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Abstract—In this paper, we discuss the generalization of
concavity on the subclass of the set of all membership functions,
each function belonging to the subclass characterizes one convex
fuzzy set respectively. The generalization is based on conjunctive
aggregation functions. And the properties are investigated.

I. INTRODUCTION

The extensive applications of quasi-concave functions are
found in economics and optimization. In fact, several gen-
eralizations of the quasi-concavity of functions have been
introduced and studied (see [3] and references therein). In
this paper, we focus on some class of functions from the n-
dimensional Euclidean space Rn into the unit interval [0, 1].
Such functions can be regarded as membership functions of
fuzzy sets on Rn. Therefore, it is natural to use terminologies
of fuzzy theory. In general, the quasi-concavity of functions
is defined by using the minimum operation (see Definition
8). As one of generalizations of quasi-concave membership
functions, Ramı́k and Vlach ( [3]–[5]) used a triangular norm
instead of the minimum operation.

On the other hand, aggregation functions are very important
for a generalization of operations on fuzzy sets. And they are
studied widely (see [1]–[3] and references therein).

In this paper, we apply some conjunctive aggregation func-
tion instead of the minimum operation. So, this means that our
proposing generalization is a further one of the above Ramı́k
and Vlach’s appoaches.

II. AGGREGATION FUNCTIONS

In this section, we investigate properties of aggregation
functions (You can find the details of them in [1]–[3], [6],
[7]).

Throughout this paper, N is the set of all natural numbers,
m ∈ N is fixed, I = {1, · · · ,m} and Ik = {1, · · · , k}, k ∈ N.
For a, b ∈ R, we put [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b[=
{x ∈ R : a ≤ x < b}, ]a, b] = {x ∈ R : a < x ≤ b} and
]a, b[= {x ∈ R : a < x < b}.

First, we remember the definition of aggregation functions.

Definition 1. Let k ∈ N and Gk : [0, 1]k → [0, 1]. For k = 1,
G1 is called an aggregation function if G1(x) = x, x ∈ [0, 1].

For k ≥ 2, Gk is called an aggregation function if the follow-
ing two axioms are satisfied: (G1) if xi, yi ∈ [0, 1], xi ≤ yi,
i ∈ Ik, then Gk(x1, · · · , xk) ≤ Gk(y1, · · · , yk) (monotonic-
ity) and (G2) Gk(0, · · · , 0) = 0 and Gk(1, · · · , 1) = 1
(boundary condition).

Next, we define the features of aggregation functions.

Definition 2. Let k ∈ N and Gk : [0, 1]k → [0, 1] be an
aggregation function.

(i) Gk is said to be conjunctive if Gk(x1, · · · , xk) ≤
min{x1, · · · , xk} for any xi ∈ [0, 1], i ∈ Ik.

(ii) Gk is said to be strongly monotone increasing if xi, yi ∈
[0, 1], xi ≤ yi, i ∈ Ik and xj < yj for some j ∈ Ik
implies Gk(x1, · · · , xk) < Gk(y1, · · · , yk).

(iii) Gk is said to be strictly monotone increasing if xi, yi ∈
[0, 1], xi < yi, i ∈ Ik implies Gk(x1, · · · , xk) <
Gk(y1, · · · , yk).

(iv) Gk is said to be idempotent if Gk(x, · · · , x) = x for
any x ∈ [0, 1].

In special case,

(v) G2 is said to be commutative if G2(x1, x2) =
G2(x2, x1) for any xi ∈ [0, 1], i ∈ I2.

(vi) G2 is said to be associative if G2(x1, G2(x2, x3)) =
G2(G2(x1, x2), x3) for any xi ∈ [0, 1], i ∈ I3.

Let k ∈ N and Gk : [0, 1]k → [0, 1] be an aggregation
function. If Gk is strongly monotone increasing, then Gk is
strictly monotone increasing. Then G1 is strongly monotone
increasing if and only if G1 is strictly monotone increasing.
Note that there does not exist any strongly monotone increas-
ing conjunctive aggregation function.

One of important classes of aggregation functions G2 :
[0, 1]2 → [0, 1] is the class of triangular norms defined as
follows.

Definition 3. A triangular norm (t-norm for short) is a binary
operation T on [0, 1], that is, a function T : [0, 1]2 → [0, 1],
such that for any xi ∈ [0, 1], i ∈ I4 the following four axioms
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are satisfied:

T (x1, x2) = T (x2, x1) (commutativity), (T1)
T (x1, T (x2, x3)) = T (T (x1, x2), x3) (associativity), (T2)
T (x1, x2) ≤ T (x3, x4) if x1 ≤ x3, x2 ≤ x4(monotonicity)

(T3)

and

T (x1, 1) = x1 (boundary condition). (T4)

Example 1. Important examples of t-norms are the minimum
TM and the drastic product TD defined by

TM (x1, x2) = min{x1, x2},

TD(x1, x2) =

{
TM (x1, x2) if max{x1, x2} = 1,

0 otherwise.

TM is the strongest t-norm and TD is the weakest t-norm.
Namely, TD ≤ T ≤ TM for any t-norm T .

Let T be a t-norm. If we define T1 : [0, 1] → [0, 1] as
T1(x) = x, x ∈ [0, 1], and T2 = T , and Tk : [0, 1]k → [0, 1]
as

Tk(x1, · · · , xk−1, xk) = T (Tk−1(x1, · · · , xk−1), xk)

for k ≥ 3, then each Tk, k ∈ N is an aggregation function.
In the remainings, whenever we consider a t-norm as an
aggregation function, we assume that the aggregation function
is generated as above formula. Note that each t-norm is a
conjunctive aggregation function.

Definition 4. Let k ∈ N, Gk : [0, 1]k → [0, 1] and
G′

2 : [0, 1]2 → [0, 1] be aggregation functions. We say
that Gk dominates G′

2 if Gk(G′
2(x1, y1), · · · , G′

2(xk, yk)) ≥
G′

2(Gk(x1, · · · , xk), Gk(y1, · · · , yk)) for any xi, yi ∈ [0, 1],
i ∈ Ik. And it is denoted Gk � G′

2.

An aggregation function G1 : [0, 1] → [0, 1] and a t-norm
TM dominate any aggregation function G′

2 : [0, 1]2 → [0, 1].
Complete characterization of the class of all aggregation
functions which dominate TM is given in [6].

Lemma 1. Let k ∈ N, and G2 : [0, 1]2 → [0, 1] be an
aggregation function. We define aggregation functions Gj

k :
[0, 1]k → [0, 1], j ∈ I2 as Gj

1(x) = x, x ∈ [0, 1], j ∈ I2 when
k = 1, and Gj

2 = G2, j ∈ I2 when k = 2, and

G1
k(x1, · · · , xk) = G2(G1

k−1(x1, · · · , xk−1), xk), (1)

G2
k(x1, · · · , xk) = G2(x1, G

2
k−1(x2, · · · , xk)) (2)

for xi ∈ [0, 1], i ∈ Ik when k ≥ 3.
Then the following statements hold.

(i) If “G2 is commutative and associative” or “G2 � G2”,
then Gj

k � G2, j ∈ I2.
(ii) If G2 is strongly monotone increasing, then Gj

k, j ∈ I2
have the same property.

(iii) If G2 is strictly monotone increasing, then Gj
k, j ∈ I2

have the same property.

III. GENERALIZATION OF QUASI-CONCAVITY

In this section, we propose the various generalizations of
quasi-concave membership functions based on conjunctive
aggregation functions. Then their properties are derived.

A. G-quasi-concavity

First, we remember the basic definitions.

Definition 5. Let X 6= ∅ ⊂ Rn, f : Rn → R and α ∈ R.
Then UX(f, α) = {x ∈ X : f(x) ≥ α} is called the level set
of f on X .

Definition 6. Let X 6= ∅ ⊂ Rn, µ : Rn → [0, 1]. Then
CoreX(µ) = {x ∈ X : µ(x) = 1} is called the core of µ on
X .

Definition 7. Let X 6= ∅ ⊂ Rn and µ : Rn → [0, 1]. Then µ
is said to be level-closed, level-bounded and level-compact on
X , respectively, if the level set UX(µ, α) is closed, bounded
and compact for any α ∈]0, 1].

Now, recall that the standard definitions of quasi-concavity
of functions.

Definition 8. Let X ⊂ Rn be a non-empty convex set, and
f : Rn → R.

(i) f is said to be quasi-concave on X if

f(λx + (1 − λ)y) ≥ min{f(x), f(y)}

for any x,y ∈ X and any λ ∈]0, 1[.
(ii) f is said to be strictly quasi-concave on X if f is quasi-

concave on X and

f(λx + (1 − λ)y) > min{f(x), f(y)} (3)

for any x,y ∈ X, f(x) 6= f(y) and any λ ∈]0, 1[.
(iii) f is said to be strongly quasi-concave on X if (3) holds

for any x,y ∈ X,x 6= y and any λ ∈]0, 1[.

Then let X 6= ∅ ⊂ Rn, f : Rn → R, and

LX(x,y) = {t ∈ R : x + t(y − x) ∈ X}.

for x,y ∈ X,x 6= y. We define fx,y : R → R as

fx,y(t) =

{
f(x + t(y − x)) if t ∈ LX(x,y),

0 otherwise.

Definition 9. Let X ⊂ Rn be a non-empty convex set, and
f : Rn → R. f is said to be (resp. strictly, strongly) quasi-
concave on X from y ∈ X , if fx,y is (resp. strictly, strongly)
quasi-concave on LX(x,y) for any x ∈ X,x 6= y.

In [3], [5], the quasi-concavity is generalized by using the
concept of star-shaped sets.

Definition 10. Let X ⊂ Rn.
(i) X is said to be star-shaped from y ∈ X if

I(x,y) = {z ∈ Rn : z = x+λ(y−x), λ ∈ [0, 1]} ⊂ X

for any x ∈ X .
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(ii) The set of all points in X from which X is star-shaped
is called the kernel of X , and it is denoted by Ker(X).

(iii) X is said to be star-shaped if Ker(X) 6= ∅ or X = ∅.

Definition 11. Let X ⊂ Rn be a non-empty star-shaped set,
and f : Rn → R. f is said to be star-shaped on X if UX(f, α)
is star-shaped for any α ∈ R.

Let X ⊂ Rn be a non-empty convex set, and f : Rn →
R. Since any convex set of Rn is star-shaped, if f is quasi-
concave on X , then f is star-shaped on X . When n = 1, X ⊂
R is an interval, and the class of all quasi-concave functions
on X coincides with the class of all star-shaped functions on
X .

In [3]–[5], the quasi-concavity of membership functions is
generalized by using arbitrary t-norms instead of the minimum
operation. So, We apply an conjunctive aggregation function
instead of it.

Definition 12. Let X ⊂ Rn be a non-empty convex set, G2 :
[0, 1]2 → [0, 1] be a conjunctive aggregation function, and
µ : Rn → [0, 1].

(i) µ is said to be G2-quasi-concave on X if

µ(λx + (1 − λ)y) ≥ G2(µ(x), µ(y))

for any x,y ∈ X and any λ ∈]0, 1[.
(ii) µ is said to be strictly G2-quasi-concave on X if µ is

G-quasi-concave on X and

µ(λx + (1 − λ)y) > G2(µ(x), µ(y)) (4)

for any x,y ∈ X,µ(x) 6= µ(y) and any λ ∈]0, 1[.
(iii) µ is said to be strongly G2-quasi-concave (or strongly G-

quasi-concave) on X if (4) holds for any x,y ∈ X,x 6=
y and any λ ∈]0, 1[.

For the sake of simplicity, “(resp. strictly, strongly) G2-
quasi-concave” is denoted “(resp. strictly, strongly) as G-
quasi-concave” without subscript 2.

For a non-empty convex set X ⊂ Rn, a conjunctive
aggregation function G2 : [0, 1]2 → [0, 1] and µ : Rn → [0, 1],
it can be seen that µ is

strongly q.c. ⇒ strictly q.c. ⇒ q.c.
⇓ ⇓ ⇓

strongly G-q.c. ⇒ strictly G-q.c. ⇒ G-q.c.

on X from Definition 12, where above symbol “q.c.” means
“quasi-concave”.

B. Properties of G-quasi-concavity

The following theorem shows a membership function µ is
(resp. strongly, strictly) quasi-concave if and only if it is (resp.
strongly,strictly) G-quasi-concave.

Theorem 1. Let X ⊂ R be a non-empty convex set, G2 :
[0, 1]2 → [0, 1] be a conjunctive aggregation function satisfy-
ing G2 ≥ TD, and µ : R → [0, 1] satisfying CoreX(µ) 6= ∅.
If µ is (resp. strictly, strongly) G-quasi-concave on X then µ
is (resp. strictly, strongly) quasi-concave on X .

The following examples show that neither the condition
“G2 ≥ TD” nor the condition “CoreX(µ) 6= ∅” in Theorem 1
can be eliminated.

Example 2. (i) Set X = R, and define a conjunctive
aggregation function G2 : [0, 1]2 → [0, 1] as

G2(x, y) =

{
1 if x = y = 1,

0 otherwise

for x, y ∈ [0, 1], and define µ : R → [0, 1] as

µ(x) =

{
1 if x = 0,
1
3 sinx+ 1

2 otherwise

for x ∈ R. In this case, G2 6≥ TD and CoreX(µ) =
{0} 6= ∅. Since µ is strongly G-quasi-concave, strictly
G-quasi-concave and also G-quasi-concave on X . How-
ever, µ is not quasi-concave on X . Thus, µ is neither
strictly quasi-concave on X nor strongly quasi-concave
on X .

(ii) Set X = R and G2 = TD, and define µ : R → [0, 1] as
µ(x) = 1

3 sinx + 1
2 for x ∈ R. In this case, G2 ≥ TD

and CoreX(µ) = ∅. Since µ is strongly G-quasi-concave
on X , µ is strictly G-quasi-concave on X and also
quasi-concave on X . However, µ is not quasi-concave
on X . Thus, µ is neither strictly quasi-concave on X
nor strongly quasi-concave on X .

The following Theorems 2, 3give us the relationship among
the variety of quasi-concavity, star-shapedness.

Theorem 2 (Theorem 4.34 in [3]). Let X ⊂ Rn be a non-
empty convex set, and µ : Rn → [0, 1]. Then the following
statements are equivalent.

(i) CoreX(µ) ⊂
∩

α∈[0,1] Ker(UX(µ, α)).
(ii) µ is quasi-concave on X from x for any x ∈ CoreX(µ).

(iii) µ is TD-quasi-concave on X .

Theorem 3. Let X ⊂ Rn be a non-empty convex set, and
µ : Rn → [0, 1]. Then the following statements hold.

(i) If µ is strictly (resp. strongly) TD-quasi-concave on X ,
then µ is strictly (resp. strongly) quasi-concave on X
from x for any x ∈ CoreX(µ).

(ii) Assume that µ(x) > 0,x ∈ X . If µ is strictly
(resp. strongly) quasi-concave on X from x for any
x ∈ CoreX(µ), then µ is strictly (resp. strongly) TD-
quasi-concave on X .

The following example shows that the condition “µ(x) >
0,x ∈ X” in Theorem 3 (ii) and 4 (ii) can not be eliminated.

Example 3. Let x = (x, y) ∈ R2, and set X = {x ∈ R2 :
|x| + |y| ≤ 1}. Define µ̃ : R2 → [0, 1] as µ̃(x) = max{1 −
|x| − |y|, 0} and µ : R2 → [0, 1] as

µ(x) =

{
1 − 1

2 (|x| + |y|) if x ∈ [−1, 1] × {0},

µ̃(x) otherwise.
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In this case, CoreX(µ) = {0} and not “µ(x) > 0,x ∈ X”.
Since µ is strongly quasi-concave on X from 0, µ is the
same. On the other hand, if we put y = (1, 0), z = (0, 1),
then µ(y) = 1

2 6= µ(z) = 0 and µ
(

1
2y + 1

2z
)

= 0 =
TD(µ(y), µ(z)). Thus, µ is neither strictly nor strongly TD-
quasi-concave on X .

Theorem 4. Let X ⊂ Rn be a non-empty convex set, µ :
Rn → [0, 1] satisfying CoreX(µ) 6= ∅ and G2 : [0, 1]2 →
[0, 1] be a conjunctive aggregation function satisfying G2 ≥
TD. Assume that µ is G-quasi-concave on X . Then µ is star-
shaped on X .

Example 2 shows that neither the condition “CoreX(µ) 6=
∅” nor the condition “G2 ≥ TD” in Theorem 4 can be
eliminated.

C. Aggregation of G-quasi-concave functions

Now, several G-quasi-concave membership functions are
aggregated by using an aggregation function, as the result, we
obtain a new aggregated membership function. We investigate
properties of such aggregated membership functions.

Let µi : Rn → [0, 1], i ∈ I , and Gm : [0, 1]m → [0, 1] be
an aggregation function. Then we define a function ψ : Rn →
[0, 1] as

ψ(x) = Gm(µ1(x), · · · , µm(x)), x ∈ Rn. (5)

Theorem 5. Let X ⊂ Rn be a non-empty convex set,
G′

2 : [0, 1]2 → [0, 1] be a conjunctive aggregation function
satisfying G′

2 ≥ TD, Gm : [0, 1]m → [0, 1] be an aggregation
function, and µi : Rn → [0, 1], i ∈ I . Moreover, assume that∩

i∈I CoreX(µi) 6= ∅ and that µi, i ∈ I are G′-quasi-concave
on X . Then a function ψ : Rn → [0, 1] defined by (5) is
star-shaped on X .

Theorem 6. Let X ⊂ Rn be a non-empty convex set,
G′

2 : [0, 1]2 → [0, 1] be a conjunctive aggregation function
and µi : Rn → [0, 1], i ∈ I . Assume that µi, i ∈ I are
G′-quasi-concave on X . Let Gm : [0, 1]m → [0, 1] be an
aggregation function satisfying Gm � G′

2. Then a function
ψ : Rn → [0, 1] defined by (5) is G′-quasi-concave on X .

From Theorem 6 and Lemma 1, we have the following
corollary.

Corollary 1. Let X ⊂ Rn be a non-empty convex set,
G2 : [0, 1]2 → [0, 1] be a conjunctive aggregation function,
and µi : Rn → [0, 1], i ∈ I . Assume that µi, i ∈ I are G-
quasi-concave on X . Then a function ψ1 : Rn → [0, 1] defined
as ψ1(x) = TM (µ1(x), · · · , µm(x)),x ∈ Rn is G-quasi-
concave on X . If “G2 is commutative and associative” or
“G2 � G2”, then functions ψj

2 : Rn → [0, 1], j ∈ I2 defined
as ψj

2(x) = Gj
m(µ1(x), · · · , µm(x)),x ∈ Rn, j ∈ I2 are G-

quasi-concave on X , where Gj
m : [0, 1]m → [0, 1], j ∈ I2 are

aggregation functions defined by (1) and (2).

For strict G-quasi-concavity and strong G-quasi-concavity
of a function ψ defined by (5), we obtain the properties like
as Theorem 6.

Theorem 7. Let X ⊂ Rn be a convex set, G′
2 : [0, 1]2 → [0, 1]

be a conjunctive aggregation function, and µi : Rn →
[0, 1], i ∈ I . Assume that µi, i ∈ I are strictly G′-quasi-
concave on X . Let Gm : [0, 1]m → [0, 1] be an aggregation
function. Assume that Gm is strongly monotone increasing and
that Gm � G′

2. Then ψ : Rn → [0, 1] defined by (5) is strictly
G′-quasi-concave on X .

Theorem 8. Let X ⊂ Rn be a non-empty convex set, G′
2 :

[0, 1]2 → [0, 1] be a conjunctive aggregation function, and
µi : Rn → [0, 1], i ∈ I . Assume that µi, i ∈ I are strongly
G′-quasi-concave on X . Let Gm : [0, 1]m → [0, 1] be an
aggregation function. Assume that Gm is strictly monotone
increasing and that Gm � G′

2. Then a function ψ : Rn →
[0, 1] defined by (5) is strongly G′-quasi-concave on X .

From Theorem 8 and Lemma 1, we have the following
corollary.

Corollary 2. Let X ⊂ Rn be a non-empty convex set, G2 :
[0, 1]2 → [0, 1] be a conjunctive aggregation function, and
µi : Rn → [0, 1], i ∈ I .

Assume that µi, i ∈ I are strongly G-quasi-concave on
X . Then a function ψ1 : Rn → [0, 1] defined as ψ1(x) =
TM (µ1(x), · · · , µm(x)),x ∈ Rn is strongly G-quasi-concave
on X .

Assume also that G2 is strictly monotone increasing. If
“G2 is commutative and associative” or “G2 � G2”, then
functions ψj

2 : Rn → [0, 1], j ∈ I2 defined as ψj
2(x) =

Gj
m(µ1(x), · · · , µm(x)),x ∈ Rn, j ∈ I2 are strongly G-

quasi-concave on X , where Gj
m : [0, 1]m → [0, 1], j ∈ I2

are aggregation functions defined by (1) and (2).

IV. CONCLUSIONS.

In this paper, the quasi-concavity of membership functions
was generalized by using conjunctive aggregation functions
instead of the minimum operation. Our generalized quasi-
concavity was called G-quasi-concavity. Then the properties of
G-quasi-concavity of membership functions are investigated.
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