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Magnetic anisotropy energies (MAE) of multiferroic PbVO3 and BiCoO3 are evaluated

from first-principles density functional calculations. Even though both oxides have similar

crystal and electronic structures, calculated easy axes of spin are different: [110] in PbVO3

and [001] in BiCoO3. To explain the difference, the origin of MAE is discussed with a per-

turbation theory by taking into account of the electronic structure obtained by the first-

principles calculations.
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1. Introduction

Multiferroic systems have more than one ferro or antiferro orderings associated with elec-

tronic and lattice degrees of freedom simultaneously. Among them, ferroelectric and ferro-

magnetic multiferroic systems have recently attracted much attention because of the possible

existence of a magnetoelectric effect and their application to the next-generation devices.1–4)

In this context, magnetic and electric controls with the orbital degree of freedom are also an

interesting topic.5)

BiMnO3 has been believed to be a rare example of the ferromagnetic and ferroelectric mul-

tiferroic systems.6–11) In BiMnO3, a ferromagnetic ordering is realized with an antiferro-orbital

ordering while hybridization between Bi-6p and O-2p orbitals may lead to ferroelectricity.12,13)

However, recent first-principles and experimental results for BiMnO3 have shown the most

stable crystal structure with non-polar (antiferroelectric) symmetry.14,15) BiFeO3 is a ferro-

electric and antiferromagnetic multiferroic oxide. When synthesized as a thin film, BiFeO3

shows gigantic electric polarization and has drawn considerable attention as a lead-free sub-

stitution for PbZr1−xTixO3 in the ferroelectric devices.16) Related perovskite-type compounds

AMO3 (A=Bi, Pb; M=transition-metal ion) are, thus, believed to form a target area to be

explored in multiferroic materials research.

Recently, PbVO3 and BiCoO3 have been synthesized in a bulk form by a high-pressure
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and high-temperature technique and epitaxially grown in a thin-film form with pulse laser

deposition.17–23) The crystal structure of PbVO3 and BiCoO3 has been determined by the

Rietveld technique and dc resistivity and magnetic susceptibilities have been measured.17–19)

It is found that both oxides have several similar features such as large tetragonal lattice

distortion, sizable off-centered atomic displacements, semiconducting behavior and C-type

antiferromagnetic ordering. These properties have been reasonably explained by our previous

first-principles calculations.24) Their ferroelectric instability mainly arises from hybridization

between Pb(Bi)-6p and O-2p orbitals, being coupled with the unusual structural properties.

The most interesting feature in the electronic structure is that only V(Co)-3dxy band is oc-

cupied in the majority (minority) spin bands of PbVO3 (BiCoO3), leading to an insulating

state with a formal ionic configuration of V4+ (d1) (Co3+ (d6)). With this electronic configu-

ration, a stable C or G-type antiferromagnetic spin ordering can be interpreted in terms of the

super-exchange interaction between the neighboring transition-metal xy orbitals mediated via

O-2pπ. Our results have been also confirmed by the other first-principles studies.25–27) The

basic framework of the observed crystal structure is of perovskite-type, as the same as that

in the typical ferroelectric oxide PbTiO3. However, the crystal structure shows quite large

tetragonality (c/a ratio) of 1.229 for PbVO3 and 1.267 for BiCoO3, compared with 1.06 for

PbTiO3. Furthermore, V (Co) ion is located at a remarkably off-centered position of the

O6 octahedron, being regarded as O5 pyramid structure. Due to such large displacements,

gigantic electric polarization beyond PbTiO3 can be expected. Actually our first-principles

calculations with the Berry-phase method28) predict the electric polarization of 152 µC/cm2

for PbVO3 and 179 µC/cm2 for BiCoO3.24)

Quite recently, a neutron diffraction experiment19) has been performed to study the mag-

netic properties of BiCoO3 and the magnetic easy axis is found to be [001]. However, no study

has been reported so far concerning the microscopic origin of the magnetic anisotropy and its

relation to the crystal structure with large tetragonality and displacements.

In this paper, we investigate the magnetic anisotropy of PbVO3 and BiCoO3 from first-

principles calculations. In order to clarify the effects of the unique electronic structure associ-

ated with the peculiar crystal structure on the magnetic anisotropy, we adopt a perturbation

theory with use of the first-principles electronic structure.

2. Calculation Methods

We employ a first-principles approach based on the density functional theory (DFT) within

the local spin density approximation (LSDA).29,30) One-electron Kohn-Sham equations are

solved self-consistently by using the all-electron full-potential linear augmented plane wave

(FLAPW) method in a scalar-relativistic manner.31–34) The spin-orbit interaction (SOI) is

treated as the second variation after the final step of self-consistent cycle and the magnetic

anisotropy energy (MAE) is evaluated by using the force theorem.35–39) Our implementation of
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the all-electron FLAPW method has been used successfully for a variety of condensed matter

systems including magnetic and ferroelectric materials as well as multiferroics.40–45) Brillouin

zone (BZ) integration is performed with the tetrahedron method46) up to 6 × 6 × 6 k-mesh

points. Since both oxide systems studied are insulating within LSDA and MAE is evaluated as

an energy variation by changing the orientation of spin, one can get sufficient accuracy with

such k-mesh points. Muffin-tin sphere radii are set to be 1.0 Å for Pb and Bi, 0.95 Å for V and

Co, 0.7 Å for O. Because of such a small muffin-tin sphere radius for V, we treat V-3p state

as valence states. The plane-wave cutoff energy is set to 25 Ry for wavefunctions, and 200

Ry for charge density and potential functions. The experimental crystal structure and atomic

positions are used in the present study.24) As previously studied, the C-type antiferromagnetic

(C-AFM) structure is the most stable among the ferromagnetic and several antiferromagnetic

structures and thus only the C-AFM configuration is considered in this paper. The magnetic

ordering is treated by using a
√

2 ×
√

2 × 1 cell with P4mm space group.

3. Electronic Structure

Since the details of electronic structure of PbVO3 and BiCoO3 including the mechanism

of multiferroicity have been reported previously,24–27) we briefly summarize their important

aspects for the discussion of magnetic anisotropy in this section. The band structure reveals

an insulating (or semiconducting) behavior with rather small energy gaps. It is known that

LSDA often underestimates the energy gaps, especially in strongly-correlated electron systems.

However, we believe that the size of the energy gaps affect only marginally our qualitative

conclusions about the magnetic anisotropy energy made below in this paper. Bands around the

energy gaps are dominated by V-3d orbitals as shown in partial density of states projected on

the cubic harmonics of V-3d are shown in Fig. 3 of ref. 24. Only the majority-spin xy state is

occupied, being regarded as a V4+ (d1) configuration in an ionic picture. Consequently, ferro-

orbital, antiferromagnetic and ferroelectric orderings coexist simultaneously in the ground

state of PbVO3. Note that the Cartesian coordinates are assumed along the principal axes

of the non-magnetic tetragonal unit cell. As for BiCoO3, quite similar electronic structure

can be seen to that in PbVO3, being consistent with the stability of non-centrosymmetric

tetragonal structure and C- or G-type AFM configuration.24,26) A point different from PbVO3

is that, in BiCoO3, the minority-spin xy state is occupied while the majority-spin states are

fully occupied. Naively speaking, we may expect a similarity also in magnetic properties

between PbVO3 and BiCoO3. However, magnetic anisotropy is completely different, as shall

be discussed below.
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4. Magnetic Anisotropy Energy

To evaluate MAE, one has to calculate the angle dependence of the total energy including

SOI. From the prescription of MacDonald et al.,36) SOI is given as

Hso = λ~l · ~σ(θ, φ) (1)

where ~l and ~s are the orbital and spin angular momentum operators, ~σ is the 2× 2 Pauli spin

matrix with ~s = ~σ/2 and

σ+ = σ†
− = σx + iσy. (2)

λ is the SOI operator given by

λ(r) =
~2

2M2c2r

dV (r)
dr

. (3)

The spin quantization axis is defined by its polar and azimuthal angles θ and φ. A rotation

of the axis is given by

~l · ~σ(θ, φ) = U †(θ, φ)
[
~l · ~σ

]
U(θ, φ). (4)

where the 2 × 2 spin rotation matrix U is given by

U =

(
e−

i
2
φ cos θ

2 −e−
i
2
φ sin θ

2

e
i
2
φ sin θ

2 e
i
2
φ cos θ

2

)
. (5)

With use of U , eq. 4 is rewritten explicitly as

~l · ~σ(θ, φ) = σz

[
lz cos θ +

1
2

sin θ
(
l+e−iφ + l−eiφ

)]
+

1
2
σ+

[
−lz sin θ − l+ sin2 θ

2
e−iφ + l− cos2

θ

2
eiφ

]
+

1
2
σ−

[
−lz sin θ + l+ cos2

θ

2
e−iφ − l− sin2 θ

2
eiφ

]
.

(6)

Note that θ = 0 and φ = 0 are taken at the c and a principal axes, respectively, of the

original tetragonal lattice. By including this term with the second variational technique, we

calculate the variation of the total energy by changing the magnetization direction with the

force theorem.35–39) Calculated spin easy axis is [110] for PbVO3 and [001] for BiCoO3, while

hard axis is [001] for PbVO3 and [100] for BiCoO3. Relative values of MAE to the easy axis are

listed in Table I. It is interesting to note that the magnitude of MAE in BiCoO3 is much larger

by a factor of five than that in PbVO3 and its easy and hard axes are opposite to each other.

In the case of BiCoO3, the first-principles result on the easy axis is in good agreement with

experiment.19) Unfortunately, no experimental result is known for PbVO3. We also evaluated

spin and orbital magnetic moments in the muffin-tin sphere as listed in Table II. For each

direction of the quantization axis, the orbital magnetic moment aligns antiferromagnetically
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Table I. Calculated magnetic anisotropy energies of PbVO3 and BiCoO3 in meV/formula unit. Rela-

tive energies to the easy axis are shown. Directions [001] and [100] correspond to the z and x-axis,

respectively, of the non-magnetic tetragonal lattice.

[001] [100] [110] [111]

PbVO3 0.520 0.004 0 0.260

BiCoO3 0 2.538 2.534 1.263

Table II. Calculated spin and orbital magnetic moments of the transition-metal site in PbVO3 and

BiCoO3 for each easy axis in µB .

orbital spin

PbVO3 -0.025 0.75

BiCoO3 0.145 2.48

in PbVO3 and ferromagnetically in BiCoO3 to the spin magnetic one. The magnitude of the

orbital moment in BiCoO3 is greater than that in PbVO3 by about six. This may be due to

large spin moment and strong SOI in BiCoO3 (see §5.3). We also evaluate the full θ and φ

dependences of MAE and calculated results in the xz-plane (φ = 0) and xy-plane (θ = π/2)

are shown in Fig. 1 for PbVO3 and in Fig. 2 for BiCoO3. For both cases, a cos 2θ dependence is

found in the xz-plane while a cos 4φ dependence is obtained in the xy-plane with quite small

magnitude compared with the θ-dependence. With the tetragonal lattice symmetry given,

the cos 2θ and cos 4φ dependences are easily understood because of two-fold and four-hold

rotation symmetry, respectively. We analyze the origin of the angle and material dependences

in MAE with a perturbation theory in the following section.

5. Analysis with a Perturbation Theory

In the previous section, different MAE behaviors are seen between PbVO3 and BiCoO3.

In addition, the angle dependence of MAE is found to be cos 2θ in the xz-plane and cos 4φ

in the xy-plane for both oxides. As already pointed out, two oxides have similar electronic

structure.24) So the origin of these similarity and dissimilarity in the electronic and magnetic

properties needs to be examined in detail. We now analyze the first-principles results of MAE

with help of a perturbation theory. In evaluating the matrix elements of SOI with l = 2, it is

convenient to rewrite spherical harmonics Ylm with cubic harmonics defined as

dxy = − i√
2

(Y22 − Y2−2) , (7)

dyz =
i√
2

(Y21 + Y2−1) , (8)
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Fig. 1. Calculated magnetic anisotropy energy (MAE) of PbVO3 in meV/formula unit. (a) On xz-

plane (φ = 0), MAE at θ = 90◦ is taken as the origin and dots and line show calculated points

and a fitted curve to cos 2θ, respectively, as a function of magnetization axis θ in degree. (b) On

xy-plane (θ = 90◦), MAE at φ = 45◦ is as the origin and dots and line denote calculated points

and a fitted curve to cos 4φ, as a function of magnetization axis φ in degree.

dzx = − 1√
2

(Y21 − Y2−1) , (9)

dx2−y2 =
1√
2

(Y22 + Y2−2) , (10)

d3z2−r2 = Y20. (11)

With these cubic harmonics and radial function R2(r), we easily evaluate the perturbation

matrix element 〈i, σ|Hso(θ, φ)|j, σ′〉 (i, j = xy, yz, zx, x2 − y2, 3z2 − r2) with respect to spin

quantization axes θ and φ. Detailed methods to calculate the matrix elements follows the

previous works.47,48) The first-order change in wavefunctions is easy to evaluate from the

similar procedure to MAE. In that case, the expectation value of the orbital magnetic moment

〈lα〉 parallel to the spin quantization axis α is obtained from the same matrix elements.48)
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Fig. 2. Calculated magnetic anisotropy energy (MAE) of BiCoO3 in meV/formula unit. (a) On xz-

plane (φ = 0), MAE at θ = 0◦ is taken at the origin and dots and line show calculated points

and a fitted curve to cos 2θ, respectively, as a function of magnetization axis θ in degree. (b) On

xy-plane (θ = 90◦), MAE at φ = 45◦ is at the origin and dots and line denote calculated points

and a fitted curve to cos 4φ, respectively, as a function of magnetization axis φ in degree.

5.1 PbVO3

In this section, we discuss MAE of PbVO3. For the perturbation theory, we need to

determine energy levels of V-3d state. From the DFT calculation, we simplify these energy

levels, Eiσ (i = xy, yz, zx, x2 − y2, 3z2 − r2 and σ =↑, ↓), as shown in Fig. 3. The energy

of each orbital is measured from that of the majority-spin xy level and is labeled by ∆n

(n = 1, 2, 3) as ∆1 = Eyz,zx↑ − Exy↑, ∆2 = Exy↓ − Exy↑ and ∆3 = Eyz,zx↓ − Exy↑. Based on

this schematic energy diagram, we evaluate the magnetic anisotropy energy with the first and

second-order perturbation theory. On account of 〈xy, ↑ |Hso|xy, ↑〉 = 0, the first-order energy

shift goes to zero. The second-order energy shift ∆E(2) is evaluated by taking into account

the unoccupied dε states as the intermediated states of the second-order process. Noting that

〈xy, ↑ |Hso|xy, ↓〉 = 0, we have the leading second-order terms as

∆E(2) = − λ2
2

2∆1

(
1 − cos 2θ

)
− λ2

2

2∆3

(
3 + cos 2θ

)
, (12)
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Fig. 3. Schematic energy diagram in PbVO3. Only the xy orbital with majority spin is occupied with

V4+ (d1) configuration. The 3z2 − r2 and x2 − y2 orbitals are located in high energy with large

dispersion.

with SOI parameter λl given below (see §5.3). The angle dependent part of ∆E(2) is called

MAE as given by

EMAE(θ, φ) =
λ2

2

2

( 1
∆1

− 1
∆3

)
cos 2θ. (13)

Equation (13) shows that the spin-preserve ∆1 and spin-flip ∆3 process have the opposite

contributions to the leading terms of MAE. Due to ∆1 < ∆3 MAE has a cos 2θ dependence

with a positive sign, including that the magnetization easy axis resides on the xy plane. This

accounts for the first-principles result shown in Fig. 1 (a). The φ dependence is clearly vanished

in the perturbation theory up to second order. From the form of the spin-orbit operator shown

in eq. (6), a cos 4φ dependence will be obtained from the fourth-order perturbation with quite

small magnitude. For the easy axis of [110] in PbVO3 and we obtain the orbital magnetic

moment as

〈l110〉 = −2λ2

∆1
. (14)
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0

Fig. 4. Schematic energy diagram in BiCoO3. All the majority-spin d bands and the xy band with

the minority spin are occupied with Co3+ (d6) configuration. Unoccupied 3z2 − r2 band with the

minority spin is located in a high energy region.

The sign is also consistent with the first-principles result. With inclusion of 3z2 − r2 and

x2 − y2 orbitals, no apparent qualitative change from the result is expected because of their

large ∆.

5.2 BiCoO3

As in PbVO3, we assume simplified energy levels for BiCoO3 as shown in Fig. 4, where

each energy level is measured from that of the minority spin yz, zx level and is also labeled

by ∆n (n = 1, 2, 3, 4, 5) as ∆n indicate ∆1 = Eyz,zx↓ − Exy↓, ∆2 = Eyz,zx↓ − Ex2−y2↑, ∆3 =

Eyz,zx↓ − E3z2−r2↑, ∆4 = Eyz,zx↓ − Eyz,zx↑ and ∆5 = Eyz,zx↓ − Exy↑. In Co3+(d6) case, the

initial states are |xy, ↑〉, |yz, ↑〉, |zx, ↑〉, |x2−y2, ↑〉, |3z2−r2, ↑〉 and |xy, ↓〉 and the intermediate

states are |yz, ↓〉, |zx, ↓〉. The |x2 − y2, ↓〉 and |3z2 − r2, ↓〉 states may be neglected. The first-

order energy shift goes to be zero again. With these conditions, the second-order energy shift

∆E(2) is given by

∆E(2) = λ2
2

[
A + B cos 2θ

]
, (15)
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where A and B are given by

A = − 1
2∆1

− 3
2∆2

− 9
2∆3

− 1
∆4

− 3
2∆5

, (16)

B =
1

2∆1
− 1

2∆2
− 3

2∆3
+

1
∆4

− 1
2∆5

. (17)

In this case, MAE becomes

EMAE(θ, φ) = λ2
2B cos 2θ, (18)

The magnitude and sign of MAE are determined by the relative values of ∆. By inspecting

the energy diagram in Fig. 4, ∆4 and ∆5 are large and their contributions are negligible, and

∆3 and ∆2 look almost the same. For simplicity, by putting ∆2 ≈ ∆3 ≡ ∆eg we have

EMAE(θ, φ) ≈ λ2
2

2

[ 1
∆1

− 4
∆eg

]
cos 2θ. (19)

Therefore, the leading term of MAE is represented by the competing two processes: a spin

flip transition from the occupied eg states to the unoccupied yz and zx states, and a spin

diagonal transition from the minority xy to the yz and zx states. ∆eg < 4∆1 is apparently

satisfied from the energy diagram and MAE has a cos 2θ dependence with a negative sign. In

the same way as the previous PbVO3 case, the φ dependence does not appear by the second-

order perturbation and a cos 4φ term will come from the fourth-order perturbation with small

magnitude. These perturbation considerations are consistent with the first-principles result

shown in Fig. 2. To evaluate the orbital magnetic moment properly, it is necessary to include

the contribution from the minority-spin x2−y2 orbital. The resulting orbital magnetic moment

is given as

〈l001〉 =
8λ2

∆0
. (20)

with ∆0 = Ex2−y2↓ − Exy↓. The sign of this term is also consistent with the first-principles

one.

5.3 Comparison between PbVO3 and BiCoO3

From the perturbation theory with the first-principles energy diagram, we obtain the

same angle dependence as the first-principles one. As mentioned before, both oxides have

large tetragonal distortion and off-centering atomic displacement. Crystal field with largely

distorted O6 octahedron results in unconventional d-orbital energy splitting with low-lying

xy orbital level. Under this electronic structure condition, MAE comes basically from the

matrix elements between the occupied xy orbital and unoccupied (yz, zx) orbitals of V in the

majority spin. In the case of Co, the occupied (x2 − y2, 3z2 − r2) orbitals in majority spin

and unoccupied (yz, zx) orbitals in the minority spin are involved in determining MAE. The

φ dependences are clearly vanished in two cases from the second-order perturbation theory. A

cos 4φ dependence will come from the fourth-order perturbation and these magnitudes should
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be quite small. These are consistent with our first-principles results.

Let us discuss the magnitude of anisotropy energy in the two cases. The magnitude of

the θ dependent term is almost five times different between PbVO3 and BiCoO3. This is

understood by the magnitude of SOI constant λl. In our implementation, λl can be evaluated

with the radial functions as

λl =
∫

R2
l (r)λ(r)r2dr. (21)

Here Rl is the radial function defined inside the muffin-tin sphere. We neglect small spin

dependence in λl. The λ2 values for V-d in PbVO3 is 17 meV and 45 meV for Co-d in

BiCoO3. The value in BiCoO3 is about three times larger than that in PbVO3. From λ2

and ∆n derived from first-principles calculations,24) the amplitude of the angle dependence

in xz-plane can be estimated to be 0.19 meV for PbVO3 with ∆1=0.5 eV and ∆3=1.5 eV

in eq. (13). In the case of BiCoO3, we obtain the amplitude of 1.69 meV with ∆1=1 eV and

∆eg=1.5 eV in eq. (19). These results are in fairly good agreement with the first-principles

results 0.26 meV for PbVO3 and 1.27 meV for BiCoO3 shown in Figs. 1 and 2. Therefore, the

magnitude of SOI is one of the main reason to lead to the difference in MAE. The difference

in the orbital magnetic moment also follows the tendency in MAE. As seen in first-principles

result Table II and eqs. (14) and (20), the difference in the orbital moment comes from the

energy-level distances and SOI.

These findings may suggest that applying pressure, stress or electric field can change the

electronic structure via the lattice degree of freedom, leading to a possible cross correlation

between ferroelectric or piezoelectric and magnetic anisotropy. In this connection, a notewor-

thy experimental approach to the cross correlation between the electric field and magnetic

anisotropy in the metal-insulator-(magnetic)semiconductor structure has been quite recently

reported.49) A preliminary estimation of the correlation shows the variation of MAE due to

the displacement of transition-metal ions to be |∆EMAE/∆uCo| ∼ 0.01 eV/Å for BiCoO3.

6. Conclusions

We have studied the magnetic anisotropy for multiferroic PbVO3 and BiCoO3 by using

the first-principles calculations. As a result, the magnetic easy axes are [110] for PbVO3

and [001] for BiCoO3. The orbital magnetic moment of the transition-metal site in BiCoO3

is greater than that in PbVO3 by about six. The full θ and φ dependences of MAE are

calculated. The θ dependence of MAE is given by cos 2θ, its sign is different between two

oxide cases and its amplitude for BiCoO3 is five times greater than that for PbVO3. These

differences are discussed with the perturbation theory using the energy diagram obtained from

the first-principles calculations. It is found that the sign is determined by the spin diagonal

xy → (yz, zx) transition in PbVO3 and by the spin off-diagonal (x2 − y2, 3z2 − r2) → (yz, zx)

one in BiCoO3. The difference in the magnitude of MAE comes mainly from the magnitude
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of SOI.
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46) P. E. Blöchl, O. Jepsen and O. K. Andersen: Phys. Rev. B 49 (1994) 16223.

47) H. Takayama, K. Bohnen and P. Fulde: Phys. Rev. B 14 (1976) 2287.

48) P. Bruno: Phys. Rev. B 39 (1989) 865(R).

49) D. Chiba, M. Sawicki, Y. Nishitani, F. Matsukura, Y. Nakatani and H. Ohno: Nature(London)

455 (2008) 515.

14/14


