Comparison of 3DOF Pose Representations
 Kengo Harada \dagger Satoko Tanaka \dagger Toru Tamaki \dagger For Pose Estimation
 Bisser Raytchev \dagger Kazufumi Kaneda \dagger Toshiyuki Amano \ddagger \dagger : Hiroshima University, Japan \ddagger : NAIST, Japan

Linear Pose Estimation

Training

$\left\{\begin{array}{cccccc}\text { Training } & \boldsymbol{\varepsilon}_{1} & \boldsymbol{\rho}_{0} & \boldsymbol{\varepsilon}_{0} & \cdots \\ \text { Images } & \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3} & \boldsymbol{x}_{4} & \ldots \\ \text { Pose } & \boldsymbol{p}_{1} & \boldsymbol{p}_{2} & \boldsymbol{p}_{3} & \boldsymbol{p}_{4} & \ldots\end{array}\right\}$

Estimation

$$
\boldsymbol{p}_{j}=F \boldsymbol{x}_{j}
$$

$$
\boldsymbol{x} \Rightarrow \boldsymbol{p}=F \boldsymbol{x}
$$

Question

Is estimation error of rotation matrix smaller than other representations ??

Pose Estimation as Approximate and Two Properties

An image can be approximated by their linear combination of training images $\quad x \simeq \sum b_{j} \boldsymbol{x}_{j}$
[Example of a 1DOF case

A pose estimate is represented by a linear combination of training poses
$\boldsymbol{p} \simeq F \boldsymbol{x}=\sum b_{j} F \boldsymbol{x}_{j}=b_{j} \boldsymbol{p}_{j}$

A pose should be
bijective with appearance
च $p_{1} \neq p_{2}$
$\boldsymbol{p}_{1}=F \boldsymbol{x}$
$\boldsymbol{p}_{2}=F \boldsymbol{x}$
F does not exist

Pose Representations and Properties

Representation	Parameters	Bijection	Continuity
Rotation matrix	$\left[\begin{array}{llll} r_{11} & r_{12} & \cdots & r_{33} \end{array}\right]^{T}$		(0)
ZYX Euler angles	$\begin{gathered} {\left[\begin{array}{ccc} \theta_{x} & \theta_{y} & \theta_{z} \end{array}\right]^{T}} \\ \left(-\pi \leq \theta_{x, y, z}<\pi\right) \end{gathered}$		5
Exponential map	$\begin{array}{r} \left.\boldsymbol{\omega}=\begin{array}{lll} \omega_{1} & \omega_{2} & \omega_{3} \end{array}\right]^{T} \\ \\ (0 \leq\|\boldsymbol{\omega}\| \leq \pi) \end{array}$		
Unit quaternions	$\boldsymbol{q}=\left[\begin{array}{llll} q_{0} & q_{1} & q_{2} & q_{3} \end{array}\right]^{T}$		

Exponential map
Unit quaternions

Not bijective

Sphere in 3-dimentional space $r=\pi[\mathrm{rad}]$

- \boldsymbol{q}_{j} is on a unit sphere in 4-dimentional space - \boldsymbol{q} and $-\boldsymbol{q}$ are the same pose (non biective) If we discard $-\boldsymbol{q}$, it is bjective

Discontinuity
at the edge of the hyper-hemisphere

Estimation Method and Error Metric

1. Given training images \boldsymbol{x}_{j} and pose parameters \boldsymbol{p}_{j} in a vector, the equations are stacked:

$$
\boldsymbol{p}_{j}=F \boldsymbol{x}_{j}
$$

2. The pose of a test image \boldsymbol{X} is estimated by:

$$
\boldsymbol{p}=F \boldsymbol{x}
$$

3. Normalization:

- For rotation matrix, $\boldsymbol{p} \rightarrow 3 \times 3$ matrix, and it is converted to a rotation matrix by using polar decomposition.
- For unit quaternions, $\|\boldsymbol{p}\|=1$

4. Conversion to a rotation matrix:

Estimated poses are converted to corresponding rotation matrix: \hat{R}
5. Error as distance between rotation matrices: R_{t} is a true rotation matrix
$d_{F}\left(R_{t}, \hat{R}\right)=\frac{1}{\sqrt{2}}\left\|\log R_{t} \hat{R}\right\|, \log R= \begin{cases}0, & (\theta=0) \\ \frac{\theta}{2 \sin \theta}\left(R-R^{t}\right), & (\theta \neq 0)\end{cases}$

Results (1)

Experimental Setup

We focused poses around discontinuity: some pose representations have discontinuity at a rotation angle of π.
Images are created as follows:
-Create a rotation matrix R_{z} with a rotation about z axis by π
-Create a small random rotation R_{s} with a rotation about a random axis by an angle ϕ uniformly distributed in $[0, \pi / 6]$
-Combine them: a (true) rotation matrix is

$$
R_{t}=R_{s} R_{z}
$$

-We use 100 3D objects

- 2500 training images - 100 test images

Results (2)

-Pairwise t-test between rotation matrix and the others
($p<0.01$)
All tests are significantly different.

