there exists some

difference in the rate of obedience betweenδ = 0.0 andδ = 0.9.

From the above analysis, it is found that variation in the value ofḡ has a larger

impact on the maintenance number of the social norm and the rate of obedience

than that of ¯c. To examine this fact in detail, we give the maintenance number of

the social norm among the total 1100 runs for each of the treatments with a rate

of obedience fromµ0 = 0.0 to µ0 = 1.0 at intervals of 0.1 in Table 2, where the

results of the treatments of ¯c= 0.70 and ¯g= 0.60 are arranged in the same column

because these values of ¯c andḡ are the standard setting.

Table 2: Fluctuations in the maintenance number of the social norm respect to the
penalties ¯g andc̄

c̄ 0.75 0.70 0.65 0.6
δ = 0.0 702 701 701 700
δ = 0.9 725 718 702 700

ḡ 0.70 0.65 0.60 0.55
δ = 0.0 900 800 701 473
δ = 0.9 893 801 718 588
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As seen in Table 2, for the cases ofδ = 0.0 andδ = 0.9, the differences be-

tweenc̄= 0.75 and ¯c = 0.65, which shift 0.05 from the standard setting ¯c= 0.70,

are 1 and 23, respectively. On the other hand, the differences between ¯g = 0.65

and ḡ = 0.55 are 327 and 213, respectively. From this fact, it is found that an

increase of the penalty ¯g leads to a rise of the maintenance number of the social

norm effectively, compared with the increase of the penaltyc̄. The penalty ¯c to

agents withb = 1 motivates them to continue obeying, and it has an influence

on the utility only when agents continuing to obey switch to disobeying. In con-

trast, the penalty ¯g to agents withb = 0 motivates them to merely obey the social

norm. In the simulation, behavior of agents is characterized by trial and error,

and therefore they are likely to change their actions. Consequently, it is supposed

that variation in the value of ¯c does not have a large influence on the maintenance

number of the social norm and the rate of obedience, comparedwith ḡ.

4.5 Simulation Payoff

SimulationPayoffdeals with the payoffd obtained by obeying the social norm

and the payoffw obtained by disobeying the social norm. In the model by Naylor,

it is concluded that the obedience rate of the social norm increases with the payoff

d and it decreases with the payoffw. We examine whether or not the results of the

simulation support this claim.

Because the discount factorδ has no connection with the payoffsd andw in the

definition (6) of the utilityUi of an agent, in SimulationPayoff, we perform only

cases ofδ = 0.0. In the treatment of obedience payoffd, three trialsd = 0.20,

0.10, 0.00 are performed, fixingw at 1.0. In the treatment of the disobedience

payoff w, three trialsw = 0.9, 1.0, 1.1 are also performed, fixingd at 0.1. Each

of the trials with an initial rate of obedience fromµ0 = 0.0 toµ0 = 1.0 at intervals

of 0.1 is performed 100 runs; altogether it comes to 1100 runs. Theresults of the

simulation are shown in Figures 14 and 15. The graphs (a) of the figures show

the number of runs such that the social norm is maintained among the 100 runs
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for each of the different initial ratesµ0; the graphs (b) of the figures show the

rate of obedience in runs where the social norm is maintained. The results of the

treatments ofd = 0.0 andw = 1.1 are not shown in the figures because the social

norm is not maintained for any of the 1100 runs. Furthermore,to compare the

result of the treatment ofd with that of the treatment ofw, we give the maintenance

number of the social norm among the total 1100 runs in Table 3.
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Figure 15: Frequency of maintenance and the rate of obedience with respect to
the payoffsw

As seen in Figure 14, for the treatment ofd, an increase of the obedience

payoff d leads to a rise of the maintenance number of the social norm, and it

also leads to a rise of the obedience rate. In contrast, from Figure 15, for the
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Table 3: Fluctuations in frequency of maintenance of the social norm with respect
to the payoffsd andw

d 0.2 0.1 0.0
frequency 897 701 0

w 0.9 1.0 1.1
frequency 900 701 0

treatment ofw, it is apparent that an increase of the disobedience payoffw results

in a fall of the maintenance number of the social norm, and it also leads to a

fall of the obedience rate. Thus, it follows that these results of the simulation

support the conclusion of the mathematical model by Naylor.From Table 3, it

is also observed that the results of the treatment ofd are similar to that of the

treatment ofw, and therefore it is found that a gap betweend andw which means

a pecuniary incentive to disobey the social norm has an effect on maintenance of

the social norm. Thus, as the value ofw−d grows large, the social norm is likely

to become extinct because the pecuniary incentive to disobey it is strong, and vice

versa.

4.6 Simulation Interaction

Because interaction among agents in our artificial agent system is implemented as

the genetic operations in the evolutionary process, the interaction is limited within

a subpopulation of agents with similar personal tastes. In SimulationInteraction,

we verify whether or not the maintenance of the social norm depends on the scope

of interaction among agents, and if so, we examine how the scope of interaction

influences maintenance or extinction of the social norm.

In the simulations described in the previous sections,N agents in the whole

population are divided intoM groups, and each group is a subpopulation within

which the genetic operations are executed. In SimulationInteraction, we vary the

number of groupsM, and conduct three treatmentsM = 1, 10, 100, fixing the
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number of agents atN = 10000. Each of the treatments starts at the initial rate

of obedience ofµ0 = 0.5, and it is performed 100 runs. In the treatmentM = 1,

there is only one subpopulation, and the genetic operationsare executed in the

whole population of agents with personal tastes in the interval [0.2,1.2]. For the

treatmentsM = 10 andM = 100, after the personal tastes of all the agents are

uniformly distributed in the interval[0.2,1.2], in the treatmentM = 10, subpopu-

lations are formed by dividing the interval[0.2,1.2] into 10 subintervals, and in the

treatmentM = 100, subpopulations are formed by dividing the interval[0.2,1.2]

into 100 subintervals. Therefore, for the treatmentsM = 1, 10, 100, the lengths

of the subintervals areεlength= 1.0,0.1,0.01, respectively. In Figure 16, we show

the final frequency distribution of the obedience rate and the final distribution of

the personal tastes after period 2000.
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Figure 16: The results of SimulationInteraction

For the treatmentM = 100 with εlength = 0.01, as mentioned in Simulation

Basis, because the rate of obedience starts fromµ0 = 0.5 at the beginning of the

simulation, the final rate of obedience after period 2000 converges in rates of

obedience fromµ = 0.7 to µ = 0.9. As seen in Figure 16(b), the personal taste is

almost uniformly distributed even at the end of the simulation because the whole

population is divided into a large number of subpopulations.

For the treatmentM = 10 with εlength= 0.1, as seen in Figure 16(a), the dis-

tribution of the rate of obedience at the end of the simulation has two peaks; there
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are high frequencies in the intervals[0.0,0.2] and [0.4,0.7]. It is supposed that

the former peak indicates the extinction of the social norm and the latter indicates

the maintenance of it. Compared with the treatmentM = 100, as seen in Figure

16(b), the distribution of the personal tastes of the treatment M = 10 is slightly

biased toward lower values. In two thirds of the 100 runs, thepersonal taste is

almost uniformly distributed to the end of the simulation aswell as the treatment

M = 100 and the social norm is maintained. In the rest of the runs,the distribution

of the personal tastes is slightly biased toward lower values, and the social norm

becomes extinct in the long run.

For the trialM = 1 with εlength = 1, as seen in Figure 16(a), the distribution

of the rate of obedience at the end of the simulation has two peaks; there are high

frequencies in the intervals[0.0,0.2] and[0.8,1.0]. The former peak is higher than

the latter one, and the latter peak shifts to the right hand side, compared with the

treatmentM = 10. This means that the rate of obedience is higher than the other

treatments when the social norm is maintained. The distribution of the personal

tastes concentrates in the interval[0.2,0.3], except for a small portion fromεi =

1.1 to εi = 1.2. Because in the treatmentM = 1, interaction among agents is

not restricted and the scope of interaction is equivalent tothe whole population,

most of the agents with higher values of personal tastes which pay attention to

the reputation arising from obedience of the social norm do not survive in the

long run. Consequently in most part of the runs the social norm becomes extinct.

However, it is interesting that inversely in a small part of the runs, agents with

higher values of personal tastes hold a majority and the social norm is maintained

with high rates of obedience in the long run.

The results of SimulationInteractionare summarized as follows. When the

scope of interaction is extremely restricted, maintenanceor extinction of the social

norm depends on the initial rate of obedience and uncertainty about outcomes of

the simulation is not very high. When the scope of interaction is broad, although

the social norm is likely to become extinct generally, the rate of obedience is

high if the social norm is maintained; on the whole the uncertainty of outcomes
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increases.

5 Conclusions

In this paper, we have developed a simulation system where artificial agents act

adaptively and their belief depends on a series of actions inwide-ranging past pe-

riods. Using the system, we have compared the results of the mathematical model

by Naylor with those of the simulations. Furthermore, we have examined the in-

fluence of the scope of interaction among agents. The resultsof the simulations

roughly support the claim from the mathematical model by Naylor, except for the

existence of the equilibria with lower rates of obedience and maintenance at high

obedience rates such as 100%. When the degree of belief is determined by a se-

ries of an agent’s actions in the long run, the obedience rateof the social norm in

the artificial society rises and uncertainty or diversity within the existence of the

social norm decreases. From the simulation for the scope of interaction, we have

found that if the scope of interaction is broad, the social norm is likely to become

extinct generally and uncertainty of states of the artificial society increases.
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