
Real-Time Visal Motion Detection by Spatiotemporal
Energy Model Implemented on GPU

Akitoshi Hanazawa
Kyushu Institute of Technology, LSSE, Department of Brain Science and Engineering

Hibikino 2-4, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan
email: hanazawa@brain.kyutech.ac.jp

Abstract — The aim of this study is to develop a real-time
visual motion detection system by using physiologically
meaningful image processing algorithm. Spatiotemporal energy
model has been recognized as the most plausible algorithm
corresponding to the jobs in motion detection performed by
simple and complex cells existing in area V1 of cats or macaque
monkeys. Because of the parallelism of the brain, this algorithm
inherently has high parallel performance. Together with the
locality, spatiotemporal Gabor filtering and succeeding energy
extraction process fit with the architecture of present GPU
(Graphic Processing Unit). Enabling real-time motion detection
at each pixel location over the entire input image is fundamental
in many applications as for instances in robotics vision and car-
mounted camera. This system, moreover, is open for further
expansion based on the physiological knowledge about
mammalian visual system.

I. INTRODUCTION
Application of the mathematical models of mammalian

visual information processing on artificial image processing
has been fairly attended but faintly executed because of their
expensive computational cost. Pixelwise parallel processing,
the fundamental policy of the visual system, causes the heavy
load of serial processing systems. Spatial 2D Gabor filtering
regarded as exemplifying such a model applicable to
technology also has such difficulty in the segment requiring
real–time system, such as robotics vision and car-mounted
camera. In these situations in which cameras are moving
around, detection of visual motion direction is crucial for the
recognition of environmental 3D structures, objects, self-
motion, and etc. Spatiotemporal 3D Gabor filter is a model of
a type of front-end cells in the visual cortex, that is, simple
cell sensitive to visual motion direction existing in area V1 of
the visual cortex. This filter is more time consuming than 2D
Gabor filter. Although it is possible to save processing time
by some programming technique or simplification, it is
useless for real-time system as far as applying for VGA
resolution image sequences. Among several schemas that
have possibility to overcome this limitation, GPGPU (General
Purpose computation on GPU) technology looked attractive
because of its balance between the number of GPU
processing unit and their functional ability. Actually it is
reported here that spatiotemporal energy model, that is,
spatiotemporal 3D Gabor filtering followed by energy
extraction process, is executable in real-time by implementing
on GPU, meaning that an obstacle on the path through the

border of vision research science and image processing
technology is removed. The priority of this paper, therefore, is
to show the potential of brain-like parallel image processing
through GPGPU acceleration.

II. ALGORITHM

Fig. 1 Diagram of spatiotemporal energy model. Bottom circles
represent a quadrature pair of spatiotemporal Gabor filters. Outputs
of the filters are transformed into energy expression.

Spatiotemporal energy model shown in Fig. 1 has been

proposed as the model of motion sensitive simple and
complex cells in area V1 of the visual cortex [1]. For the
visual system, 2D visual images are continuously supplied
and constitute 3D continuum of visual information. Motion
detection can be formulated as detecting the 3D orientation of
edges in the spatiotemporal 3D space. This can be achieved
by using some 3D convolutional filter followed by some
position or phase invariant integration. The visual system
employs 3D Gabor as convolution kernel (Fig. 2) for simple
cells [2][3] and phase invariant energy expression for
complex cells, which is shown in upper part of Fig. 1 where

Fifth International Workshop on Computational Intelligence & Applications
IEEE SMC Hiroshima Chapter, Hiroshima University, Japan, November 10, 11 & 12, 2009

213

outputs of the spatiotemporal filters in quadrature phase
relationship are squared (R2), added (+) and rooted (√) .
Through this process, the output amplitude becomes stable
and invariant for stimulus phases whereas those of the
spatiotemporal filters are periodically modulated because of
their phase dependency. High-speed implementation of this
model has been attempted by using a specialized hardware [4].

Fig. 2 Graphical representation of spatiotemporal 3D Gabor filter.
Top view corresponds to spatiotemporal filter, and a cross section at
a plane perpendicular to t axis (x-y plane) shows spatial Gabor filter.

Fig. 3 Temporal summation across subsequent 5 frames. Each frame
was filtered by even and odd spatial Gabor filters. Arranging phase
shift between the neighboring frames produce the counterpart of
spatiotemporal convolution in our algorithm. Recent five frames
(t0~t-4) were used and a temporal window function (0.53, 0.85, 1,
0.85, 0.53) was applied.

In this study, spatial 2D Gabor filter was applied to each

video frame, and then temporally summed. For each frame,
even and odd kernel was used. The constituents of the
temporal summation were recent 5 frames. To make
sensitivity to moving or stationary edges along axis
perpendicular to the filter orientation, the difference in the

phase of Gabor kernel between two continuous frames was
varied as -90, 0, 90 degree. For 0 degree difference, images
filtered with the same phase were summed. For -90 or 90
degree, images filtered with even and odd ones were properly
chosen and summed as shown in Fig. 3. The central part of a
Gauss distribution was used as a temporal weight function.
The resultant images were outputs of the spatiotemporal
filters and inputs to the following process leading to the final
output of the spatiotemporal energy model. Outputs for three
motion direction, e.g. leftward, stationary, and rightward for
horizontal axis, were compared, and the maximal response
was regarded as detected motion direction at the filter
location. This directional information was thrown into further
competition among those from multiple resolutions described
in the next section.

III. MULTI-RESORUTION
When using spatiotemporal energy model for motion

detection, detectable motion speed is confined in proportion
with the size of the filter. Multi-resolution approach is a
prescription for the limitation. Decreasing the size of images
is comparable to increasing the size of filter kernel. At high
and low resolution, slow and fast motion can be detected,
respectively. Here a VGA input fame was scaled into 3 lower
resolutions, and motion detection was performed
independently at each resolution (Fig. 4). This process
consequently requires one more step that integrates the
outputs of different resolutions for the final single output.
This integration was just done by giving a priority to the
fastest motion signal among signals form different resolutions
at each pixel.

Fig. 4 Motion detection at 4 different resolutions. A single input
image was scaled into 4 sizes and processed in parallel. Outputs
form different resolutions were integrated for a single output.

These motion detection processes are summarized as
shown in Fig. 5. Input image sequence is firstly transformed
into gray scale images. Motion detections are independently
performed at 4 different resolutions through spatial Gabor
convolution, temporal summation of adjacent 5 frames for 3

214

motion directions, and combining the outputs from the
quadrature pair into energy expression. The direction showing
the largest response is regarded as detected motion direction
at the resolution. Finally, the results at 4 resolutions are
integrated for a single result of motion detection, and an
output image sequence is produced to show the result visually.

Fig. 5 A moment image in a driving movie.

An example of the result of motion detection through

these processes is shown in Fig. 6, 7 and 8. The picture in Fig.
6 is a moment in a movie recorded by a vide camera attached
on a car. For the calculation, the frame in Fig. 6 as well as
two preceding frames and two succeeding frames, 5 frames in
total, were used. Detected motion directions by offline
calculation are indicated by colors in Fig. 7 for 4 different
resolutions and in Fig. 8 for integrated result. Four colors
were assigned for detected four motion directions, red for
leftward, green for rightward, yellow for upward, blue for
downward. White was assigned for stationary edges. The
difference in motion speed is indicated by purity of the colors.
If motion speed of an edge is slow, the edge is painted by
whitish color, e.g. slow leftward motion by pink. Because of
the expansive optical flow, the left part moving leftward is
indicated by red. In the same manner, the rightmost power
pole is indicated by green meaning rightward motion, and the
bottom zebra crossing is indicated by blue meaning
downward motion. Thus the distribution of colors in Fig. 7
and 8 tells you that the car is moving forward. For the highest
resolution at upper left in Fig. 7, relatively slow motions
around the central part of the image are detected. For lower
resolutions, relatively fast motions around the peripheral part
are detected. They are integrated into an image in Fig. 8. Our
attempt is to earn this resultant image as continuous image
sequence in real-time.

Fig. 6 A moment image in a driving movie.

Fig. 7 Detected motion directions at 4 different resolutions
shown by 4 colors. Upper left: 640x480, upper right: 320x240,
lower left: 160x120, lower right: 80x60.

Fig. 8 Integrated motion directions shown by 4 colors.

215

IV. EXPERIMENTAL SETUPS AND METHODS
The specs of the computer used for measuring processing

speed were as follows. CPU: Intel Core i7 975 EX, 4 cores,
3.33 GHz. GPU: nVIDIA GeForce GTX285, 240 cores,
graphic 702 MHz, processor 1512 MHz. The computer had
two GPU cards devoted to GPGPU calculation, and one more
for graphics use only. These GPU units were controlled under
a GPGPU environment named CUDA2.0 supplied by a GPU
vendor nVIDIA. This environment enables us to use
processors equipped for graphics as those for parallel
processing, and consists of a driver for the video cards and C-
language programming libraries. Program codes controlling
the GPUs were integrated with those for the CPU in a project
of Microsoft Visual Studio 2005. A PC camera supplied
image frames through USB interface. Total processing time
for each frame and processing time consumed for spatial
convolution at each resolution were measured and averaged
over 1000 frames. The sizes of the convolution filter were 8 x
8, 16 x 16, and 32 x 32 pixels containing carrier sine or cosine
wave whose wavelengths were 4, 8, and 16 pixels,
respectively (Fig. 9). Half height width of Gaussian window
function was the same as the wavelength of the carrier wave.
Phase shift of 90 degree corresponds to the 1/4 of the
wavelength, that is, 1, 2, and 4 pixels, respectively.

Fig. 9 Quadrature pairs (left: even, right odd) of spatial Gabor filter
kernel. Sizes were varied. For each size, phase shift between
adjacent temporal frames were 0, 1/4, or -1/4 f (=wavelength).
Corresponding shift distances are indicated as pixel numbers after
the filter sizes.

V. IMPLEMENTATION
To compare the performance of GPU with that without

GPU, the same algorithm was executed under two different
conditions on the same computer. For the condition without
GPU, motion detection algorithm was implemented by using
CPU only (Fig. 10). Threads were used to improve the
performance. For the condition with GPU (Fig. 11), CPU
threads were used only for sampling and displaying images,

and for controlling two GPUs. The CPU sends a single
original VGA frame to the GPU cards, and receives a single
output frame from GPU. All the motion detection process of
spatiotemporal energy model, multi-resolution scale change,
and integration are implemented on the GPUs. One GPU was
assigned for the motion detection along horizontal axis,
leftward and rightward, and another for that along vertical
axis, upward and downward.

Fig. 10 Processing stream under CPU only condition.

Fig. 11 Processing stream under GPU condition

VI. RESULTS
Processing times under CPU only condition are shown in

Table 1 and as a graph in Fig. 12. Total processing times are
about 4 times different between adjacent filter sizes. These
differences are proportional to those in the filter size as area
equivalent to the number of pixels contained in the filters.
This means that, for CPU only condition, total processing
time is proportional to the number of repetitive convolutional
calculations. Actually, more than 95% of the total processing
time is consumed by spatial convolution of the Gabor filter,
and processing times of spatial convolution at each resolution
are also about 3~4 times different between adjacent filter

216

sizes. Under this condition, processing time for 8 x 8 filter is
about 0.5 sec for 1 frame or 2 FPS (frames per second),
meaning that real-time processing is almost impossible. For
larger filters, their temporal resolutions are far beyond reality.

Table 1 Processing times under CPU only condition. Total
processing time and those consumed by spatial Gabor convolution at
four different resolutions are shown for each filter size.

Fig. 12 Processing times under CPU only condition. Total
processing time and those consumed by spatial Gabor convolution
are indicated for each filter size.

For GPU condition, Table 2 and a graph in Fig. 13 show

the results. Processing times are quite different from those
under the former condition. Firstly, the amounts are quite
smaller than the former condition. The smallest and middle
size filter consumed less than 10 ms in total. Even the largest
filter consumed 22 ms. Secondly, the differences between
filter sizes are small. For 8 x 8 and 16 x 16, total processing
times are almost the same. For 32 x 32, total processing time
is twice that of 16 x 16. This difference is much smaller than
those seen under CPU only condition. Focusing on spatial
convolution at each resolution, the differences between 16 x
16 and 32 x 32 are large. Especially, the difference at 640 x
480 resolution is 5.3 times. The cause of this difference is
now under investigation. Thirdly, the percentages of
processing time consumed by convolutional calculation are
smaller than those under the former condition. For 8 x 8, 16 x
16, and 32 x 32 filter, the percentages of the processing time
consumed by spatial convolution were 32%, 40%, 78% of

total ones, respectively. Decrease in processing time for
convolution made the rest processing time, e.g. integration of
the outputs of 4 different resolutions, standing out.

Table 2 Processing times under GPU only condition. Total
processing time and those consumed by spatial Gabor convolution at
four different resolutions are shown for each filter size.

Fig. 13 Processing times under GPU condition. Total processing
time and those consumed by spatial Gabor convolution are indicated
for each filter size.

Table 3 Temporal resolutions and their ratio between CPU only and
GPU conditions. Numbers show temporal resolution by FPS
calculated from processing times. The bottom row shows
multiplying factors for each filter size.

Overall, as shown in Table 3, the temporal resolutions for
each filter size under CPU only condition are far less
achieving real-time. On the other hand, the smallest and

217

middle size filter under GPU condition marked more then 100
FPS. Considering that the frame rate of ordinary PC camera is
30 FPS, this temporal resolution itself is more than three
times the resolution required and has capacity of some post-
process on top of the motion detection process. Even for the
largest filter, the rate exceeds 30 FPS. The ratios of
processing time between CPU only and GPU conditions are
46~252 times depending on the filter size. The computer with
GPUs attached was about 1.5 times more expensive than that
without GPUs. Together with the performances of these
systems, which is 50~250 times different, the cost of the
system with GPUs was 1/30~1/150 of that of the system
without GPUs.

VII. CONCLUSION
Again the aim of this study is to open a path through the

border of vision science and image processing technology.
This should be beneficial for both fields like a tunnel under
some mountain connecting two big cities. One of the
obstacles has been processing speed. Nothing other than
hyper parallel architecture can conquer this situation. Here we
constructed this passage on a common parallel technology.
Accessibility to GPGPU technology is comparable to
ordinary high spec PCs. Temporal resolution of 100 FPS is
enough for real-time usage, and has more capacity for
expansive implementation of higher order receptive field
functions such as surround suppression [5] or contextual
modulation [6]. Spinning off the product of this physiological
approach into some image processing system should become
drive force for both image technology and vision science.

Acknowledgement	
 This work was partially supported by a grant
of Knowledge Cluster Initiative implemented by Ministry of
Education, Culture, Sports, Science and Technology (MEXT).

REFERENCES
[1] E. H. Adelson, J. R Bergen. Spatiotemporal energy models for the

perception of motion, J.Opt. Soc. Am. A, Vol. 2, pp. 284-299, 1985.
[2] G. C. DeAngelis, I. Ohzawa, R. D. Freeman. Spatiotemporal

organization of simple-cell receptive fields in the cat’s striate cortex. I.
General characteristics and postnatal development, J.Neurophysiol., Vol.
69, pp. 1091-1117, 1993.

[3] G. C. DeAngelis, I. Ohzawa, R. D. Freeman. Spatiotemporal
organization of simple-cell receptive fields in the cat’s striate cortex. II.
Linearity of temporal and spatial summation, J.Neurophysiol., Vol. 69,
pp. 1118-1135, 1993.

[4] A. Spinei, D. Pellerin, D. Fernandes, J. Herault. Fast hardware
implementation of Gabor filter based motion estimation, Integrated
Computer-Aided Engineering, Vol. 7, pp. 67-77, 2000.

[5] N. Petkov, E. Subramanian. Motion detection, noise reduction, texture
suppression, and contour enhancement by spatiotemporal Gabpr filters
with surround inhibition, Biological Cybernetics, Vol. 97, pp. 423-439,
2007.

[6] K. Zipser, V. A. Lamme, P. H. Schiller, Contextual modulation in
primary visual cortex, J.Neurosci., Vol. 16, pp. 7376-7389, 1996.

218

