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Abstract — The aim of this study is to develop a real-time 
visual motion detection system by using physiologically 
meaningful image processing algorithm. Spatiotemporal energy 
model has been recognized as the most plausible algorithm 
corresponding to the jobs in motion detection performed by 
simple and complex cells existing in area V1 of cats or macaque 
monkeys. Because of the parallelism of the brain, this algorithm 
inherently has high parallel performance. Together with the 
locality, spatiotemporal Gabor filtering and succeeding energy 
extraction process fit with the architecture of present GPU 
(Graphic Processing Unit). Enabling real-time motion detection 
at each pixel location over the entire input image is fundamental 
in many applications as for instances in robotics vision and car-
mounted camera.  This system, moreover, is open for further 
expansion based on the physiological knowledge about 
mammalian visual system. 

I. INTRODUCTION 
Application of the mathematical models of mammalian 

visual information processing on artificial image processing 
has been fairly attended but faintly executed because of their 
expensive computational cost. Pixelwise parallel processing, 
the fundamental policy of the visual system, causes the heavy 
load of serial processing systems. Spatial 2D Gabor filtering 
regarded as exemplifying such a model applicable to 
technology also has such difficulty in the segment requiring 
real–time system, such as robotics vision and car-mounted 
camera. In these situations in which cameras are moving 
around, detection of visual motion direction is crucial for the 
recognition of environmental 3D structures, objects, self-
motion, and etc. Spatiotemporal 3D Gabor filter is a model of 
a type of front-end cells in the visual cortex, that is, simple 
cell sensitive to visual motion direction existing in area V1 of 
the visual cortex. This filter is more time consuming than 2D 
Gabor filter. Although it is possible to save processing time 
by some programming technique or simplification, it is 
useless for real-time system as far as applying for VGA 
resolution image sequences. Among several schemas that 
have possibility to overcome this limitation, GPGPU (General 
Purpose computation on GPU) technology looked attractive 
because of its balance between the number of GPU 
processing unit and their functional ability. Actually it is 
reported here that spatiotemporal energy model, that is, 
spatiotemporal 3D Gabor filtering followed by energy 
extraction process, is executable in real-time by implementing 
on GPU, meaning that an obstacle on the path through the 

border of vision research science and image processing 
technology is removed. The priority of this paper, therefore, is 
to show the potential of brain-like parallel image processing 
through GPGPU acceleration. 

II. ALGORITHM 
 

 
Fig. 1 Diagram of spatiotemporal energy model. Bottom circles 
represent a quadrature pair of spatiotemporal Gabor filters. Outputs 
of the filters are transformed into energy expression.  

 
Spatiotemporal energy model shown in Fig. 1 has been 

proposed as the model of motion sensitive simple and 
complex cells in area V1 of the visual cortex [1]. For the 
visual system, 2D visual images are continuously supplied 
and constitute 3D continuum of visual information. Motion 
detection can be formulated as detecting the 3D orientation of 
edges in the spatiotemporal 3D space. This can be achieved 
by using some 3D convolutional filter followed by some 
position or phase invariant integration. The visual system 
employs 3D Gabor as convolution kernel (Fig. 2) for simple 
cells [2][3] and phase invariant energy expression for 
complex cells, which is shown in upper part of Fig. 1 where 
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outputs of the spatiotemporal filters in quadrature phase 
relationship are squared (R2), added (+) and rooted (√) . 
Through this process, the output amplitude becomes stable 
and invariant for stimulus phases whereas those of the 
spatiotemporal filters are periodically modulated because of 
their phase dependency. High-speed implementation of this 
model has been attempted by using a specialized hardware [4]. 
 

 
Fig. 2 Graphical representation of spatiotemporal 3D Gabor filter. 
Top view corresponds to spatiotemporal filter, and a cross section at 
a plane perpendicular to t axis (x-y plane) shows spatial Gabor filter. 
 

 
 

Fig. 3 Temporal summation across subsequent 5 frames. Each frame 
was filtered by even and odd spatial Gabor filters. Arranging phase 
shift between the neighboring frames produce the counterpart of 
spatiotemporal convolution in our algorithm. Recent five frames 
(t0~t-4) were used and a temporal window function (0.53, 0.85, 1, 
0.85, 0.53) was applied. 

 
In this study, spatial 2D Gabor filter was applied to each 

video frame, and then temporally summed. For each frame, 
even and odd kernel was used. The constituents of the 
temporal summation were recent 5 frames.  To make 
sensitivity to moving or stationary edges along axis 
perpendicular to the filter orientation, the difference in the 

phase of Gabor kernel between two continuous frames was 
varied as -90, 0, 90 degree. For 0 degree difference, images 
filtered with the same phase were summed. For -90 or 90 
degree, images filtered with even and odd ones were properly 
chosen and summed as shown in Fig. 3. The central part of a 
Gauss distribution was used as a temporal weight function. 
The resultant images were outputs of the spatiotemporal 
filters and inputs to the following process leading to the final 
output of the spatiotemporal energy model. Outputs for three 
motion direction, e.g. leftward, stationary, and rightward for 
horizontal axis, were compared, and the maximal response 
was regarded as detected motion direction at the filter 
location. This directional information was thrown into further 
competition among those from multiple resolutions described 
in the next section. 

III. MULTI-RESORUTION 
When using spatiotemporal energy model for motion 

detection, detectable motion speed is confined in proportion 
with the size of the filter. Multi-resolution approach is a 
prescription for the limitation. Decreasing the size of images 
is comparable to increasing the size of filter kernel. At high 
and low resolution, slow and fast motion can be detected, 
respectively. Here a VGA input fame was scaled into 3 lower 
resolutions, and motion detection was performed 
independently at each resolution (Fig. 4). This process 
consequently requires one more step that integrates the 
outputs of different resolutions for the final single output. 
This integration was just done by giving a priority to the 
fastest motion signal among signals form different resolutions 
at each pixel. 

 
Fig. 4 Motion detection at 4 different resolutions. A single input 
image was scaled into 4 sizes and processed in parallel. Outputs 
form different resolutions were integrated for a single output. 
 

These motion detection processes are summarized as 
shown in Fig. 5. Input image sequence is firstly transformed 
into gray scale images. Motion detections are independently 
performed at 4 different resolutions through spatial Gabor 
convolution, temporal summation of adjacent 5 frames for 3 
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motion directions, and combining the outputs from the 
quadrature pair into energy expression. The direction showing 
the largest response is regarded as detected motion direction 
at the resolution. Finally, the results at 4 resolutions are 
integrated for a single result of motion detection, and an 
output image sequence is produced to show the result visually. 

 

 
 
Fig. 5 A moment image in a driving movie. 
 
An example of the result of motion detection through 

these processes is shown in Fig. 6, 7 and 8. The picture in Fig. 
6 is a moment in a movie recorded by a vide camera attached 
on a car. For the calculation, the frame in Fig. 6 as well as 
two preceding frames and two succeeding frames, 5 frames in 
total, were used. Detected motion directions by offline 
calculation are indicated by colors in Fig. 7 for 4 different 
resolutions and in Fig. 8 for integrated result. Four colors 
were assigned for detected four motion directions, red for 
leftward, green for rightward, yellow for upward, blue for 
downward. White was assigned for stationary edges. The 
difference in motion speed is indicated by purity of the colors. 
If motion speed of an edge is slow, the edge is painted by 
whitish color, e.g. slow leftward motion by pink. Because of 
the expansive optical flow, the left part moving leftward is 
indicated by red. In the same manner, the rightmost power 
pole is indicated by green meaning rightward motion, and the 
bottom zebra crossing is indicated by blue meaning 
downward motion.  Thus the distribution of colors in Fig. 7 
and 8 tells you that the car is moving forward. For the highest 
resolution at upper left in Fig. 7, relatively slow motions 
around the central part of the image are detected. For lower 
resolutions, relatively fast motions around the peripheral part 
are detected. They are integrated into an image in Fig. 8.  Our 
attempt is to earn this resultant image as continuous image 
sequence in real-time. 

 
Fig. 6 A moment image in a driving movie. 
 

 
Fig. 7 Detected motion directions at 4 different resolutions 
shown by 4 colors. Upper left: 640x480, upper right: 320x240, 
lower left: 160x120, lower right: 80x60. 
 

 
Fig. 8 Integrated motion directions shown by 4 colors. 
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IV. EXPERIMENTAL SETUPS AND METHODS 
The specs of the computer used for measuring processing 

speed were as follows. CPU: Intel Core i7 975 EX, 4 cores, 
3.33 GHz. GPU: nVIDIA GeForce GTX285, 240 cores, 
graphic 702 MHz, processor 1512 MHz. The computer had 
two GPU cards devoted to GPGPU calculation, and one more 
for graphics use only. These GPU units were controlled under 
a GPGPU environment named CUDA2.0 supplied by a GPU 
vendor nVIDIA. This environment enables us to use 
processors equipped for graphics as those for parallel 
processing, and consists of a driver for the video cards and C-
language programming libraries. Program codes controlling 
the GPUs were integrated with those for the CPU in a project 
of Microsoft Visual Studio 2005. A PC camera supplied 
image frames through USB interface. Total processing time 
for each frame and processing time consumed for spatial 
convolution at each resolution were measured and averaged 
over 1000 frames. The sizes of the convolution filter were 8 x 
8, 16 x 16, and 32 x 32 pixels containing carrier sine or cosine 
wave whose wavelengths were 4, 8, and 16 pixels, 
respectively (Fig. 9). Half height width of Gaussian window 
function was the same as the wavelength of the carrier wave. 
Phase shift of 90 degree corresponds to the 1/4 of the 
wavelength, that is, 1, 2, and 4 pixels, respectively. 

 

 
 
Fig. 9 Quadrature pairs (left: even, right odd) of spatial Gabor filter 
kernel. Sizes were varied. For each size, phase shift between 
adjacent temporal frames were 0, 1/4, or -1/4 f (=wavelength). 
Corresponding shift distances are indicated as pixel numbers after 
the filter sizes.  

V. IMPLEMENTATION 
To compare the performance of GPU with that without 

GPU, the same algorithm was executed under two different 
conditions on the same computer. For the condition without 
GPU, motion detection algorithm was implemented by using 
CPU only (Fig. 10). Threads were used to improve the 
performance. For the condition with GPU (Fig. 11), CPU 
threads were used only for sampling and displaying images, 

and for controlling two GPUs. The CPU sends a single 
original VGA frame to the GPU cards, and receives a single 
output frame from GPU. All the motion detection process of 
spatiotemporal energy model, multi-resolution scale change, 
and integration are implemented on the GPUs. One GPU was 
assigned for the motion detection along horizontal axis, 
leftward and rightward, and another for that along vertical 
axis, upward and downward. 

 
Fig. 10 Processing stream under CPU only condition. 
 

 
Fig. 11 Processing stream under GPU condition 

VI. RESULTS 
Processing times under CPU only condition are shown in 

Table 1 and as a graph in Fig. 12. Total processing times are 
about 4 times different between adjacent filter sizes. These 
differences are proportional to those in the filter size as area 
equivalent to the number of pixels contained in the filters. 
This means that, for CPU only condition, total processing 
time is proportional to the number of repetitive convolutional 
calculations. Actually, more than 95% of the total processing 
time is consumed by spatial convolution of the Gabor filter, 
and processing times of spatial convolution at each resolution 
are also about 3~4 times different between adjacent filter 
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sizes. Under this condition, processing time for 8 x 8 filter is 
about 0.5 sec for 1 frame or 2 FPS (frames per second), 
meaning that real-time processing is almost impossible. For 
larger filters, their temporal resolutions are far beyond reality. 

 

 
Table 1 Processing times under CPU only condition. Total 
processing time and those consumed by spatial Gabor convolution at 
four different resolutions are shown for each filter size. 

 
Fig. 12 Processing times under CPU only condition. Total 
processing time and those consumed by spatial Gabor convolution 
are indicated for each filter size. 

 
For GPU condition, Table 2 and a graph in Fig. 13 show 

the results. Processing times are quite different from those 
under the former condition. Firstly, the amounts are quite 
smaller than the former condition. The smallest and middle 
size filter consumed less than 10 ms in total. Even the largest 
filter consumed 22 ms. Secondly, the differences between 
filter sizes are small. For 8 x 8 and 16 x 16, total processing 
times are almost the same. For 32 x 32, total processing time 
is twice that of 16 x 16. This difference is much smaller than 
those seen under CPU only condition. Focusing on spatial 
convolution at each resolution, the differences between 16 x 
16 and 32 x 32 are large. Especially, the difference at 640 x 
480 resolution is 5.3 times. The cause of this difference is 
now under investigation. Thirdly, the percentages of 
processing time consumed by convolutional calculation are 
smaller than those under the former condition. For 8 x 8, 16 x 
16, and 32 x 32 filter, the percentages of the processing time 
consumed by spatial convolution were 32%, 40%, 78% of 

total ones, respectively. Decrease in processing time for 
convolution made the rest processing time, e.g. integration of 
the outputs of 4 different resolutions, standing out. 

 

 
 

Table 2 Processing times under GPU only condition. Total 
processing time and those consumed by spatial Gabor convolution at 
four different resolutions are shown for each filter size. 

 
Fig. 13 Processing times under GPU condition. Total processing 
time and those consumed by spatial Gabor convolution are indicated 
for each filter size. 

 

 
Table 3 Temporal resolutions and their ratio between CPU only and 
GPU conditions. Numbers show temporal resolution by FPS 
calculated from processing times. The bottom row shows 
multiplying factors for each filter size. 
 

Overall, as shown in Table 3, the temporal resolutions for 
each filter size under CPU only condition are far less 
achieving real-time. On the other hand, the smallest and 
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middle size filter under GPU condition marked more then 100 
FPS. Considering that the frame rate of ordinary PC camera is 
30 FPS, this temporal resolution itself is more than three 
times the resolution required and has capacity of some post-
process on top of the motion detection process. Even for the 
largest filter, the rate exceeds 30 FPS. The ratios of 
processing time between CPU only and GPU conditions are 
46~252 times depending on the filter size. The computer with 
GPUs attached was about 1.5 times more expensive than that 
without GPUs. Together with the performances of these 
systems, which is 50~250 times different, the cost of the 
system with GPUs was 1/30~1/150 of that of the system 
without GPUs. 

VII. CONCLUSION 
Again the aim of this study is to open a path through the 

border of vision science and image processing technology. 
This should be beneficial for both fields like a tunnel under 
some mountain connecting two big cities. One of the 
obstacles has been processing speed. Nothing other than 
hyper parallel architecture can conquer this situation. Here we 
constructed this passage on a common parallel technology. 
Accessibility to GPGPU technology is comparable to 
ordinary high spec PCs. Temporal resolution of 100 FPS is 
enough for real-time usage, and has more capacity for 
expansive implementation of higher order receptive field 
functions such as surround suppression [5] or contextual 
modulation [6]. Spinning off the product of this physiological 
approach into some image processing system should become 
drive force for both image technology and vision science. 
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