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Abstract. Skyline queries are useful in many applications such as multi-
criteria decision making, data mining, and user preference queries. A
skyline query returns a set of interesting data objects that are not dom-
inated in all dimensions by any other objects. For a high-dimensional
database, sometimes it returns too many data objects to analyze inten-
sively. To reduce the number of returned objects and to find more im-
portant and meaningful objects, we consider a problem of k-dominant
skyline queries. Given an n-dimensional database, an object p is said to
k-dominates another object q if there are (k<n) dimensions in which p
is better than or equal to q. A k-dominant skyline object is an object
that is not k-dominated by any other objects. In contrast, conventional
skyline objects are n-dominant objects. We propose an efficient method
for computing k-dominant skyline queries. Intensive performance study
using real and synthetic datasets demonstrated that our method is effi-
cient and scalable.
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1 Introduction

Skyline queries have attracted considerable attention due to its importance in
many applications such as multi-criteria decision making, data mining, and user
preference queries [1]. Given a database X, an object p is said to be in skyline of
X if there is no other object ¢ in X such that ¢ is better than p in all dimensions.
If there exist such a ¢, then we say that p is dominated by ¢, or ¢ dominates
p. A number of efficient algorithms for computing all skyline objects have been
reported in the literature [1-5].

There are two problems in conventional skyline queries: (i) As the number
of dimensions increases, the number of skyline objects increases substantially
because it becomes difficult to dominate other objects. (ii) Usually, users have
to select some noteworthy objects from skyline objects. Sometimes, the users
may have to select many objects. Sometimes, they have to select a few objects.
Conventional skyline query cannot control such selectivity.

In this paper, we consider k-dominant skyline queries [6], which are consid-
ered to overcome the above problems.
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1.1 Motivated Example

Assume a person want to purchase a notebook computer and is looking for
suitable one. Assume there is a database containing eight notebooks as listed
in Table 1. In the table, each notebook is represented as a tuple containing
six attributes, CPU, RAM, HDD, HDD speed, Quality, and VRAM. Without
loss of generality, we assume larger value is better in each attribute and all the
attributes have equal importance.

Conventional skyline query for this database returns six notebooks: Na, Nj,
Ny, N5, Ng and N;. N1 and Ng are not in skyline because both are dominated
by Na. If we look the six skyline notebooks, we can find that not all notebooks
are significant in a sense. For example, N3 is survived only by its value of “HDD
Speed” and Ny is survived only for “RAM” size. Ng is skyline because no other
notebook fails to dominate it in all dimensions, even though it does not have
any maximal feature values. In such situation, the person naturally consider to
eliminate the skyline notebooks by using stronger criterion.

Table 1. Database for Notebook PCs

NoteBook||CPURAM|HDD|HDD Speed|Q.|VRAM
Ny 3 3 5 6 6 8
Ny 9 4 9 7 7 9
N3 8 4 7 9 2 7
Ny 5 6 8 9 5 9
Ns 9 7 9 6 2 4
Ng 6 6 6 5 3 5
N7 5 7 3 8 4 6
Ng 4 4 8 6 6 4

Chan et al. considered k-dominant skyline query to handle the problem [6].
They relaxed the definition of “dominated” so that an object is likely to be
dominated by another. Given a database X consists of n attributes, an object p
is said to be in k-dominant skyline of X if there is no object ¢ in X such that ¢
is better than p in k (<n) dimensions. If there exist such a ¢, then we say that
p is k-dominated by ¢ or ¢ k-dominates p.

In the example, if we consider 5-dominant skyline instead of conventional
skyline, i.e., 6-dominant skyline, Ny, N3, N5, Ng, and Ng are eliminated from
5-dominant skyline because they all are 5-dominated by N». N7 fails to become
5-dominant skyline because it is 5-dominated by Njy.

If the person is satisfied with the selectivity of 5-dominant skyline, he/she can
analyze the returned notebooks intensively. If he/she is still unsatisfied with the
selectivity, he/she can compute further k-dominant skyline query with smaller
k. Thus, k-dominant query solve the problems of conventional skyline query for
high dimensional databases.

The contributions of this paper are as follows: 1) We have developped an
efficient method for computing k-dominant skyline by using a Sort-Filtering
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method that sorts objects by domination power. 2) We have performed intensive
experiments on a variety of synthetic and real datasets to demonstrate that the
proposed method is efficient and performs better than other existing methods.

2 k-Dominant Skyline

2.1 Preliminaries

Assume there is an n-dimensional database X containing m tuples. Let dy ,ds,....d,
be n attributes of X and let p1,pa,...,pm be m tuples of X. We use p;.d; to denote
the j-th dimension value of p;.

An object p; is said to dominate another object g;, denoted as p; > gj, if
pi.di > gj.dy for all attributes di (k = 1,---,n) and p;.d; > ¢;.d; for at least
one dimension d; (1 <t < n). We call such p; a dominant object and such g;
a dominated object between p; and g;. An object p; € X is said to be a skyline
object of X if p; is not dominated by any other object in X.

An object p; is said to k-dominate another object g;, denoted as p; >y, g, if
p;.d, > gj.dy in k attributes among n attributes and p;.d; > ¢;.d; in an attribute
d; among the k attributes. We call such p; as k-dominant object and such g; as
k-dominated object between p; and ¢;. An object p; is said to be a k-dominant
skyline object of X, if and only if there does not exist any object p; (j # %) in
X that k-dominates p;.

An object p; is said to have §-domination power if there are ¢ attributes in
which p; is better than or equal to all other objects of X.

2.2 A Priori Property
A k-dominant object has the following a priori property.

Theorem 1. Any (k —1)-dominant object must be a k-dominant object for any
k such that 1 < k <n.

Theorem 2. Any k-dominated objects cannot be a (k — 1)-dominant object for
any k such that 1 < k <n.

Proof. Based on the definition, a (k — 1)-dominant object p is not (k — 1)-
dominated by any other objects in X. It implies that p is not k-dominated by any
other objects. Therefore, we can say p is k-dominant object. On the other hand,
if an object ¢ is k-dominated by another object, it must be (k — 1)-dominated
by the object. Therefore, ¢ cannot be a (k — 1)-dominant object.

The conventional skyline is the n-dominant skyline. If we decrease k of the
k-dominant skyline, more objects are eliminated. For example, N; and Ng of
Table 1 are not in skyline because they are dominated (n-dominated) by Na.
So, they can’t be a candidate of k-dominant skyline object for £ < n. We can
prune such non-skyline objects for further procedure of the k-dominant query.
If we consider 5-dominant query, N3, N5, Ng, and N7 are 5-dominated objects
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in addition to the 6-dominated objects, N; and Ng. Therefore, we can prune
those objects in 5-dominant query computation. Thus, by decreasing k, more
dominated objects can be pruned away.

3 k-dominant Skyline Algorithm

In this section, we present an efficient method for computing k-dominant skyline
objects from X. We used a Sort-Filtering method that consists of two parts: one
is “domination power” calculation and sorting, and the other is k-dominant
skyline objects checking.

3.1 Domination Power Calculation

Objects whose sum of all their dimension values is large are likely to dominate
other objects, while objects whose sum is small are likely to be dominated.
Therefore, we sort the whole tuples in X in descending order of the sum of all
their dimension values. This preprocess, sorting by sum, has been proposed by
Chomicki et al. [4]. By this preprocessing, we can eliminate some of non-skyline
objects easily. Chan et al. used the popular preprocessing in their OSA algorithm
for k-dominant query [6]. But this preprocess is not effective for k-dominant
query computation especially when values of each attribute is not normalized.
For example, assume p(9,1,2) and ¢(3,2,3) are two objects in 3D space. Although
the object p has greater sum than object ¢ but p fails to become 2-dominant of
q. Here, object p is 2-dominated by object q.

Therefore, in order to prune unnecessary objects efficiently in the k-dominant
skyline computation, we compute domination power of each object, i.e., how
many maximal values it has within all of dimensions. Then, we sort objects
in descending order by domination power. If more than one objects have same
domination power then we sort those objects in descending order of the sum
value.

Without apply any sorting Table 2 represent the domination power and sum
of the each Notebook PC’s of Table 1. Table 3 is the example of sorted database
(sort Notebook PC’s in descending order by corresponding domination power
and for same domination power sort in descending order of the sum value) of
the Notebook PC’s database of Table 1. In the sorted table, Ny has the highest
dominant power 4 and Ng, N; and Ng have no dominant power. Note that No
dominates all notebooks lie below it in four attributes, CPU, HDD, Quality, and
VRAM.

Let X' be the sorted database of X. X’ has the following property.

Theorem 3. Let p; be the i-th object in the ordered object sequence of X'. If p;
has §-domination power, it 6-dominates p; for j such that j > i in the sequence
of X'.

Proof. An object p; with J-domination power is -dominant object to any other
object in X’. Since X’ is sorted by domination power in descending order, an



K-Dominant Skyline Computation by using Sort-Filtering Method 5

Table 2. Domination Power Calculation

Notebook||CPURAMHDD|HDD 8S.|Q.|VRAM||/Domination Power|Sum
Ny 3 3 5 6 6 8 0 31
N> 9 4 9 7 7 9 4 45
N3 8 4 7 9 2 7 1 37
Ny 5 6 8 9 5 9 2 42
N5 9 7 9 6 2 4 3 37
Ng 6 6 6 5 3 5 0 31
N7 5 7 3 8 4 6 1 33
Ng 4 4 8 6 6 4 0 32

Table 3. Sorted Dataset

Notebook||CPURAMHDD|HDD 8S.|Q.|VRAM||/Domination Power|Sum
No 9 4 9 7 7 9 4 45
Ns 9 7 9 6 2 4 3 37
Ny 5 6 8 9 5 9 2 42
N3 8 4 7 9 2 7 1 37
N7 5 7 3 8 4 6 1 33
Ng 4 4 8 6 6 4 0 32
Ny 3 3 5 6 6 8 0 31
Ng 6 6 6 5 3 5 0 31

object with §-domination power always comes before objects whose domination
power is less than §. Therefore, from the definition we can say p; is a d-dominant
for any other object p; since j > .

By using this property, an object with k-domination power k-dominates all
other following less domination power objects. Moreover, when more than one
object has same domination power then our proposed method sort those objects
in descending order of the sum values. Therefore higher objects in the sorted
sequence are likely to dominate other objects. This sort filtering preprocessing
helps to reduce the computational cost of k-dominant skyline.

The sorted sequence roughly reflects the importance of objects and our
method can progressively output the k-dominant objects based on the sequence.
It helps users’ to make their decision more practical.

3.2 k-dominant Checking

By using X', we progressively output k-dominant skyline objects as follows. We
scan X’ to compare each object p € X' against the first object ¢. In the scan
procedure, objects that are k-dominated by the first object are removed from X”.
During the procedure, if the first object ¢ is k-dominated by any other objects
p € X', we remove ¢ from X’ and stop the scanning procedure. If ¢ is not
removed in the scanning procedure, then output ¢ as a k-dominant object and
remove g from X’. We repeat this scanning procedure until X’ becomes empty.
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Applying the k-dominant check with k& = 5 for Table 3, we note that in
the first scan N5, N3, Ng, N1 and Ng are 5-dominated by the first object, Na.
Therefore, those dominated objects are removed from X’. On the other hand, N
is not 5-dominated by any other notebooks. So, after the first scan, our method
outputs N> as a 5-dominant skyline object and then remove Na from X’. In the
second scan, Ny becomes the first object and it 5-dominates N7. So, we remove
N7 and outputs N4 as a 5-dominant skyline object. Similarly, if we apply k =4
for the same database X', then our Sort-Filtering method returns only N, as a
4-dominant skyline object.

4 Related Works

Chan et al. introduce k-dominant skyline query [6]. They proposed three algo-
rithms to compute the k-dominant skyline query. The first algorithm, One-Scan
Algorithm (OSA), uses the property that a k-dominant skyline objects cannot
be worse than any skyline on more than k dimensions. This algorithm maintains
the skyline objects in a buffer during a scan of the dataset and uses them to
prune away objects that are k-dominated. As the whole set of skyline objects
can be large, the authors proposed the Two-Scan Algorithm (TSA). In the first
scan, a candidate set of dominant skyline objects is retrieved by comparing every
object with a set of candidates. The second scan verifies whether these objects
are truly dominant skyline objects. This method turns out to be much more
efficient than the one-scan method. A theoretical analysis is provided to show
the reason for its superiority. The third algorithm, Sorted Retrieval Algorithm
(SRA), is motivated by the rank aggregation algorithm proposed by Fagin et al.,
which pre-sorts data objects separately according to each dimension and then
merges these ranked lists [7].

As the authors mentioned in the OSA, skyline objects need to be maintained
to compute the k-dominant skyline objects. Since the set of skyline objects could
be much larger than the set of k-dominant skyline objects, maintaining skyline
can incur large space and computation overhead.

Compared with their works, the proposed method can find k-dominant sky-
line objects without maintaining skyline. Therefore, there is no possibility for
space and computational overhead. In addition, TSA algorithm scans whole
data twice. In first scan, it generates candidate set of dominant skyline objects
by comparing every object with a set of candidates and in second scan it verifies
whether these objects are truly dominant skyline objects, while the proposed
method can compute dominant skyline directly and does not suffer for false pos-
itive elimination procedure. As for SRA, the performance is uncertain because
it depends crucially on the choice of proper dimension. Section 5 demonstrates
that the performance of our algorithm is better than all of the three algorithms
proposed in [6].

Algorithm called CoSMuQ also computes k-dominant skyline [8]. It divides
the space in pairs of attributes and maintains a grid for each pair of dimen-
sions. Each grid maintains its skyline tuples. Finally, the k-dominant skyline is
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obtained by the union of the skylines of these grids. This method has two se-
vere problems, in high dimensional case. It needs to maintain huge number of
grids. For example, if dimension size is equal to 15, then this algorithm needs
to maintain 105 grids. In addition to the space complexity problem, CoSMuQ
always needs to maintained 2-dominant skyline to compute k-dominant skyline.
Compared with theirs, the proposed method does not suffer from such kinds grid
as well as 2-dominant skyline maintaining problems.

5 Performance Evaluation

We have conducted a series of experiments to evaluate the performance of our
Sort-Filtering method. We also compare the performance with all the algorithms
proposed by Chan et al. which are One-Scan Algorithm (OSA), Two-Scan Algo-
rithm (TSA) and Sorted Retrieval Algorithm (SRA) [6]. To make the comparison
fair, we have include all the preprocessing cost, i.e., cost of domination power
computation and sorting.

5.1 DataSets

We use both synthetic datasets and real datasets in the experiments. The gen-
eration of the synthetic datasets is controlled by three parameters, dimension
number n, data size Size and distribution Dist. There are three optional distri-
butions in the synthetic data sets: Correlated, Independent and Anti-Correlated.
Table 4 shows the number of the k-dominant skyline objects on 15-dimensional
data set with 100k objects on different distributions and different constraint
parameter k.

When k£ is close to the dimension size, the number of k-dominant skyline
objects in the anti-correlated dataset becomes much larger than that of the
independent and correlated datasets. However, when k is small, the correlated
dataset can still have some dominant skyline objects, while no dominant skyline
objects can be found on the other two distributions.

Table 4. Number of k-Dominant Skyline Objects

k ||Correlated |Independent|Anti-Correlated
8 1 0 0
9 1 0 2
10 1 0 5
11 6 16 33
12 17 178 500
13 84 2180 5670
14 433 16143 29828

We also examine the performance for a real dataset. We used the NBA statis-
tics. This dataset contains 17000 players season records on 17 attributes from
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the first season of NBA in 1945. Every records contain the statistical value
of a player’s performance in one season, such as game played(GP), field goal
made(FGM), total assists(AST) and so on. One player may have several records
if he played in NBA for more than one season.

5.2 Performance

We evaluated the computational cost of our Sort-Filtering method and compared
the result with all three algorithms proposed by Chan et al. with similar param-
eter setting. The proposed method is implemented in Java. All experiments were
conducted on a PC with an Intel Pentium 3GHz CPU and 2G main memory,
which is running on Microsoft Windows XP operating systems. Figure 1, 2, and
3 are the time to compute k-dominant skyline for synthetic datasets.

Figure 1 examines the effect of the k value. We observe that our method is
more efficient than other three methods on all distributions when & varies from 8
to 14. Because, maintaining the set of skyline objects for OSA incurs large space
and computation overhead. To compute k-dominant skyline, TSA suffered for
false candidates elimination. Again, the performance of SRA is not better than
Sort-Filtering because this approach crucially depends on the choice of proper
dimension.

Figure 2 examines the effect of the dimension value. When £ is small, TSA,
RSA and Sort-Filtering are much faster than OSA on all three distributions.
With increasing dimensionality TSA is several times slower than the other three
algorithms. As shown in the figure, our Sort-Filtering is more scalable on high
dimensional data sets.

In order to evaluate the effect of cardinality on the performance of the four
algorithms, we use datasets with cardinality 50k, 100k, 150k and 200k. In this
experiment, we fixed the size of n to 15 and k to 11. Figure 3 shows that when
the size of the data set increases from 50k to 200k, the computation time of the
four algorithms maintain a positive correlation. Notice that our Sort-Filtering
performs best while OSA is the most worst.

In Figure 4, we show the experimental result on the NBA data set. When
varying the constraint parameter k, TSA and our Sort-Filtering are the efficient
algorithm when k& < 14, but RSA is worst among the four algorithms when
k > 15. Sort-Filtering and SRA are faster than other two when k is large.

6 Conclusion

We consider k-dominant skyline query problem and present a Sort-Filtering
method. We demonstrate that our method is easy to compute and can be used for
high dimensional large datasets. Performance evaluations show the superiority
of the proposed method against the OSA, TSA and SRA algorithms.
k-Dominant skyline reduces the number of interesting objects returned by
skyline. But sometimes the number of k-dominant skyline objects can still be
large when k is not sufficiently small. If k is too small, no (or few) k-dominant
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skyline objects are returned. Though our efficient computation allows us to com-
pute k-dominant objects for various k, proper guide for choosing the right value
of k is an open problem.
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