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Abstract—We study an optimization problem which
is called a set optimization problem. We investigate the
dual space of an ordered vector space in which the set
optimization problem is embedded, and characterize the
dual problem.

I. Introduction and Preliminaries

Let X, Y be normed spaces, S a nonempty convex
subset of X, K a closed convex cone in Y and
assume that intK , ∅ and K∩(−K) = {θY}, where θY
is the null vector of Y , and F a map from S to 2Y . In
this paper, we consider the following minimization
problem:

(P) minimize F(x)
subject to x ∈ S .

There are two types criteria of solutions for the
problem with respect to the convex cone K. One is
vector optimization (VP); the notions of solutions
is based on comparisons between vectors. In this
paper, two binary relations ≤K and <K are defined
on Y: for any a, b ∈ Y ,
• a ≤K b if a + K 3 b, and
• a <K b if a + intK 3 b.

Note that the latter condition a + intK 3 b is
equivalent to a+ K ⊃ b+ rV for some r > 0, where
V = {y ∈ Y | ‖y‖ ≤ 1}. For vector optimization (VP),
minimal and weak minimal solutions are defined as
follows. An element x0 ∈ S is said to be
• a minimal solution of (VP) if F(x0) has a

minimal element of ∪x∈S F(x) with respect to
K, that is, there exists y0 ∈ F(x0) such that

F(x0) ∩ (y0 − K) = {y0}, (1)
• a weak minimal solution of (VP) if F(x0) has

a weak minimal element of ∪x∈S F(x) with
respect to K, that is, there exists y0 ∈ F(x0)
such that

F(x0) ∩ (y0 − intK) = ∅. (2)

Also, condition (1) is equivalent to there are no (x, y)
satisfying

x ∈ S , y ∈ F(x), y ≤K y0, and y0 �K y, (3)

and condition (2) is equivalent to there are no (x, y)
satisfying

x ∈ S , y ∈ F(x), and y <K y0. (4)

The other is set optimization (SP); the notions of
solutions is based on comparisons between sets. Six
binary relations on the family of sets are introduced
in [1], we use the following two relations in this
paper. For nonempty set A, B ⊂ Y ,
• A ≤l

K B if cl(A + K) ⊃ B, and
• A <l

K B if ∃r > 0 such that A + K ⊃ B + rV ,
where addition and scalar multiplication is defined
as follows:

A + B = {a + b | a ∈ A, b ∈ B},

λA = {λa | a ∈ A, λ ∈ R}.

Clearly these relations are generalizations of the
binary relations on Y . We define minimal and weak
minimal solutions for (SP). An element x0 ∈ S is
said to be
• a minimal solution of (SP) if there is no x

satisfying

x ∈ S , F(x) ≤l
K F(x0), and F(x0) �l

K F(x),
(5)

• a weak minimal solution of (SP) if there is no
x satisfying

x ∈ S and F(x) <l
K F(x0). (6)

We can see that (3) and (5) are analogous, also (4)
and (6).

In general, one of useful methods to solve an
optimization problem is duality. When we study
dual problems of (VP), the dual space Y∗ of Y is
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an important role. However when we study dual
problems of (SP), it is difficult to consider vector
structure of a family of sets, but also dual space of
the family.

In this paper, we study dual problems of set
optimization problem (SP), by using methodology
of dual spaces. The layout of the paper is as follows.
In Section 2, we show previous results, a way of
construction of an ordered vector space in which
set optimization (SP) is embedded. In Section 3,
we establish new results concerned with the dual
space of the ordered vector space and characterize
the dual problems of set optimization problem (SP).

II. The embedding space

In this section, we define a range of the objective
function F, and show a way of certain ordered
vector space in which set optimization problem (SP)
is embedded. All results of the section, see [2].

Let C0(Y), the range of F, be the family of all
nonempty K-convex and K-bounded subsets of Y ,
where a subset A ⊂ Y is said to be K-convex if
A + K is convex, and A is said to be K-bounded if
there exists y ∈ Y such that y + K ⊃ A.

At first we define a binary relation ≡ on C0(Y)
with respect to the convex cone K. For each (A, B),
(C,D) ∈ C0(Y)2,

(A, B) ≡ (C,D)
def⇐⇒ A + D + K = B +C + K.

Then ≡ is an equivalence relation on C0(Y)2, and
we write the quotient set of C0(Y) by ≡ as V, that
is

V = {[A, B] | (A, B) ∈ C0(Y)2},

where [A, B] is the equivalence class of (A, B) ∈
C0(Y)2,

[A, B] = {(C,D) ∈ C0(Y)2 | (A, B) ≡ (C,D)}.

Next we introduce a vector structure and a norm
in V. Define addition and scalar multiplication on
V by

[A, B] + [C,D] = [A +C, B + D],

λ · [A, B] =
{

[λA, λB] if λ ≥ 0
[(−λ)B, (−λ)A] if λ < 0.

Then (V,+, · ) is a vector space over R. Also for a
given base W of K+, K+ is the positive polar cone
of K by

K+ = {y∗ ∈ Y∗ | 〈y∗, y〉 ≥ 0, ∀y ∈ K},

define real-valued function ‖ · ‖ on V as

‖[A, B]‖ = sup
y∗∈W
|inf 〈y∗, A〉 − inf 〈y∗, B〉|

for all [A, B] ∈ V. Then ‖ · ‖ is a norm on V. Also
we can check that

µ(K) = {[A, B] ∈ V | B ≤l
K A}

is a closed solid pointed convex cone in V, and
define the positive polar cone of µ(K) as

µ(K)+ = {T ∈ V∗ | 〈T, [A, B]〉 ≥ 0,∀[A, B] ∈ µ(K)}.
Now, we have a duality result of (SP).

Theorem 1. Assume that F is a function from S to
C0(Y). If ∪

x∈S
[F(x), 0] + µ(K)

is convex in V, then for any x0 ∈ S , the following
are equivalent:

1) x0 is a weak minimal solution of (SP),
2) ∃T ∈ µ(K)+ such that T , 0 and

T ([F(x), F(x0)]) ≥ 0, ∀x ∈ S .

In general, this kind of theorem is useful to
calculate solutions. In this case, however, there is
a difficulty because to observe the dual space V∗ of
V is not easy. In the next section, we show an idea
to treat the dual space V∗.

III. Main Results
Let Bal(Y) be the family of all nonempty bal-

anced subsets of Y , where a subset A ⊂ Y is
balanced if λA ⊂ A when |λ| ≤ 1. Since Bal(Y)
is closed under the addition of sets and the scalar
multiplication, we can define a notion of linearly
independent on the family Bal(Y). If A1, A2, . . .,
An ∈ Bal(Y) and λ1, λ2, . . ., λn ∈ R, then

λ1A1 + λ2A2 + · · · + λnAn

is said to be the linear combination of these sets
with these scalars as coefficients. A subfamily A
of Bal(Y) is said to be linearly independent if none
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of them can be written as a linear combination of
finitely many other sets in A. Now we have the
following lemma.

Lemma 1. Let {A1, A2, . . . , Al} ⊂ Bal(Y)∩C0(Y) be
linearly independent. Then
x + l∑

i=1

λiAi, y +
l∑

i=1

µiAi

 ∣∣∣∣ λi, µi ≥ 0


∗

= Y∗ × Rl.

By using the lemma, we have a duality result of
(SP).

Theorem 2. Let {A1, A2, . . . , Al} ⊂ Bal(Y) ∩ C0(Y)
be linearly independent, and assume that F is a
function from S to

{λ1A1 + λ2A2 + · · · + λlAl | λ1, . . . , λl ≥ 0},

that is, there exist function f from S to Y and
nonnegative-valued functions g1, g2, . . . , gl defined
on S such that

F(x) = f (x) +
l∑

i=1

gi(x)Ai

for all x ∈ S . If∪
x∈S

[F(x), 0] + µ(K)

is convex, then for any x0 ∈ S , the following are
equivalent:

1) x0 is a weak minimal solution of (SP),
2) there exists nonzero (y∗0, µ1, µ2, . . . , µl) ∈ K+ ×

[0,∞)l such that〈
y∗0, f (x0)

〉
+

l∑
i=1

µigi(x0) ≤
〈
y∗0, f (x)

〉
+

l∑
i=1

µigi(x)

holds for each x ∈ S .
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