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Linear Pose Estimation 248 Pose Estimation as Approximate and Two Properties

Training An image can be approximated e } : b A pose should be
o by their linear combination of training images - J bijective with appearance
Training " Example of a 1DOF case
Images T o : : ' P # P
Pose TR ' p, = Fz
Parameters P1 P2 Ps P4 ... 0° 330° 340° 350° 10°  20° 30° p, = Fx
_ . p; = ij A pose estimate is repre'.se.nted by p~Fx= ijij = b;p; F does not exist
Estimation a linear combination of training poses
M
T ‘ » p= Fa': A pose should be continuous br+1 and bgy2 have larger values than others
» with appearance if training is successful

Question Parageters / V x

; ; . 180° ~ + -« + by - 340° + byyq - 350° + by - 10° + bgyg - 20° + - - -
Is estimation error of rotation * ki Fi2 k3
matrix smaller than sin 6 Sin 0° ~ -+ 4 by sin 340° + b1 5in 350° + byy28in 10° + b3 5in 20° 4 - - - O
other representations ?? | cos 0 08 0° ~ - -+ + b, cos 340° + by41 €08 350° + by12 €08 10° + by 3 cos 20° +
Pose Representations and Properties
Exponential map Unit quaternions + q; is on a unit sphere

Representation Parameters Bijection  Continuity

T
Rotation matrix [7’11 Tiz - 7”33] o

ZYX Euler angles [OE Oy 92] x
(—7 < Opy,. <)

* Wj is on a sphere in 4-dimentional space

with radius T [rad]

e 4 and 94 are the same
pose (non bijective)

When ||w]|| = 7 [rad],
oIf we discard —q |, itis

W and —(y are the same m
. ’ q bijective
/ |

T
Exponential map | w = [wl wa w3] x
0<|w <)
Sphere in 3—dimentional space Not bijective Unit hyper-sphere at the edge of

Unit quaternions q= [q o o g ]T x
=(0p @1 & ¢ . o .
= [rad] in 4-dimentional space  the hyper—hemisphere

Estimation Method and Error Metric Results (1) \

©O%XO

G e T ) i 3.0 . 3.8
1 Ileen training |mages. j and pose parameters pJ Rotation ) Unit
in a vector, the equations are stacked: . 2.5 n errors are sma ) 25
matrix The estimatio X quaternions
pj = ij 2.8 except a few objec 2.0
2. The pose of a test image & is estimated by: g i
p= Fx 1.8 1.9
3. Normalization: o o5 _
*For rotation matrix, P — 3 X 3 matrix, | | ‘ | | ‘ | ‘ ‘ ‘ ‘ I ‘
1 " 1 i i il ! "l N i, 1
and it is converted to a rotation matrix 0 5 25 35 45 55 65 75 85 95 00 15 25 3% 45 55 65 75 85 95
. e Object number Object number
by using polar decomposition. 50 30
*For unit quaternions, ||p|| =1 Euler L Exponential | ;.
. ) . angles map
4. Conversion to a rotation matrix: 2.8 L
Estimated poses are converted to £ s 5
corresponding rotation matrix: R s s
1.8
5. Error as distance between rotation matrices: 2.5 ‘ ‘ [ H | ‘ ‘ | 8.5 ‘ ‘ i it ‘ ‘ ‘ ‘
Rt is a true rotation matrix o LI 0.0
0 0 5 15 25 35 45 55 65 75 85 95 5 15 25 35 ObTIS 55b 65 75 85 95
= iect number . ect number
10 R= 0 ( ) Object numbo The errors are big averagely '
. 7 \L 7
Experimental Setu Results (2
*We use 100 3D objects ( )
We focused poses around discontinuity: 2500 training images 3.0
some pos.e reprelsen;catlons have discontinuity -190 test images *Pairwise t-test between 2.5
at a rotation angle ot 7. ~ Test images rotation matrix and the others ;5

Images are created as follows: pose 1 pose 2 .. .pose 98 pose 99

[0}

%]
*Create a rotation matrix R, with a rotation object 1 . § 1.5

. wn
about z axis by7rT I Smallest [ |
Create a small random rotation R; with a object 2 . (p<0.01) ' l [
rotation about a random axis by an angle (}5 All tests are 0.5
uniformly distributed in [0, 7/6] . significantly different. 0.0 s Untausemors feronges Espanenil nop
*Combine them: a (true) rotation matrix is
object 99
| The average of the distance |

Rt = Rst

540 204 === 2778 12.60 |




