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Abstract — This paper considers a linear programming 
problem with ellipsoidal distributions including fuzziness. Since 
this problem is not well-defined due to randomness and fuzziness, 
it is hard to solve it directly. Therefore, introducing chance 
constraints, fuzzy goals and possibility measures, the proposed 
model is transformed into the deterministic equivalent problems. 
Furthermore, since it is difficult to solve the main problem 
analytically and efficiently due to nonlinear programming, the 
solution method is constructed introducing an appropriate 
parameter and performing the equivalent transformations. 

1.  GENERAL INTRODUCTIONS 
In real-world decision making, one often needs to make an 

optimal decision under uncertainty. Stochastic programming 
(for example, Beale [1], Charnes and Cooper [6], Dantzig [7]) 
and fuzzy programming (For example, Dubois and Prade [8], 
Inuiguchi and Tanino [14]) have been developed as useful 
tools for decision makers to determine an optimal solution. 
Furthermore, decision makers are faced with environments 
including both randomness and fuzziness. In order to 
construct a framework of decision making models under such 
stochastic and fuzzy environments, fuzzy random variables 
(Kwakernaak [17], Puri and Ralescu [22]) and random fuzzy 
variable (Liu [19, 20]) have been brought to the attention of 
researchers.  

In many previous researches, values of parameters such as 
costs, returns, times, etc. are assumed to be known, and in 
these cases, main problems are deterministic mathematical 
programming problems. Therefore, these optimal solutions 
are analytically obtained using the deterministic mathematical 
programming. However, decision makers may receive a lot of 
information and data in the real world. Then, it is almost 
impossible to estimate strict values of parameters and to 
determine their random distribution. These distributions may 
be statistically determined as a confidence interval involving 
some error. Therefore, using these statistical distributions, it 
is more important to consider that decision makers optimize 
the problem in the worst case; i.e. Robust optimization 

problem. Recently, the robust optimization problem becomes 
a more active area of research, and there exist various studies 
(For example, Ben-Tal and Nemirovski [2, 3], Goldfarb and 
Iyengar [9]).  

On the other hand, it is most important to undertake 
appropriate risk management such as the reduction of 
uncertainty and the improvement of satisfaction of decision 
makers. Therefore, the role of portfolio selection problems, 
which is mainly focused on the risk aversion, is important. As 
for the research history on mathematical approach, Markowitz 
[21] proposed the mean-variance model and it has been 
central to research activity in the real financial field. Then, 
there are some basic researches under various uncertainty 
conditions with respect to portfolio selection problems 
(Bilbao-Terol et al. [4], Carlsson et al. [5], Guo and Tanaka 
[10], Huang [11, 12], Inuiguchi et al. [13, 14], Katagiri et al. 
[15, 16], Tanaka et al. [23, 24], Watada [25]). Furthermore, 
there are some studies of robust portfolio selection problems 
determining optimal investment strategy using the robust 
approach (For example, [9]).  

Therefore, by extending risk management methods used the 
portfolio theory to the general mathematical programming 
problem, we propose a new and versatile robust programming 
problem. Until now, there are few models of mathematical 
programming problems considering both uncertainty and 
ambiguity, simultaneously. Furthermore, there are no 
researches which are analytically extended and solved these 
types of robust programming problems based on the portfolio 
theory. Particularly, we focus on the probability maximization 
model. Since our proposal model is not well-defined, in this 
paper, we transform the main problem into the deterministic 
equivalent problems and construct the analytical solution 
method for the fuzzy robust programming problem. 

This paper is organized as follows. In Section 2, we 
introduce and formulate a basic linear programming problem 
based on the robust programming problem with uncertainty 
considering the portfolio theory. In Section 3, introducing 
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fuzzy numbers to uncertainty sets of parameters, we propose 
fuzzy extension models of robust linear programming 
problems and construct the analytical solution method. 
Finally, in Section 4, we conclude this paper and discuss 
future research problems. 

2. FORMULATION OF ROBUST OPTIMIZATION PROBLEMS 
WITH ELLIPSOIDAL DISTRIBUTUIONS 

 
In this section, we consider a basic linear programming 

problem and their robust models with ellipsoidal distributions. 
First of all, we introduce the following linear programming 
problem: 

{ }
Maximize  

subject to  ,  

t

X∈ ≤ ≥A 0

r x

x x x b x
 (1)

where notations mean as follows: 
r : n-dimensional column vector  
A : m n×  coefficient matrix 
b : m-dimensional column vector 
x : n-dimensional column vector for decision variables 

 
In the case that all coefficients are constant, this problem is 
easily and efficiently solved by using basic linear 
programming approaches such as Simplex method and 
Interior point method.  

However, in real world decision making, it is hard to 
receive all information and data with respect to future returns 
and determine the distributions of their random variables. 
Therefore, in this paper, we consider that parameter r  has 
some uncertainty and each parameter is included in an 
uncertainty set. In this case, problem (1) is not the linear 
programming problem due to uncertainty. Therefore, we need 
to construct the solution procedure to solve them. In this 
paper, we formulate the robust portfolio selection problem 
Ben-tal and Nemirovski [2] have proposed. We formulate the 
robust problem as follows: 

{ }Maximize  min

subject to  
d

t
M

X
∈

∈
r r x

x
 (2)

where n
dM R⊂  is the uncertainty set. This problem is not 

well defined without defining uncertainty sets. Therefore, we 
first assume the uncertainty set of r  to be the following 
ellipsoidal set: 

( ) ( ){ }2
0 0

t
dM G d− − ≤r r r r r  (3)

where 0r   is the n-dimensional column vector for the center 

value of ellipsoidal set and n nG R ×∈  is the symmetric 
positive definite matrix. Then, d  is the constant positive 
value decided by the decision maker. In this case that constant 
value of parameter d  is larger, the region of ellipsoidal set or 
ellipsoidal distribution is also wide. Furthermore, even if d is 
much large, it is an useful and robust decision making that 

{ }min
d

t
M∈r r x  is larger than the target value f , i.e. 

{ }min
d

t
M f∈ ≥r r x . Therefore, we transform problem (2) and 

consider the following problem similar to probability 
maximization model: 

{ }

Maximize  
subject to  min ,

d

t
M

d
f

X
∈ ≥

∈
r r x

                 x

 (4)

 
Subsequently, ellipsoidal set (3) is equivalently transformed 
into the following form: 

( ) ( )0 0
1 1 1

t

M G
d d

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥ ⎢ ⎥− − ≤⎨ ⎬⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
r r r r r  (5)

Then, using Cholesky decomposition to G , we obtain an 

upper triangular matrix 1 2G  satisfying ( )1 2 1 2t
G G G=  

where ( )1 2 t
G  is the transposed matrix of 1 2G . Therefore, in 

problem (4), constraint 
{ }min

d

t
M f∈ ≥r r x  is transformed into 

the following form by introducing parameters r̂  and z : 

{ } { }

( )
1 2

1 2
0 0 1ˆ 1

min inf

ˆ                   inf inf

d
d

t t
M M

t t t

G
d d G

∈ ∈

−

≤≤

=

⎛ ⎞⎟⎜= + = + ⎟⎜ ⎟⎝ ⎠

r r

zr

r x r x

r r x r x z x
(6)

where 1 2 1 2ˆ ˆ ˆ ˆ,  tG G G= =r r r z r , and 1 2G−  is  defined 

as  the inverse matrix of 1 2G . Therefore, by solving 
1 2

1
inf tG−

≤z
z x  with respect to z , we easily obtain the 

following optimal solution: 
1 2

1 2

G
G

−
∗

−
=−

xz
x

 (7)

 
Using this optimal solution ∗z , the expression (6) is 
transformed into the following form: 

{ }
( )

1 2
1 2

0 1 2

1 2
0

inf

             

d

t

t

M

Gd G
G

d G

−
−

−∈

−

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎟⎜⎜= + − ⎟ ⎟⎜⎜ ⎟ ⎟⎜⎜ ⎟ ⎟⎟⎜⎝ ⎠ ⎟⎜⎝ ⎠

= −

r

xr x r x x
x

r x x

 (8)

 
Consequently, main problem (4) is equivalently transformed 
into the following problem: 

1 2
0

Maximize  

subject to  ,

d

d G f

X

−− ≥

∈

r x x

                 x

 (9)
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In this problem, constraint 1 2
0 d G f−− ≥r x x  is transformed 

into 0
1 2

f d
G−

−
≥

r x
x

, and so problem (9) is equivalently 

transformed into the following problem:  
0

1 2
Maximize  

subject to  

f
G

X

−

−

∈

r x
x

x

 (10)

 
These problems are convex programming problems similar to 
the probability maximization model in the case 0 0f− >r x , 
and so we obtain each optimal solution using the convex 
programming approach. 
 

3. FUZZY EXTENSION OF ROBUST MEAN VARIANCE 
OPTIMIZATION PROBLEMS 

 
In Section 2, we consider that each parameter in the 

ellipsoidal set is fixed value. However, in real world decision 
making, there exist various types of effective and ineffective 
information, and each investor has an institution with respect 
to the real world. These factors include ambiguity and so we 
need to consider a robust portfolio selection problem 
including ambiguity. In this paper, we assume 0r  to include 
ambiguity and to be a fuzzy number. Therefore, uncertainty 
set (7) is redefined into the following form: 

( ) ( ){ }2
0 0

t
dM G d− − ≤r r r r r  (11)

 
Then, in this paper, the fuzzy number 0r  is assumed to be a 
following L-shape fuzzy number: 

( )
( )

( )
0

0
0

0
0

max 0, ,  

max 0, ,  
j

j
j

j

r

j
j

j

r
L r

r
L r

ω
ω

α
μ ω

ω
ω

α

⎧ ⎧ ⎫⎛ ⎞⎪ ⎪ ⎪−⎪ ⎟⎪ ⎪⎜⎪ ⎪⎟⎪ ⎜ ≤⎨ ⎬⎟⎪ ⎜ ⎟⎪ ⎪⎪ ⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪ ⎪⎩ ⎭⎪=⎨⎪ ⎧ ⎫⎛ ⎞⎪ ⎪−⎪ ⎟⎪ ⎪⎜⎪ ⎪⎪ ⎟⎜ ≤⎨ ⎬⎪ ⎟⎜⎪ ⎟⎪ ⎪⎟⎜⎪ ⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭⎪⎩

 
(12)

where ( ) L x  is the reference function and continuously 

decreasing, and ( ) ( )0 1,  1 0L L= = . The uncertainty set 

( ) ( )0 0
tU G= − −r r r r r  includes fuzzy numbers vector 0r  

and so U r is a fuzzy number. Therefore, the membership 

function of U r  is as follows: 

( ) ( ) ( ) ( ){ }0
0

0 0 01
sup min

j

t
r jU j n

u u Gμ μ γ
≤ ≤

= = − −
r r r r r

γ
γ γ  (13)

 
Consequently, uncertainty set dM  is represented as a fuzzy 
set characterized by the following membership function: 

( ) ( ){ }

( ) ( ) ( ){ }0
0

2

2
0 0 01

sup

            sup min

d

j

M U
u

t
r jj n

d u u d

G d

μ μ

μ γ
≤ ≤

= ≤

= − − ≤

r
r

r r

r r
γ

γ γ

 
(14)

 
Furthermore, taking account of the vagueness of human 

judgment and flexibility for the execution of a plan, we give a 
fuzzy goal to the target probability as the fuzzy set 
characterized by a membership function. In this subsection, 
we consider the fuzzy goal of target level d  for probability 
which is represented by,  

( )
( )

( ) ( )
( )

1

0

U

d L UG

L

d
g d d

d

ω
μ ω ω ω

ω

⎧ ≤⎪⎪⎪⎪= ≤ <⎨⎪⎪ <⎪⎪⎩

 (15)

where ( )dg ω  is a strictly increasing continuous function, 

and Ld  and Ud  are lower and upper constant values set by 
the decision maker, respectively. Then, using a concept of 
possibility measure, we introduce the degree of possibility as 
follows: 

( ) ( ) ( )( )sup min ,
d dM M G

d
G d dμ μΠ =  (16)

 
Therefore, by introducing a parameter of satisfaction level h , 
uncertainty set (11) is transformed into the following form 
using the h-cut: 

( ) ( ){ }
dd MM h G hΠ ≥r  (17)

 
Consequently, the main problem (4) is reformulated the 
following possibility maximization model: 

( ){ }

Maximize  
subject to  min ,

d

t
M h

h
f

X
∈

≥

∈

r r x

                 x

 
(18)

 
Subsequently, we equivalently transform ( )

dM d hμ ≥  and 

obtain the following inequality: 
( )

( ) ( ) ( ){ }
( )( )

( )( ) ( )( )

( )( )

( )( )

0
0

2
0 0 01

0

2
0 0

0

0 0

: sup min ,

: 2

             

1 1 1 12

1 1       

d

j

M

t
r jj n

t t

t

t t

t

d h

d G d h

d G G L h

L h G L h d

G G L h
d d d d

L h G
d d

μ

μ γ
≤ ≤

∗

∗ ∗

∗

∗

≥

⇔ ∃ − − ≤ ≥

⇔ ∃ − −

+ − − ≤

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⇔ − −⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎟⎜+ − −⎟⎜ ⎟⎜⎝ ⎠

r r

r r r r

r r

r r r r

r r

γ
γ γ

α

α α

α

α ( )( ) 1L h∗⎛ ⎞⎟⎜ ≤⎟⎜ ⎟⎜⎝ ⎠
α

 

(19)

where ( )L h∗  is the pseudo inverse function of ( )L ω . Using 
this inequality, the expression (6) is transformed into the 
following expression: 
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{ } { }

( )( )( )

( )( )

1 2 0
ˆ 1

1 2
0 1

min inf

ˆ                   inf

inf

d d

t t
M M

t

G

t t

L h d

L h d G

∈ ∈

∗

≤

∗ −

≤

=

= − +

⎛ ⎞⎟⎜= − + ⎟⎜ ⎟⎝ ⎠

r r

r

z

r x r x

r r x

                    r x z x

α

α

 
(20)

 
Then, 1 2

1
inf tG−

≤z
z x  in expression (20) is equal to that in 

expression (6), and from the optimal value of (7), this 
expression is equal to the following form: 

{ }
( )( ) 1 2

0inf
d

tt

M
L h d G∗ −

∈
= − −

r
r x r x xα  (21)

 
Consequently, in the case that we consider the possibility 
measure constraint ( ) ,

dM G hΠ ≥ , this constraint is 

transformed into the following inequality: 
( )

( ) ( )( )
( )( ) ( )

( )( )
( )

( )( )
( )

1 2 1
0

0 1
1 2

0 1
1 2

,

sup min ,

,  

,  

d

d

M

M G
d

t

d

t

d

t

d

G h

d d

L h d G f d g h

L h f
d d g h

G

L h f
g h

G

μ μ

∗ − −

∗
−

−

∗
−

−

Π ≥

⇔

⇔ − − ≥ ≥

− −
⇔ ≥ ≥

− −
⇔ ≥

r x x

r x

x

r x

x

α

α

α

 

(22)

 

Subsequently, we assume that ( )( )0

t
L h f∗− −r xα  is 

positive on satisfaction level h  where 0 1h≤ ≤ . Then, 
using this transformation, the proposed fuzzy robust 
programming problem (18) is equivalently transformed into 
the following problem: 

( )( )
( )0 1

1 2

Maximize  

subject to  ,
t

d

h

L h f
g h

G

X

∗
−

−

− −
≥

∈

r x

x

                 x

α  (23)

 
It should be noted here that problem (23) is a nonconvex 
programming problem due to nonlinear functions ( )L h∗

 and 

( )1
dg h− , and so it cannot be solved by any linear 

programming techniques or convex programming techniques. 
However, if we fix decision variable h  as h q= and 
introduce the following auxiliary problem; 

( )( )0

1 2
Maximize  

subject to  

t
L q f

G

X

∗

−

− −

∈

r x

x

x

α
 

(24)

 
This problem is equivalent to previous problem (10). Then, 
with respect to the relation between problem (23) and the 
auxiliary problem (24), the following theorem holds based on 
the previous study (e.g. [15]). 
 
Theorem 1 
Let ( )qx and ( )Z q  be an optimal solution of problem (24) 
and its optimal value, respectively. Then, for q  satisfying 

0 1q< < , ( )Z q  is a strictly increasing function of q . 
 
Theorem 2 
Let q̂  denote q  satisfying ( ) ( )1ˆ ˆZ q g q−=  and the optimal 

solutions of main problem (23) be ( ),h∗ ∗x . Then ( )( )ˆ ˆ,x q q  

is equal to ( ), h∗ ∗x  in  0< q̂ <1. 

 
From these theorems, by using bisection algorithm for 
parameter q and comparing objective function ( )Z q  with 

( )1
dg q− , we repeatedly solve problem (24) for each q using 

branch-and-bound method, and finally obtain the optimal 
solution. Consequently, we develop the following strict 
solution method. 
 
Solution method 
STEP1: Elicit the membership function of a fuzzy goal with 

respect to the total expected return and variance. 
STEP2: Set 1h ←  and solve problem (24). If a feasible 

solution x  exists, then terminate. In this case, the 
obtained current solution is an optimal solution of 
main problem. 

STEP3: Set 0h ←  and solve problem (24). If a feasible 
solution x  does not exist, then terminate. In this case, 
there is no feasible solution and it is necessary to reset 
a fuzzy goal with respect to the total expected return 
and variance. 

STEP4: Set 0Lh ←  and 1Uh ← . 

STEP5: Set 
2

L Uh hh +
←  

STEP6: Solve problem (24) and find the optimal solution 
( )hx . Then, if U Lh h ε− <  holds with respect to 

a sufficiently small number ε , ( )hx  is the optimal 
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solution of main problem (18), and terminate this 
algorithm. If not, go to Step 7. 

STEP7: If an optimal solution exists, then set Lh h←  and 

return to Step 5. If not, then set Uh h←  and return 
to Step 5. 

 
It is surely possible that we find an optimal solution of 
problem (24) for each value of parameter h . Furthermore, in 

the special case the positive definite matrix 1G−  is assumed 
to be a variance-covariance matrix V , we obtain the optimal 
solution more efficiently.  

Subsequently, as an approximate function for 
1 2 1t tG G− −= = Vx x x x x  , we introduce the following 

mean absolute deviation: 

( ) ( ) ( )

( ) ( )( )

1 1

1 1

         

n n
g g

j j j j
j j

T n
g g

t tj tj j
t j

W E r x r x

p r r x

= =

= =

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑

x
 

(25)

where ( ) ( ) ( ) ( ){ } ( )1 2, ,..., ,  1,2,...,g g g g
t t t tnr r r t T= =r  is the discrete 

distribution to random variable r  based on the uncertainty set 

(3), and ( )g
jr  is the arithmetic mean. Then, tp  is each 

occurrence probability of ( )g
tr . In the case that V  is a 

variance-covariance matrix derived from a normal 
distribution, it was shown that ( ){ }2

2
t Wπ

=Vx x x  by the 

previous study [18]. Therefore, absolute deviation ( )W x  is 

considered to be an approximate function to the quadratic 
function. Using this mean absolute deviation, problem (24) is 
approximately transformed into the following problem; 

( )( )

( )

0Maximize  

2
subject to  

t
L q f

W

X

π

∗− −

∈

r x

x

x

α
 

(26)

 
Furthermore, by introducing the parameter tξ , problem (26) 
is equivalently transformed into the following problem based 
on the study of Konno [18]; 

( )( )

( ) ( )( ) ( )

0

1

Maximize  

subject to  0,  1, 2,...,

t

T

t t
t

g g
t tj tj j

L q f

p

r r x t T

X

ξ

ξ

∗

=

− −

± − ≥ =

∈

∑

r x

                 x

α

 
(27)

 
Problem (27) is also a basic fractional linear programming 

problem and it can be equivalently transformed into the 
following linear programming problem by introducing 

parameter 

1

1 ,  ,  t tT

t t
t

p
η η ξ ηξ

ξ
=

′ ′= = =

∑
x x : 

( )( )

( ) ( )( ) ( )

{ }

0

1

Maximize  

subject to  1,

                0,  1, 2,...,

,  

t

T

t t
t

g g
t tj tj j

L q f

p

r r x t T

X

η

ξ

ξ

η

∗

=

′− −

′=

′ ′± − ≥ =

′ ′ ′ ′ ′∈ ≤ ≥

∑

A 0

r x

                 x x x b x

α

 
(28)

 
 Therefore, we obtain an optimal portfolio more efficiently 
than the proposed standard approach. Consequently, using a 
bisection algorithm with respect to h , we construct the 
following solution method. 
 
Efficient Solution method to the special case 
STEP0: Set a discrete distribution ( ) ( ),  1, 2,...,g

t t T=r  to 

random variable r  and the occurrence probability tp . 
STEP1: Elicit the membership function of a fuzzy goal with 

respect to the total expected return and variance. 
STEP2: Set 1h ←  and solve problem (28). If a feasible 

solution x  exists, then terminate. In this case, the 
obtained current solution is an optimal solution of 
main problem. 

STEP3: Set 0h ←  and solve problem (28). If a feasible 
solution x  does not exist, then terminate. In this case, 
there is no feasible solution and it is necessary to reset 
a fuzzy goal with respect to the total expected return 
and variance. 

STEP4: Set 0Lh ←  and 1Uh ← . 

STEP5: Set 
2

L Uh hh +
←  

STEP6: Solve problem (28), and find the optimal solution 
( )hx . Then, if U Lh h ε− <  holds with respect to 

a sufficiently small number ε , ( )hx  is the optimal 
solution of main problem (17), and terminate this 
algorithm. If not, go to Step 7. 

STEP7: If an optimal solution exists, then set Lh h←  and 

return to Step 5. If not, then set Uh h←  and return 
to Step 5. 

4. CONCLUSION 
 

In this paper, we have proposed an extension model of 
robust linear programming problems considering uncertainty 
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conditions with ellipsoidal distribution and fuzziness, 
particularly, the probability maximization model. Since this 
problem is not well defined due to fuzzy numbers, we have 
introduced the degree of possibility and transformed the main 
problem into the deterministic equivalent problem. 
Furthermore, to solve the special case with variance-
covariance matrix efficiently, we have constructed the 
efficient solution method by using the mean-absolute 
deviation. Our proposed models include the other robust 
practical problems and so we may apply our models to the 
more flexible and complex problems in real world decision 
making than the previous models. 
As the future studies, we are now attacking the cases that 
optimal solutions are restricted to be integers and multi-period 
models. 
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