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Abstract

This paper discusses a structural optimization method that optimizes shape
and topology based on the phase field method. The proposed method has the
same functional capabilities as a structural optimization method based on the
level set method incorporating perimeter control functions. The advantage of
the method is the simplicity of computation, since extra operations such as re-
initialization of functions are not required. Structural shapes are represented
by the phase field function defined in the design domain, and optimization
of this function is performed by solving a time-dependent reaction diffusion
equation. The artificial double-well potential function used in the equation
is derived from sensitivity analysis. The proposed method is applied to two-
dimensional linear elastic and vibration optimization problems such as the
minimum compliance problem, a compliant mechanism design problem and
the eigenfrequency maximization problem. The numerical examples provided
illustrate the convergence of the various objective functions and the effect
that perimeter control has on the optimal configurations.
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1. Introduction

The search for optimal structural shapes under various specified condi-
tions is a very important, challenging and attractive subject for researchers.
The field of structural optimization has a history spanning more than a cen-
tury, and began with research on optimal truss layouts carried out by Michell
[1]. Details of the history and methodologies of various proposed methods
can be found in comprehensive reviews and textbooks [2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13]. We focus on shape optimization using boundary variation and
topology optimizations. The key idea of shape optimization [7, 10, 11, 13]
is to update the shape of the boundary based on the shape sensitivity. Al-
though this is a standard approach for structural optimization and enables
many types of problems to be handled, it has the following fundamental draw-
backs. The first shortcoming is the high computational cost of remeshing.
Since the outline of the target structure is usually represented using a finite
element mesh and the objective function and its sensitivity are numerically
calculated using the finite element method, the mesh must be updated as the
shape changes to maintain the accuracy of the analysis. The second draw-
back is the inability to provide for topological changes such as the nucleation
or elimination of holes, which increases the likelihood of local optima.

Topology optimization [2, 5, 6, 14], in contrast, does not have these draw-
backs, since optimization is performed numerically using a fixed mesh and
topological changes of the target structure are allowed. The basic idea is
the replacement of the shape optimization problem by a two-phase material
distribution problem consisting of an original material and an ersatz material
mimicking voids. Unfortunately, these two-phase optimization problems do
not have an optimal solution unless smoothness or topological constraints are
taken into account. To overcome this difficulty, a homogenization method
is applied and the original problem is represented as a composite material
optimization problem, namely, an optimization problem of a volume fraction
of these materials. As a result, the optimal configurations obtained in topol-
ogy optimization methods are represented as the distribution of a material
density function. This representation raises the further problem of how to
obtain clear shapes from the optimal density distribution without the use of
filtering methods [15].

Recently, the level set method for structural optimization [16, 17, 18, 19]
have been proposed to avoid the drawbacks described above. In these meth-
ods, the target configuration is represented as a zero contour of the level set



function and the function is updated based on the Hamilton-Jacobi equa-
tion. Level set methods allow topological changes (limited to the elimina-
tion of holes), significantly improving structural performance. Moreover, this
method is free from remeshing, since the level set function is defined in an
Eulerian coordinate system. The level set method was originally proposed by
Osher and Sethian [20] as a numerical method for tracking free boundaries
according to the mean-curvature motion, and the mathematical background
was subsequently clarified by several researchers [21, 22, 23]. It has been
applied in many research fields, such as fluid mechanics and image process-
ing, as a general free boundary tracking method. To achieve appropriate
numerical accuracy, the level set method requires that the level set function
be re-initialized during the update operation to maintain the signed distance
characteristic of the function. The re-initialization operation is not an easy
task, and although several approaches have been proposed (see [24, 25, 26] or
Chapter 7 in [27]), this is a topic of ongoing research. In this paper, we focus
on utilizing another free boundary tracking method, the phase field method,
to avoid the need for re-initialization.

As with the level set method, the phase field method is capable of han-
dling the motion caused by domain states such as temperature and the mo-
tion caused by the domain shape, such as the mean curvature motion, and
so can also be applied to structural optimization. The phase field method
was developed as a way to represent the surface dynamics of phase transi-
tion phenomena such as solid-liquid transitions. Research concerning such
physical modeling can be traced back to Cahn and Hilliard [28] and Allen
and Cahn [29]. The mathematical fundamentals for these physical models
were constructed by several researchers [30, 31, 32]. In the early stage of
this research, contributions concerning the computation of the actual phase
transition phenomena were provided by [33, 34]. The phase field method
has been used in many surface dynamic simulations such as multi-phase flow
[35] and crack-propagation [36] in addition to simulations of phase transi-
tion phenomena [37, 38], and research where it is used as a general interface
tracking method has also been reported recently [39]. Outlines of the above
history and methodologies can be found in several comprehensive reviews
40, 41, 42].

The idea of applying the phase field method to structural optimization
was first proposed by Bourdin and Chambolle [43, 44], having initially been
used to implement perimeter constraints [45, 46]. The perimeter control ef-
fect of the phase field method makes it possible to obtain clear shapes free



of gray scales or domain discontinuities, and a number of researchers have
developed useful structural optimization methods that incorporate the phase
field method [47, 48, 49, 50]. It introduces an additional term into conven-
tional topology optimization schemes, and the structural optimization is, for
the most part, achieved using conventional topology optimization method-
ologies. Therefore, the nucleation of holes in the target structure can be
achieved with these methods, whereas the phase field method itself does not
allow the number of holes in the domain to be increased since it is a surface
tracking method.

In contrast with the above methods, however, we develop a new intu-
itive phase field method for structural optimization. That is, the phase field
method is used to represent the motion of optimized shape boundaries, much
as the level set function does in the level set method for structural optimiza-
tion. The structural shape is represented by the phase field function defined
on the design domain containing the optimal configuration. The numerical
computation is performed over the whole domain using a so-called ersatz ma-
terial approach, as in conventional topology optimization. Optimization of
the phase field function is achieved using a time-dependent reaction diffusion
equation called the Allen-Cahn equation. An artificial double-well poten-
tial used in the equation is derived from sensitivity analysis. That is, the
difference between two minima of the potential is set based on the sensitiv-
ity analysis. The proposed optimization method is applied to the minimum
compliance problem, a compliant mechanism design problem and the eigen-
frequency maximization problem. The numerical examples provided illus-
trate the convergence of the objective function and optimal configurations,
and the perimeter control effect is also discussed during the explanations.
Our results indicate that the proposed method is as functional as the level
set method for structural optimization, with simpler computation since it
requires no re-initialization operation.

2. Phase field method

2.1. Phase field function and its evolutional equation

In this section, the phase field method is explained briefly. A phase
field function ¢(x) is defined over an entire analysis domain to represent the
phase of the local points therein, as shown in Fig.1. From a physical point of
view, the phase field function provides the average phase of the local points.
Consider a closed system composed of two phases, one of which corresponds
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to the value « of the phase field function while the other corresponds to the
value # (o < ). The boundary of each phase is represented as a smooth
function that interpolates the different values ¢, and is termed the “diffuse
interface”. The Van der Waals free energy of the system is given by

Fo) = [ (510 + () do )

where € > 0 is a coefficient determining the effect of each term. The first
term represents the interaction energy term of the field in mean field theory,
and the second term represents a double well potential with the value f'(a) =
f'(B) = 0 as shown in Fig.2. The double well potential indicates that there
exist lower free energy values with minima corresponding to each phase.

Next, we introduce the time-dependent evolutional equation of the phase
field function ¢. The change of the phase field function with respect to time
is assumed to be linearly dependent upon the direction in which the free
energy function is minimized:

99 _ 0F(¢)
5 = “M(9) 56 (2)
Substituting Eq.(1) into Eq.(2), the following equation can now be obtained:
0
20— M) (V% 1(6)) Q

Eq.(3) is known as the Allen-Cahn equation [29]. Below, several characteris-
tics of the phase field method critical to our proposed method are explained.

2.2. Motion of the diffuse interface

The time-dependent motion of the diffuse interface in a domain repre-
sented by the phase field function ¢(x) is governed by Eq.(3). The front
moves in its normal direction at a speed determined by the difference be-
tween each minimum of the double well potential f(¢) and the curvature of
the diffuse interface as follows:

1 1
= -H+0(=),t>>1 4
v s+ ; + (tQ) 5 3 ( )
where s is the speed due to the difference between each minimum of the

double well potential f(¢) and H is the mean curvature of the diffuse in-
terface. If the potential has equal minima, the motion is only governed by
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the mean curvature. Mathematical details and proofs of this are discussed in
[51, 52, 53|. Here, we use the theory of the front motion governed by Eq.(3)
for shape optimization. That is, the difference between each minimum of the
double well potential f(¢) is determined by sensitivity analysis and the front
of the optimized domain moves in a direction which reduces the value of the
objective function, as discussed in the next section.

2.8. Perimeter minimization

Another important characteristic of the phase field method is the follow-
ing problem of minimizing the total free energy represented by Eq.(1). The
total volume of the phase field function is constrained to the value V, and
the double well function f(¢) has identical minima, that is, f(a) = f(8).
The optimization problem is formulated as

in / (CIvop +71()) dr, (5)

Jq ¢(@)de=V,

the solution to which can be represented as

(/bf(m) ~ ¢a,ﬁ(w) + (binterface (M) .

€

(6)

The phase field function ¢, g takes the values o or # with a minimum bound-
ary S in the domain (x € Q | ¢(x) = «), and Pingertace 18 a function that tends
to zero at infinity, giving a diffuse interface domain between these phases.
That is, lim @iterface(x) = 0, representing diffuse interfaces. Also, dist(x,.S)
is the disxta;jce function from the boundary S. The results can be explained
as the interaction between the first term of Eq.(5), penalizing unnecessary
diffuse interfaces, and the second term that approaches the value of a or
B. Thus, when ¢ — 0, Eq.(5) can be approximated as a minimal perimeter
problem as follows:

inf  Per((z € Q[ é(x) =a)), (7)
Jq (@)de=V,
where Per(A) denotes the perimeter of domain A. Note that the above formu-

lation can be applied to general double well functions that have non-identical
minima by applying an affine translation as shown in Fig.2. In this case, the



function converges to an optima under the driving force caused by the differ-
ence between the minima and perimeter minimization. Mathematical details
and proofs can be found in [54, 55].

Note that some methods have been proposed which apply the theory of
perimeter minimization characteristic of the phase field method to perimeter
control of topology optimization methods. Bourdin and Chambolle [43, 44|
first proposed a phase field method-based topology optimization problem for
a structure with design-dependent loading. They proposed the following new
objective function, using Eq.(5) to penalize the original objective function F’
under the assumption that ¢ — 0:

inf  F(p) +vP(p), (8)
Jq p(®)dr=Vp
where
€ 2 -1
Pio) = [ (5IVoF +=7 1) (9

where p is the function representing the local density in topology optimiza-
tion and v is a Lagrange multiplier for the perimeter term P.. As men-
tioned above, when ¢ — 0, P. forces the function p to converge to {0,1} and
the resulting domain (x € Q|p(x) = 1) to have minimal perimeter. Thus,
the method is useful for approximating the original topology optimization,
which is two-phase material distribution optimization problem [47]. Simi-
lar types of topology optimization methods were also developed by Wang
and Zhou [48, 49, 50] and Burger [47]. The Cahn-Hilliard equation [28],
a time-dependent evolutional equation representing the volume of the con-
served field, is used to update the phase field function in [49, 50]. This facili-
tates the handling of volume constraints, in contrast to other time-dependent
PDE-based structural optimization methods.

We remark that the primary difference between these methods and our
method is in their origin. Since the methods above came from topology op-
timization, which updates the density function based on sensitivity analysis,
the nucleation of holes in the target structure is possible. On the other hand,
our method aims for the same outcome using the level set method for shape
optimization, whose roots are in classical shape optimization based on bound-
ary variation. Thus, there are no hole nucleation mechanisms in our method.
Despite the common name “phase field method”, the two approaches have
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different backgrounds and functions. Of course, their effectiveness depends
on the application.

Phase B

) Phase A
Edge of diffuse o -
interface region ol x
3
Center of diffuse interface region Diffuse interface
(a) A 2D domain represented by the phase (b) A 1D illustration of the
field function phase field function

Figure 1: Examples of the phase field function

A
/ 5 4
(a) An example of a double well (b) The double well potential af-
potential ter affine translation

Figure 2: Examples of a double well potential

3. Formulation

3.1. Setting of original problem

As the first step towards constructing a shape optimization method based
on the phase field method, we define a particular shape optimization prob-
lem. Let €2 be the domain that varies during the optimization process, with



the state of {2 represented by some partial differential equations. The bound-
ary 02 of € is divided into two boundaries, a boundary 0)p with Dirichlet
boundary conditions and a boundary 0€2x with Neumann boundary condi-
tions. The state variable w is calculated based on the state equations that
have these boundary conditions. We introduce the extended design domain
D that contains €). Here, a set of admissible shapes with fixed volume Vj in
D can be represented as follows:

Uyg={QCD|QeRY |Q =V} (10)
Thus, the shape optimization problem for €2 is defined as

o J(), (11)
where J(2) is a functional with respect to state variable w whose value
depends on the shape of 2. This is a typical shape optimization problem, and
a new numerical method for its solution is explained in this paper. We call
this “shape and topology optimization”, since the optimization is performed
by varying boundaries as well as through typical shape optimization methods
[11, 13], and changes in topology are allowed as in topology optimizations [5,
14]. The proposed method, in some sense, functions in a way that resembles
the level set method for structural optimization [16, 19].

3.2. Domain representation by the phase field function

We represent the shapes of optimized domains using a phase field function
as shown in Fig.3. The phase field function ¢(x)(0 < ¢ < 1) is defined in the
domain D. We consider a setting where the domain ©; (x € D | ¢(x) = 1)
corresponds to the optimized shape (2 and the domain Q (x € D | ¢(x) = 0)
corresponds to D \ 2. However, this setting is insufficient because a diffuse
interface region exists when the phase field method is used, as explained in
Section 2. Let £ represent the diffuse interface region. The domain represen-
tation of D is then formulated as

p=1 <= x €,
0<op<l < xek, (12)
¢=0 <<= x € ),

where

(QUE D Qand (WUE) DD\ Q. (13)
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That is, the original domain (2 is represented as a subset of the union of
1 and &. In the above setting, the position of the boundary 02 is unclear
except that it lies in £&. However, as explained in Section 2, the diffuse
interface region becomes very thin when ¢ is very small, in which case £ can
be regarded as approximately representing 0€2. Actually, numerical examples
show that almost clear shapes with very thin boundaries can be obtained by
our method. A clear shape can be easily picked out in a plot by choosing an
arbitrary contour value such as ¢ = 0.5 in the diffuse interface.

3.3. Problem details

Consider the linear elastic problem in the above domain represented by
the phase field function. The elasticity equations for state u are defined over
the entire domain D using the ersatz material approach. In this approach,
Q) is filled with a material whose elasticity tensor is A and () is assumed
to be filled with a material that mimics a void to avoid singularities in the
stiffness matrix. In addition, the material in the diffuse interface & must be
defined, but the state of this domain is unclear except that it is in transition
from the conditions of 0y and €2;. We set a virtual physical property A* of
the entire domain using an interpolation function k(¢) defined in the range

kmin < k(¢) < 1:

A if ze)
A(0) = LR(0)A (b < k(0) < )it et . (14
kminA if e QO
where
Aijrr = NoijOp + (i1 + 0djr), (15)
L pT— (16)

A+ )1 —20) 2+ n)”

The term A;j; denotes the components of the elasticity tensor A, ¢ denotes
the Kronecker delta, A and p are Lamé moduli, F is the Young modulus and
v is the Poisson ratio of the material. Note that this formulation is somewhat
similar to that of the SIMP method [56], a well-known interpolation scheme
used in topology optimization methods, in that the virtual material property
is defined for intermediate values of the function representing the material
state. However, the physical meanings are quite different. While the density
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function of the SIMP method can be the regarded as the weak convergence
limit of a characteristic function based on homogenization theory, the phase
field function ¢ in our method is just a numerical interpolation. Homoge-
nization theory cannot be applied to problems that penalize properties of the
boundary such as gradient and diffusion [57].

Let the boundary 0D of the extended design domain D be composed
of the following three parts: dDp with Dirichlet boundary conditions, 0Dy
with non-homogeneous Neumann boundary conditions having surface loads
g # 0, and 0Dy with traction-free Neumann boundary conditions. These
boundary conditions correspond to the boundary conditions of the original
domain €2 as follows:

0Qp C 0Dp, 0 = 0Dy U 0o, (17)

where 0{2yo is the boundary of the original domain and the domain with
traction-free Neumann boundary conditions. Surface loads are applied on the
fixed boundary 0Qy during the optimization process, and the other bound-
aries are regarded as traction-free. We let g be the surface load vector and
assume that volume forces are ignored. The following weak form state equa-
tion is then formulated for state variable w:

/ A*(p)e(u) : e(v)dx = / g-vds, forueV, YvoeV, (18)
D DN
V={ve H' Q)N |v=00nTp}, (19)

e(u) = % (Vu+ (Va)T), (20)

where v is the test function, e is the strain tensor and H' is a Sobolev space.

For the above linear elastic problem, the compliance minimization prob-
lem, which is the most basic structural optimization problem, is considered
first. The compliance, equal to the work done by the load, is

Ji(¢) = /8D g - uds. (21)

The least square error compared with the target displacement is also consid-
ered, represented as

1(0) = ( [ clallu - wipac) " (2
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where c(x) is a coefficient function denoting the location of the target dis-
placement and wug is the target displacement vector. This objective function
is in design optimizations of compliant mechanisms [58, 59].

We also consider a vibration optimization problem for a linear elastic
domain, which requires us to define the mass density function p* in D. As
for the case where an elasticity tensor is used, €2 is filled with a material
with mass density p and €1y is assumed to be filled with a very light material.
The mass density function in the domain £ is defined as the product of
the original mass density with an interpolation function m(¢) in the range
Mmin < m(@) < 1:

P (¢) = m(P)p (Mumin < M) <1)if x € (23)
MminpP if e QO

The vibration frequencies and the modes are computed using the following
eigenvalue problem, which is represented in weak form:

/ A*(d)e(us) : e(v)dr = wy? / (&) - vdz, for wp € V, Yo € V, (24)
D D

where wy, is the k-th eigenfrequency and wuy, is the k-th eigenmode vector. The
objective function is the weighted summation of the squares of the eigenfre-
quencies:

J3(¢) = — Zwkwk2 = — Zwk)\k, (25)

where )\, is the k-th eigenvalue obtained by

(26)

wp2 =\ = min max
uy,...,ur, €V u€spanfuy,...,u

/DA*(gb)e(u) ce(u)dx
S RO

The volume constraint is imposed using a Lagrange multiplier method,
and the objective function is reformulated as

md}n J(¢) = m¢in <J1(¢), Jo(¢) or J3(¢) + ¢ /D qbdx) : (27)

where ( is the positive Lagrange multiplier.
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3.4. Fvolution of the phase field function

The phase field function evolves with a virtual time ¢ in the interval ¢; <
t < ty, corresponding to a descent step of the function in the optimization
problem. The evolutional equation is formulated as

X k- J0), (h<t<t)

& (28)
— =0on dD,

on

where k is a positive coefficient of the diffusion term and f(¢) is a double well
potential. As explained in Section 2, when the phase field function follows
Eq.(28), the diffuse interface of the domain represented by the phase field
function moves in a normal direction. The velocity is determined by the
difference between the minima of the double well potential and the mean
curvature of the diffuse interface. The difference between the minima of
the double well potential gives the velocity from the larger minimum to the
smaller minimum. To move the diffuse interface in the direction in which the
objective function decreases, we set the double well potential f(¢) to satisfy
the following conditions:

f(0) =0, f(1) =hJ' (¢r,), f(0) = f(1) =0 (h>0), (29)

where J'(¢) is the sensitivity of the objective function with respect to ¢,
¢¢, is the value of ¢ at time ¢; and h is its positive coefficient. That is,
we determine the difference between potential minima based on sensitivity
analysis. A sketch of the double well potential is shown in Fig.4. Since the
function evolves in the direction of the smaller minimum of the double well
potential, the phase field function at time ¢, for € £ is approximately
represented as

¢t2(w) ~ ¢t1 (il?) - a(tl)j/(¢t1)v (30)

where a(t) is positive and represents the rate of change of ¢. Eq.(30) can also
be regarded as the evolution of the design variable ¢ based on the steepest
descent method with descent step a(¢;). That is, the minimization of the ob-
jective function can be achieved in the same way as for conventional steepest
descent methods.
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3.5. Perimeter constraints

We return now to the derivation of Eq.(28). The equation is derived
under the assumption that the total free energy, given by

| (1vok + £0)) do. (31)

decreases linearly as explained in section 2. When x is very small and the
total volume of the phase field function is constrained, the minimization
problem of the free energy can be also regarded as a perimeter minimization
problem on ; (x € D | ¢(x) = 1). We regard ¢ to be a non-conservative
function and update it using an Allen-Cahn equation. Since the volume con-
straint is included in the objective function as shown in Eq.(27), the total
volume of the phase field function is constrained to a fixed value in a con-
verged optimal solution, although the total volume cannot be completely
preserved during optimization. Thus, the perimeter minimization effect in-
cluded in the minimization problem of free energy in Eq.(31) must also be
considered. Numerical examples provided later show the effect of perimeter
control upon the optimal shape for different values of .

3.6. Sensitivity analysis

The double well potential f(¢) requires sensitivity analysis of the ob-
jective function with respect to ¢. Since the function is defined on D and
the optimization problem is a domain state variation problem, its sensitivity
analysis closely resembles the topology optimization method and the deriva-
tions are well known. Thus, only the results are shown here and the detailed
derivation is explained in the appendix.

The sensitivity of the compliance in Eq.(21) is given by

Ji'(¢) = —A"(¢)e(u) : e(uw). (32)

The sensitivity of the least square error compared with the target displace-
ment from Eq.(22) is

J2'(¢) = A™(d)e(u) : e(p), (33)
where p is an adjoint state vector which satisfies following equation:
[ A(©elp) - elayds + Cucta)lu — ol *(u — up)g = 0.
D

forpeV,VqeV

(34)
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where

Cy = ( /D c(z)|u — uo]adz) o (35)

The sensitivity of the weighted summation of eigenvalues in Eq.(25) is

T (6) = = > weh'(9), (36)
where
M (0) = A (g)e(ur) : e(ur) — Mep™ () x| (37)

&(0<g<I)

(a) An original domain (b) The domain represented
by the phase field function

Figure 3: The domain representation by the phase field function

Figure 4: Sketches of the double well potential

15



4. Numerical implementation

4.1. Setting of evolutional equation
Since the double well potential must satisfy Eq.(29), we set it to be

f(¢) = W(z)w(9) + G()g(9), (38)

where

w(¢) = ¢*(1 = ¢°), g(¢) = ¢*(6¢° — 156 + 10), (39)
which are the same as those used in [38]. w(¢) is a function such that w(0) =
w(l) = w'(0) = w'(1) = 0, and g(¢) is a function such that g(0) =0, g(1) =1
and ¢'(0) = ¢’(1) = 0. Sketches of these functions are shown in Fig.5. W (x)
and G(x) are coefficients of these functions. The advantage of these choices
for w(¢) and g(¢) is that the double well characteristic of f(¢) in Eq.(29)
can be kept for any W(x) and G(x). W(x) determines the height of the
wall of the double well potential, which affects the thickness of the diffuse
interface. W (x) is set to be }L here. In the phase transition simulation, the
coefficient is usually decided in relation to the latent heat of the material.
Since the phase field method is used here as a free surface tracking method
without any physical background, the value chosen is simple. (As a result,
the coefficient of the highest order term ¢* of W (x)w'(¢) is 1.) The value of
G(z) is chosen to be G(x) = hJ' (¢, ), which is composed of the sensitivity
J'(¢) and the coefficient h used in Eq.(29). Since the order of J'(¢) depends
on the optimization problem, the appropriate value of h must be adjusted in
each case. To avoid such complicated parameter settings, we first normalize
the sensitivity by dividing by its L?-norm, and the new coefficient 7 is set as
follows:

_ J/(¢t1)
N FTEw] 0
Substituting Eqs.(38)-(40) into Eq.(28), we obtain
3l0) 5 0
%=V % (W(z)w(9) + G()g(¢))
_ 2 1 ! J/<¢t1) !
= KV — (Zw (¢)+"—IIJ’<¢t1)Ilg(¢)) (41)
=+ 001 - 0) {0 - 5~ 300701 - o
(t <t<ty).
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4.2. Setting of physical property
The material property functions k(¢) and m(¢) with respect to the elas-
ticity tensor and mass in the diffuse interface domains are

k(¢) = min(¢P, kmin), m(¢) = min(¢, mumin), (42)

where p is a positive constant. We employ the interpolation function used
in the SIMP method for the topology optimization [5, 56]. The optimization
was run using a variety of settings, and since those above yielded the best
performance, we will use them in all of our numerical examples.

4.8. Algorithm

Based on the above formulation, the optimization algorithm is constructed
as follows.

1. Set the initial value of phase field function ¢ expressing the initial shape
of domain €.
2. Iterate the following procedure until convergence.

(a) Calculate the state variable u and adjoint state p with respect to
¢n, at n-th iteration by solving the state equation shown in Eq.(18)
or Eq.(24) using the finite element method.

(b) Calculate the objective function in Eq.(27).

(c) Calculate the sensitivity of the objective function in Eq.(32), Eq.(33)
or Eq.(36) and prepare the evolutional equation for ¢ in Eq.(41).

(d) Calculate the updated value of ¢ by solving Eq.(41).

3. Obtain the optimal shape of €2 expressed as the optimal distribution of
¢. (For example, the 0.5 level-set of ¢ can be used as a criterion.)

4.4. Numerical method for the evolutional equation

The finite difference method is used to solve Eq.(41) numerically. Let us
consider the case that the equation is solved by an explicit scheme. Because
of the diffusion term, the time step At is restricted by the following CFL
condition for stable convergence in the 2D case:

At At 1
< = 43
(e mr) <7 ”
where At > 0 is the time step and Az and Ay are space steps in the x and y
directions respectively. In general phase field methods, including our method,
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the coefficients of the diffusion terms are set to very small values over Ax.
Thus, a relatively large value can be chosen for At even if an explicit scheme
is used. However, even if the CFL condition is satisfied, the time step can
take only very small values due to the reaction term. This term makes the
function ¢ diverge once its value is outside the interval 0 < ¢ < 1. To avoid
this problem, the reaction term is discretized by a so-called semi-implicit
scheme [38] in which forward time terms are partly included. In the 2D case,
let ¢7; be the value of ¢ at the n-th iteration at the point @;;. The scheme
then leads to the following discretization:

+1
Vg — Py _ < i1 = 200+ Oy i1 = 200 ¢2j+1>

At (Az)? (Ay)? m
N b= er)r(efy) for r(ep;) <0
Zj(l — ?;rl)r( i) for r( 1) >0,
where
n n 1 J,(¢t1> n n
r( w) = @] T 9 3oﬁm¢i,j(1 - 92511) (45)

As detailed in the Appendix, the above discretization guarantees that ¢ re-
mains in the interval 0 < ¢ < 1 even when the time step is large. Although
the forward time term ¢"*! is included in the right hand side of the above
equation, ¢"*! can obviously be calculated easily without solving a linear
system, and the computational cost is almost equal to that for the ordinal
explicit scheme.

The time step can be regarded as a descent step in the steepest descent
method. Thus, for fast convergence, the value of the time step should be
large enough to maintain decreasing values of the objective function. Since
the time step is limited by the CFL condition in Eq.(43), we perform several
calculations to update ¢ in Eq.(44) for each FEM. In numerical examples, the
number of updates is automatically adjusted to keep the objective function
decreasing.

All but one of the numerical examples explained later are calculated using
the above finite difference method on structured quadrangular meshes. The
other example is performed on an unstructured triangular mesh to check the
mesh dependency of our method. In that case, the finite volume method [60]
with semi-implicit discretization is used to solve Eq.(41).
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4.5. Treatment of volume constraints

To limit the total volume of an optimal configuration, a total volume
of the phase field function is added to the objective function as shown in
Eq.(27). However, in this formulation, the relationship between the value
of the Lagrange multiplier ( and a converged total volume of a optimal
configuration is unclear and depends on J(¢). Thus, to fix the volume of the
optimal configuration to a specified value, we update the Lagrange multiplier
("™ at the n-th iteration using the following equation, as in [61]:

C+=0.5<C +W +g<(/Dngdx—Vo), (46)

where [ j(¢)dx = Ji(¢), Jo(¢) or J3(¢), Vp is a specified volume and e¢ > 0

is a positive parameter.

WA g A

(a) Function w (b) Function g

Figure 5: Sketches of function w and g

5. Numerical example

The following numerical examples are provided to confirm the utility of
the proposed method. In all examples, a virtual material with the normalized
Young modulus E of 1.0 and Poisson ratio v of 0.3 is assumed. The values
Emin and my, in Eq.(14) and Eq.(23) are set to 107> and 1073, respectively.
The penalization parameter p in Eq.(42) is set to 3. The coefficient of nor-
malized sensitivity 7 in Eq.(41) is set to 20. Except for in specified cases, a
quadrangular mesh is used for discretizations of both the phase field func-
tion and the displacement. At each iteration, we perform a finite element
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analysis of the state equation and 20 updates of the evolutional equation for
the phase field function by solving the finite difference equation of the semi-
implicit scheme. The number of updates is automatically decreased if the
objective function doesn’t decrease. The time step At of the process is set
to be half the Courant number. In the finite element analysis, isoparametric
elements are used. All optimal configurations are plotted as the distribution
of the phase field function of the optimal results.

5.1. 2D cantilever example

As a benchmark problem for the proposed method, stiffness maximization
of a cantilever is performed, as illustrated in Fig.6 (a). The design domain is
a 2 x 1 rectangle with a fixed boundary condition on the left side and a unit
vertical point load at the center of the right side. The minimized objective
function is formulated as the combination of the compliance represented in
Eq.(21) and the total volume of the structure. The domain is discretized
with a 200 x 100 rectangular mesh and the value of the Lagrange multiplier
¢ is fixed at 80 during the optimization process. We set k = 1 x 1075 in
Eq.(41).

Fixed Vertical load l

(a) A design domain (b) An initial shape

Figure 6: A design domain and an initial shape for the cantilever example

Given the initial shape as shown in Fig.6 (b), Fig.7 shows a configuration
obtained after only 10 iterations and the optimal configuration obtained after
40 iterations. These figures show that the proposed method can affect topo-
logical changes only in the form of decreasing the number of holes, but lacks
a hole nucleation mechanism. Approximately 40 iterations were required
for convergence, and the objective function history is shown in Fig.8. The
resulting optimal configuration and required number of iterations are reason-
able compared with other structural optimization methods such as [5, 16].
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The stationary values of the objective function during the first and second
iteration are peculiar characteristics. Since there are no diffuse interfaces
in the initial shape, the optimization at the first iteration is dominated by
pure diffusion, without any effect from updating using sensitivities. From
the second iteration, the diffuse interfaces that have been generated move in
their normal directions according to the sensitivity analysis.

m D
=
(a) Iteration 10 (b) Tteration 40

Figure 7: Optimal configurations of the cantilever example on a 200x 100 mesh at iterations
10 and 40
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Figure 8: The convergence history of the objective function of the cantilever example

Next, the same problem is solved using a differently sized mesh to confirm
the robustness of the proposed method with respect to mesh discretization.
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Figure 9 shows a configuration obtained after only 5 iterations, and the op-
timal configuration obtained after 20 iterations, using 100 x 50 quadratic
elements. The initial shape and parameters are the same as before except
that x = 5 x 1075 in Eq.(41), since this parameter affects the thickness of
the diffuse interface and an appropriate value depends on the mesh size. As
a result, optimal configurations that are almost identical with those shown
in Fig.7 are obtained.

Discretization using triangular mesh is also performed. In this special
case, the finite volume method [60] is used since it can handle unstructured
meshes, although all other examples are performed using the finite difference
method. Figure 10 shows the optimal configurations obtained with 2 patterns
of mesh discretization, using 41421 and 10325 triangular meshes. The value
of K is set to 1 x 107° for the finer mesh and 5 x 10~° for the coarser mesh,
which is same as for the rectangular mesh cases. Mesh dependency can be
avoided by setting x appropriately depending on the mesh size, since nearly
identical optimal configurations are obtained in all cases. Another effect of
varying k is discussed in a later example.

(a) Iteration 5 (b) Tteration 20

Figure 9: Optimal configurations of the cantilever example on a rougher 100 x 50 mesh at
iterations 5 and 20
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X2 X2

(a) On a finer mesh (b) On a rougher mesh

Figure 10: Optimal configurations of the cantilever example on triangle meshes

To observe the dependence of an optimal solution on the initial shape,
we use the two initial shapes shown in Fig.11 (a) and (c). The optimal
configurations obtained with these initial shapes are shown in Fig.11 (b) and
(d). The domain discretization and parameters are set to the same values
as for the first example. These results show that the initial shape influences
the optimal configuration, since our method is based on boundary movement
and has no hole nucleation mechanisms.

5.2. Coupling to the topological derivative

To resolve the above initial-dependency problem, the bubble method or
topological derivative [62, 63, 64, 65] can be introduced to our method in the
same way as the level set method [66, 67]. In the 2D case, the topological
derivative of the compliance is derived as follows [65]:

(A +2u)

Proh(@) =5, 05 0

{4pAe(u) : e(u) + (A — p)tr(Ae(w))tx(e(w))}(@).

(47)
We introduce holes into the domain €2; where the topological derivative is
negative as in [66]. One hole nucleation operation is performed every five
FEM iterations. The total volume of the holes made at each operation is
limited to 1% of the total volume. The parameters of our method are set
to be the same as in the first example. Figure 12 shows a configuration
obtained after only 25 iterations and the optimal configuration obtained after
50 iterations with no initial holes. This confirms that the appropriate optimal
configuration can be obtained by introducing the topological derivative even
if the initial shape has no holes. However, this method is dependent on the
above parameter settings.
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00 I

(a) Initial shape with 9 holes (b) Optimal configuration with
initial shape (a)

(c) Initial shape with 39 holes (d) Optimal configuration with
initial shape (c)

Figure 11: Another initial shape and optimal configurations for cantilever optimization
example

24



(a) Iteration 25 (b) Tteration 50

Figure 12: Optimal configurations of the cantilever example with topological derivative at
iterations 25 and 50

5.3. 3D cantilever example

Finally, an optimization of a simple 3D cantilever shown in Fig.13 (a)
is performed. The domain is discretized with a 60 x 24 x 30 cubic mesh
and the value of the Lagrange multiplier ¢ is updated to adjust the total
volume of the optimal configuration to 0.55 (20% of total volume) during the
optimization process. Only half of the domain is computed due to symmetry.
We set k = 1.5 x 107" in Eq.(41). The first 40 iterations are performed
with this setting, and the last 10 iterations are performed with the value k
decreased to 5 x 107 to obtain a thin interface domain. Figure 14 shows the
¢ = 0.1, 0.5 and 0.9 isosurfaces after the 50 iterations with the initial shape
shown in Fig.13 (b). Although the thickness of the interface domain is not
negligible, almost the same shape and topology can be picked out from any
of the isosurfaces.
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Fixed

(a) A design domain (b) An initial shape

Figure 13: A design domain and an initial shape for the 3D cantilever example
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//

(a) ¢ = 0.5 isosurface

(b) ¢ = 0.1 isosurface (c) ¢ = 0.9 isosurface

Figure 14: Optimal configurations of the 3D cantilever example

5.4. Perimeter control

As discussed in Section 2, when the total volume of the phase field func-
tion is fixed in a closed domain composed of two phases, the total free energy
minimization problem of the domain represented by Eq.(5) can be regarded
as a perimeter minimization problem for each phase. That is, the evolutional
equation derived from the free energy minimization problem can contain the
perimeter control effect if the total volume of the phase field function is fixed.
This can be applied to our method since the total volume of phase field func-
tion is constrained, and numerical examples show that perimeter control can
be achieved by our method. A simple bridge optimization example shown
in Fig.15 is used here. The design domain is a 2 x 1 rectangle with fixed
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boundary conditions on the left and right lower edges and a vertical unit
point load on the center of the bottom. The domain is discretized with a
200 x 100 rectangular mesh, and the objective function is formulated as the
combination of the compliance and total volume of the structure. The coef-
ficient « of the diffusion term in Eq.(41) is set to be either k = 7.5 x 107% or
k = 1 x 107°, while the Lagrange multiplier is updated to adjust the total
volume of the optimal configuration to 0.6 during the optimization process.

Vertical load

| !

(a) A design domain (b) An initial shape
Figure 15: A design domain and an initial shape for the bridge example
Figure 16 shows the optimal configurations obtained after 100 iterations
for each choice of k. The compliances of these optimal configurations are
22.4 and 23.3, respectively. We can see that the higher value of x yields an

optimal configuration with fewer holes, that is, lower perimeter, even though
they have the same initial shape.

A\Va WA\ %

(a) k=7.5x 1076 (b) Kk =1x107°

Figure 16: Optimal configurations of the bridge example with the different values of the
coeflicient of the diffusion term
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5.5. Application to a compliant mechanism design problem and an eigenfre-
quency mazximaization problem

To confirm the versatility of our method, we now apply it to two other
optimization problems, a compliant mechanism design problem [58, 59] and
an eigenfrequency maximization problem [68, 69].

The examples of compliant mechanism optimization are typical bench-
mark problems, a force inverter and a gripper design problem given in [5].
The design domain of the force inverter problem is shown in Fig.17. The
design domain is a 2 x 1 rectangle, with an input point and an output point
on the center right and the center left of the domain, respectively. A hori-
zontal unit point load is applied to the input point and the displacement of
the output point is evaluated. The objective function is formulated as the
combination of the least square error in Eq.(22) with o = 2 and total volume
of the structure. The coefficient function c(x) is set to 1 at the output point
and 0 elsewhere in the domain. The target displacement wy is set to (100, 0)
at the output point. The characteristic of the objective function differs from
that in the compliance problem in that the adjoint equation must be solved
to calculate the derivative. The domain is discretized with a 200 x 100 rect-
angular mesh. The Lagrange multiplier is updated to adjust the total volume
of the optimal configuration to 0.6 during the optimization process.We set
k=1x 107" in Eq.(41). Figure 18 shows the optimal configuration and the
deformed shape obtained after 100 iterations.

2
Fixed 0.1
Output point 2 Input load
RS | U

Fixed §$ 0.1

Figure 17: A design domain for the inverter problem
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(a) An optimal configu- (b) The deformed shape
ration

Figure 18: An optimal result and the deformed shape of the inverter problem

The design domain of the gripper problem is shown in Fig.19. The black
area is set as a non-design domain. A horizontal unit force is applied to the
input point and the displacement of the output point is evaluated. In the
objective function, ¢(x) is set to 1 at the output point and 0 elsewhere. The
target displacement is set to (0, —100) at the output point. The domain is
discretized with a 200 x 100 rectangular mesh, All parameters are set to the
same as in the inverter example. Figure 20 shows the optimal configuration
after 100 iterations and the deformed shape.

The convergence history for both of these examples is shown in Fig.21.
The optimal configurations and convergence history show that our method is
effective for compliant mechanism problems. Moreover, an additional advan-
tage of our method is that there are no hinges in our optimal configuration,
because the mean curvature motion of the diffuse interface is contained in
the phase field method and a discontinuous structure is penalized implicitly.
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Fixed 0.1

0.4
%0. 4 5 Input load
Output points | DP——

Non-design domain

Fixed [§i 0.1

Figure 19: A design domain for the gripper problem

(a) An optimal configu- (b) The deformed shape
ration

Figure 20: An optimal result and the deformed shape of the gripper problem
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Figure 21: The convergence history of the objective function of the mechanism example

We also perform the optimization of a 3D gripper mechanism. As with
the 2D case, a load is applied to the center of the right side of the domain,
and the upper and lower sides are fixed as shown in Fig.22 (a). The domain
is discretized with a 60 x 24 x 60 cubic mesh and the value of the Lagrange
multiplier ¢ is updated to adjust the total volume of the optimal configuration
to 0.55 (10% of total volume) during the optimization process. Only one
quarter of the domain is computed due to symmetry. We set the initial
shape as shown in Fig.22 (b), and x = 1.5 x 107 in Eq.(41). The ¢ = 0.5
isosurface of the optimal configuration obtained after 50 iterations is shown
in Fig.23. This example shows that our method works well in 3D mechanism
examples.
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(a) A design domain (b) An initial shape

Figure 22: A design domain and an initial shape for the 3D gripper example

Figure 23: An optimal result of the 3D gripper problem

Finally, we come to the eigenfrequency maximization problems. We set
the cantilever-like design domain with a point mass of 100 in the center
of the right side as shown in Fig.24. To avoid the localized mode of the
ersatz material domain, the interpolation functions for material properties in
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Eq.(42) are set as follows, based on [69]:

»* for 0.1 < ¢ <1

: -3
k(9) = {min(¢/1oo, 107%) for 0 < ¢ < 0.1 m(¢) = min(g, 1077)  (48)
The objective function is formulated as the sum of the eigenvalues in Eq.(25)
and the total volume of the structure. The domain is discretized with a
200 x 100 rectangular mesh, and the Lagrange multiplier is updated to adjust
the total volume of the optimal configuration to 0.8, while we use K = 1x107°
in Eq.(41).

Concentrated mass

Figure 24: A design domain for the eigenfrequency maximization problem

Figure 25 shows the optimal configuration and the first eigenmode shape
in the case that the first eigenvalue is maximized. Since the first mode is the
vertical movement of the concentrated mass, the optimal configuration has
a similar shape to the previous cantilever stiffness maximization problem.
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(a) An optimal configuration (b) The deformed shape of the
lowest mode

Figure 25: An optimal configuration and the deformed mode shape of the eigenfrequency
maximization problem

Figure 26 shows the optimal configuration and the second mode shape
in the case that the first and the second eigenvalues are maximized simul-
taneously. The weight coefficients of both eigenvalues in Eq.(25) are set to
0.5. Due to the effect of the second eigenmode with horizontal displacement,
the optimal configuration is quite different from the previous case. Figure 27
shows the convergence history of eigenfrequencies in each case, from which
the maximization of the target eigenfrequency can be observed.

T

(a) An optimal configuration (b) The deformed shape of the
second lowest mode

Figure 26: An optimal configuration and the deformed mode shape of the eigenfrequency
maximization problem
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Figure 27: The convergence history of the eigenfrequencies (Case 1: Only the lowest
eigenfrequency is maximized, Case 2: The two lowest eigenfrequencies are maximized)

6. Conclusion

We have proposed a new method for structural shape and topology opti-
mization based on the phase field method. Although our method achieves the
same functional capabilities with perimeter control as the level set method,
our method has an advantage in terms of simplicity, since we do not require
extra re-initializing operations of the domain representing function. Our
method is especially effective in the case of perimeter constrained problems.
Since the perimeter control effect is included implicitly as a characteristic
of the phase field method, our method requires no additional calculations
such as the calculation of curvatures. However, the perimeter control effect
(the mean curvature motion of the diffuse interface) cannot be canceled com-
pletely although its effect can be controlled by varying . Alternatively, the
mean curvature motion cancellation method can be applied here [35, 39].

Another drawback is the dependence on the initial shape, which as dis-
cussed in [16], is typical of structural optimization methods based on bound-
ary variation. To resolve this fundamental problem, the bubble method or
topological derivative [62, 63] can be introduced to our method as in the nu-
merical examples. Another option is to generate an initial shape by topology
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optimization. In that case, our method has an advantage in terms of im-
plementation, since our domain representation is quite similar to the density
function used topology optimization, even though their physical meanings
are completely different.
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A. Sensitivity analysis

The derivatives of the objective functions with respect to the phase field
function are based on [3]. We use the word “derivative” in the sense of the
Fréchet derivative. First, the general objective function is defined as

J(9p) = / j(u)dx +/ [ (u)ds. (49)
D Dy
The derivative of this function in the direction 6 is then

<J’(¢)>9>=/Dj’ (u) <U'(¢),9>dﬂf+/ ' (u) (u'(¢),0) ds

0DN

:/j’ (u) 'udx+/ I' (u) vds,
D 0DN

where v = (u/(¢), ). Using the state equation of the linear elasticity problem
from Eq.(18), the Lagrangian is

Lou.p) = [ j(u)det / | tw)ds | A@ew: ep)a- / g-pds,

D Dn
(51)
where w is the displacement and p is the adjoint state. Using this, the
derivative can be expressed as

oL oL
!/ — - - /! . 2
o0 = (Geoup o)+ (Seup). wen0). 6
Consider the case where the second term is zero. Replacing (u'(¢),6) with
v, the second term is

(Guoupo)= [ jwodes [ Vst [ A @)e(v) :efp)ir =0
(53)

(50)
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In the case that the adjoint state p satisfies the above adjoint equation, the
second term of Eq.(52) can be ignored. On the other hand, the derivative of
Eq.(18) with respect to ¢ in the direction 6 is

/D (A™(6),6) e(u) : e(p)dz + /D A*(B)e(((9).0)) - e(p)da

(54)
:/DA*’(gb)e(u) : e(p)fdx + /DA*(gb)e('v) ce(p)dr = 0.

If we compare this with Eq.(53) and Eq.(54), the following can be obtained:
/ 7 (u) vdx +/ ' (u)vds = / A" (¢)e(u) : e(p)fdz. (55)
D dDN D

Substituting Eq.(55) into Eq.(50), the derivative of the objective function is

J'(¢) = A" (¢)e(u) : e(p). (56)

We now apply the above equation to Eq.(21) and Eq.(22). In the case of
the compliance in Eq.(21), Eq.(53) becomes equal to the state equation by
replacing p with —wu. That is, this problem is self-adjoint and the derivative
of the objective function in Eq.(32) can be calculated directly from Eq.(56).
In the case of the least square error compared with the target displacement,
the adjoint equation in Eq.(34) is obtained by substituting the objective
function from Eq.(22) into Eq.(53).

We also consider the vibration problem whose objective function is k-th
eigenvalue. That is,

J(@) = Ak (57)
Using the state equation from Eq.(24), the Lagrangian is

L(6, e, p) = M + /D A (B)e(uy) - e(p)dr — A /D 7 (Syuy - pde,  (58)

where wy, is the normalized k-th eigenmode vector. That is [}, p*(¢)|ug|*dx =
1. Using the Lagrangian, the derivative of this function may be given as

oL

10).6) = { Ge0.wp)0) + { frGounp) wi0)6)). (69
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The second term of Eq.(59) is

<a§§<¢ e P), ”k> =)o) (1 o pdm)

([ A@retw) s etwria e [ o pi).

(60)

where v, = (uj(¢),0). In the case that up = vg, the right-hand side of
the above equation becomes zero. Thus this problem is also self-adjoint.
Moreover, replacing the arbitrary test function p by uy, the first term can
be eliminated. The derivative of Eq.(24) with respect to ¢ in the direction 0
is

L&wawwww@m+éAwwmmamm

— (\/(0).6) /D (s - pdz + M /D (5"(6),0) uy - pd + Ny /D o ($)vx - pd,
(61)

where v, = (u}(¢),0). Replacing both vy, and p by uy, the equation becomes:

/<A*' .0 e(uy) das—)\k/ (p*(9),0) |ug|*dx

(62)
:%JAW@quemw—Aww@mﬂ)wm
Thus, the sensitivity of the k-th eigenvalue is
M (0) = AT (9)e(ur) : e(ur) — \ep™ () |ux]*. (63)

B. Discretization of the reaction term

We now discuss the effect of the reaction term on the convergence of the
phase field function in the Allen-Cahn equation Eq.(41). If the equation is
discretized by an explicit scheme, the time step At is restricted by requiring
stable convergence of the reaction term, in addition to the CFL condition for
the diffusion term. To confirm this, we perform some simple numerical tests.
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Let us consider the following ordinary differential equation:

)

dt
= - Gw’(U) + dg’(ﬂ)) (64)
= u(l — u) {u - % — 30d(1 — u)u} .

The above equation is simplified from Eq.(41) by ignoring the diffusion term,

replacing the function ¢ by a variable u, and simplifying the sensitivity coef-
Jl(d)tl)

ficient NM7eo to a coefficient d. The equation is discretized by an explicit
21
scheme as follows:
n+1 n 1
% = u"(1— u") {u" — 5 —30d(1 - u”)u"} . (65)

We start the numerical tests by solving the above equation with the initial
value ©® = 0.5 for the At = 0.01, 0.1 and 1,andd = 0.1, 1, 10, —0.1, —1 and —
10. If d is positive, the analytical result is u = 0; if not, then v = 1. Table
1 shows the value of u at times ¢t =0, 2, 4, 6, 8 and 10. We can clearly see
that u diverges in Eq.(65) if d and At are large. A large value of At allows
u to exceed its theoretical bound of 0 < ¢ < 1. Moreover, a large value of
d causes the function g(u) to dominate f(u), which rapidly decreases with u
if u < 0. The same can be said if u > 1, since the derivative of f(u) is also
steep when u < 0, and so the case u > 1 tends to the case u < 0. To obtain
ideal results from Eq.(64) with u = 0 or uw = 1, it is important to bound the
variable u in the interval 0 < u < 1. The easiest way to do this is to force
the variable ©"! into 0 < u < 1 at each iteration. However, in our research,
the more sophisticated semi-implicit scheme [38] is used. In this method, the
equation is discretized as follows:

utt +u” Jut (1 —w)r(u) for r(u”) <0 (66)
At w1 —uYr(u) for r(u?) >0’
where
1
r(u") =u" — = —30d(1 — u")u". (67)

2
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Finally the update value u™*! is obtained by:

un

f n) <
nt1 ) 1 — At(l — Un)?"(u”) or T(u ) <0 o
T Y w1+ Atr(u)) . W) > 0 . (68)
1+ Atur(um) or Tu

We can see that «"*! is non-negative in both cases if 0 < u™ < 1. Whether
u™* satisfies the bound u < 1 is also easily checked by calculating 1 — u"**
from Eq.(68):

I —u™— At(1 — u™)r(u™)

ntl _ 1 — A1 —u™)r(un)
1—-u

1+ Aturr(un)

for r(u™) <0
(69)

for r(u™) > 0.

u™*! is again clearly non-negative in both cases. Thus, the discretization
given in Eq.(66) is bounded by 0 < u < 1 independent of the time step At.
Table 2 shows the results of the same test solved by the semi-implicit scheme,
which confirms stable convergence for any At and d.

Table 1: Results of a test problem solved by an explicit scheme.
d=0.1 d=1 d=10

{ At=0.01 At=0.1 At=1 At=0.01 At=0.1 At=1 At=0.01 Ar=0.1 At=1
0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000  0.5000
2 0.1668 0.1640  0.1337  0.0114  0.0092 -315.18  0.0010 - -3.7x10’
4 0.0504 0.0480 0.0223  0.0030  0.0024 -2.4x10" 0.0003 - 3.0x10™
6 0.0170 0.0158 0.0051 0.0010  0.0008 - 0.0001 - -

8 0.0061 0.0055 0.0012  0.0003  0.0003 - 0.0000 - -
10 0.0022  0.0020  0.0003  0.0001  0.0001 - 0.0000 - -

d=-0.1 d=-1 d=-10

{ A1=0.01 Ar=0.1 At=1 A1=0.01 Ar=0.1 Ar=1 A1=0.01 Ar=0.1 A=l
0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000  0.5000
2 0.8332 0.8360 0.8663 0.9886 0.9908 316.18  0.9990 - -3.7x107
4 09496 09520 0.9777 0.9970 0.9976 2.4x10"7 0.9997 - -3.0x10™
6 0.9830 0.9842  0.9949  0.9990  0.9992 - 0.9999 - -

8 0.9939  0.9945  0.9988  0.9997  0.9997 - 1.0000 - -
10 09978  0.9980 0.9997  0.9999  0.9999 - 1.0000 - -

- indicates overflow.
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Table 2: Results of the test problem solved by a semi-implicit scheme.
d=0.1 d=1 d=10
At=0.01 A¢=0.1 At=1 At=0.01 A¢=0.1 At=1  At=0.01 A¢=0.1 At=1
0.5000  0.5000  0.5000  0.5000 0.5000 0.5000 0.5000  0.5000  0.5000
0.1679  0.1753  0.2379 0.0118 0.0128  0.0271 0.0010  0.0011  0.0025
0.0511  0.0546  0.0909  0.0031 0.0033  0.0066  0.0003  0.0003  0.0006
0.0173  0.0189 0.0362 0.0010 0.0011 0.0024  0.0001 0.0001 0.0002
0.0062  0.0069 0.0153  0.0004 0.0004 0.0010 0.0000 0.0000 0.0001
10 0.0023  0.0026  0.0066  0.0001 0.0002  0.0004  0.0000  0.0000  0.0000

o -Be N L AR =N A

d=-0.1 d=-1 d=-10
At=0.01 At=0.1 At=1 At=0.01 Ar=0.1 At=1 A¢=0.01 Ar=0.1 Ar=1
0.5000  0.5000  0.5000  0.5000  0.5000  0.5000  0.5000  0.5000  0.5000
0.8321  0.8247  0.7621  0.9882  0.9872  0.9729  0.9990  0.9989  0.9975
0.9489 09454 09091  0.9969  0.9967 0.9934  0.9997 0.9997  0.9994
0.9827 09811 09638 0.9990 09989 0.9976 0.9999  0.9999  0.9998
0.9938  0.9931  0.9847  0.9996  0.9996  0.9990 1.0000  1.0000  0.9999
10 09977 09974 09934  0.9999 0.9998 0.9996  1.0000 1.0000  1.0000

o He N S Bl
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