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Abstract—The actual sound environment system exhibits var-
ious types of linear and non-linear characteristics, and it often
contains an uncertainty. Furthermore, the observations in the
sound environment are often in the level-quantized form. In this
paper, two types of methods for estimating the specific signal for
sound environment systems with uncertainty and the quantized
observation is proposed by introducing newly a system model of
the conditional probability type and moment statistics of fuzzy
events. The effectiveness of the proposed theoretical method is
confirmed by applying it to the actual problem of psychological
evaluation for the sound environment.

I. I NTRODUCTION

The internal physical mechanism of actual sound environ-
ment system is often difficult to recognize analytically, and it
contains uncertainty. Furthermore, the stochastic process ob-
served in the actual phenomenon exhibits complex fluctuation
pattern and there are potentially various nonlinear correlations
in addition to the linear correlation between input and output
time series.

In our previous study, for complex sound environment
systems difficult to analyze by using usual structural methods
based on the physical mechanism, a nonlinear system model
was derived in the expansion series form reflecting various
type correlation information from the lower order to the
higher order between state variable and observation [1]. The
conditional probability density function contains the linear
and nonlinear correlations in the expansion coefficients, and
these correlations play an important role as the statistical
information for the state variable and observation relationship.

On the other hand, it is necessary to pay our attention on
the fact that the observation data in the sound environment
system are often measured in a level-quantized form and
contain fuzziness due to several causes. For example, the
human psychological evaluation for loudness can be judged by
use of 7 levels from 1.very calm to 7.very noisy [2]. However,
each score is affected by the human subjectivity and the border
between two neighboring scores are vague [3]. Furthermore,
the observation data are often measured in a digital level form

at discrete times because various kinds of statistical evaluation
(e.g., median, mean, covariance, higher order moments, etc.)
for these quantized level data become easier if a digital
computer is used. Therefore, in order to evaluate the objective
sound environment system, it is desirable to estimate the
waveform fluctuation of the specific signal for the system with
uncertainty based on the quantized or fuzzy observation data.

As a typical method in the state estimation problem, the
Kalman filtering theory and its extended filter are well known
[4]. These theories are originally based on the Gaussian
property of the state fluctuation form. On the other hand, the
actual sound environment systems exhibit complex fluctuation
properties and often contain unknown characteristics in the
relationship between the state variable and the observation.
Thus, it is necessary to improve the previous state estimation
methods by taking account of the complexity and uncertainty
in the actual systems.

From the above viewpoint, based on the quantized or fuzzy
observations, a method for estimating precisely the specific
signal for the sound environment system with uncertainty
is theoretically proposed in this study. More specifically,
first, by adopting an expansion expression of the conditional
probability distribution reflecting the information on linear
and non-linear correlation between the specific signal and the
quantized observation as the system characteristics between
them, a method to estimate the time series of the specific signal
is theoretically derived. The proposed estimation method can
be applied to an actual complex sound environment system
with uncertainty by considering the coefficients of conditional
probability distribution as unknown parameters and estimating
simultaneously these parameters and the specific signal. Next,
by introducing fuzzy theory to the uncertainty of the system,
the other type of estimation algorithm is derived. The proposed
theory is applied to the estimation problem of the psycho-
logical evaluation for loudness in sound environment and the
effectiveness of the theory is experimentally confirmed.
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I I. STATE ESTIMATION OF SOUND ENVIRONMENT SYSTEM

WITH UNCERTAINTY

A. Estimation Algorithm by Introducing a Stochastic Model

Consider a complex sound environment system with an
uncertainty that cannot be obtained on the basis of the internal
physical mechanism of the system. In the observations of
actual sound environment system, the sound level data are very
often measured in a digital level form at discrete times. This is
because some signal processing methods by utilizing a digital
computer are indispensable for extracting exactly various
quantities for human evaluation based on these quantized level
data.

Let xk andyk be the input and output signals at a discrete
time k for a sound environment system. For example, for
the psychological evaluation in sound environment,xk and
yk denote the physical sound level and human response
quantity for it, respectively. It is assumed that there are
complex nonlinear relationships betweenxk and yk, which
are difficult to find a fundamental relationship between them.
Since the system characteristics are unknown, a system model
in the form of a conditional probability is adopted. More pre-
cisely, attention is focused on the joint probability distribution
function P (xk, xk+1, yk) reflecting all linear and non-linear
correlation information amongxk, xk+1 and yk. Expanding
the joint probability distribution functionP (xk, xk+1, yk) in
an orthogonal form based on the product ofP (xk), P (xk+1)
andP (yk), the following expression can be derived.

P (xk, xk+1, yk) = P (xk)P (xk+1)P (yk)
∞∑

r=0

∞∑
s=0

∞∑
t=0

Arstθ
(1)
r (xk)θ(1)

s (xk+1)θ
(2)
t (yk) (1)

with

Arst =< θ(1)
r (xk)θ(1)

s (xk+1)θ
(2)
t (yk) >, (2)

where < > denotes the averaging operation on the vari-
ables. The linear and non-linear correlation information among
xk, xk+1 andyk is reflected hierarchically in each expansion
coefficient Arst. The functionsθ

(1)
r (xk) and θ

(2)
t (yk) are

orthonormal polynomials with the weighting functionsP (xk)
and P (yk) respectively. These orthonormal polynomials can
be decomposed by using Schmidt’s orthogonalization [5].
From (1), the conditional probability distribution function
P (xk+1|xk) andP (yk|xk) are given as

P (xk+1|xk) = P (xk+1)
R∑

r=0

S∑
s=0

Ars0θ
(1)
r (xk)θ(1)

s (xk+1). (3)

P (yk|xk) = P (yk)
R∑

r=0

T∑
t=0

Ar0tθ
(1)
r (xk)θ(2)

t (yk). (4)

Though (3) and (4) are originally infinite series expansions,
finite expansion series are adopted because only finite ex-
pansion coefficients are available and the consideration of
the expansion coefficients from the first few terms is usually
sufficient in practice. Since the objective system contains an

unknown structure, the expansion coefficientsArs0 andAr0t

expressing hierarchically the correlation relationship between
xk, xk+1 andxk, yk have to be estimated on the basis of the
observationyk. Considering the expansion coefficientsArs0

andAr0t as unknown parameter vectorsa andb:

a = (a1, a2, · · · , aI) = (a(1),a(2), · · · ,a(S)),
a(s) = (A1s0, A2s0, · · · , ARs0), (s = 1, 2, · · · , S), (5)

b = (b1, b2, · · · , bJ) = (b(1),b(2), · · · ,b(T )),
b(t) = (A10t, A20t, · · · , AR0t), (t = 1, 2, · · · , T ), (6)

whereI = (RS) andJ = (RT ) are the number of unknown
expansion coefficients to be estimated, the simple dynamical
models,ak+1 = ak and bk+1 = bk, are introduced for the
simultaneous estimation of the parameters with the specific
signalxk:

To derive an estimation algorithm for the specific signal
xk, attention is focused on Bayes’ theorem for the conditional
probability distribution [5]. Since the parameterak andbk are
also unknown, the conditional probability distribution ofxk,
ak andbk is considered.

P (xk,ak,bk|Yk) =
P (xk,ak,bk, yk|Yk−1)

P (yk|Yk−1)
, (7)

where Yk(= {y1, y2, · · · , yk}) is a set of observation data
up to time k. The conditional joint probability distribution
P (xk,ak,bk, yk|Yk−1) can be generally expanded in a statis-
tical orthogonal expansion series:

P (xk,ak,bk, yk|Yk−1) = P0(xk|Yk−1)P0(ak|Yk−1)

P0(bk|Yk−1)P0(yk|Yk−1)
∞∑

l=0

∞∑
m=0

∞∑
n=0

∞∑
q=0

Blmnq

ψ
(1)
l (xk)ψ(2)

m (ak)ψ(3)
n (bk)ψ(4)

q (yk), (8)

Blmnq =< ψ
(1)
l (xk)ψ(2)

m (ak)ψ(3)
n (bk)ψ(4)

q (yk)|Yk−1 > . (9)

After substituting (8) into (7) and expanding an arbitrary
polynomial functionfL,M,N(xk,ak,bk) of xk, ak and bk

with ((L,M,N))th order in a series expansion form using
{ψ(1)

l (xk)}, {ψ(2)
m (ak)} and{ψ(3)

n (bk)}:

fL,M,N(xk,ak,bk)

=
L∑

l=0

M∑
m=0

N∑
n=0

CLMN
lmn ψ

(1)
l (xk)ψ(2)

m (ak)ψ(3)
n (bk),

(CLMN
lmn ; appropriate constants), (10)

by taking the conditional expectation of the function
fL,M,N(xk,ak,bk) and using the orthonormal condition for
the functionsψ(1)

l (xk), ψ
(2)
m (ak) and ψ

(3)
n (bk), the estimate

of the functionfL,M,N(xk,ak,bk) can be derived as follows:

f̂L,M,N(xk,ak,bk) =< fL,M,N(xk,ak,bk)|Yk >

=

L∑
l=0

M∑
m=0

N∑
n=0

∞∑
q=0

CLMN
lmn Blmnqψ

(4)
q (yk)

∞∑
q=0

B000qψ
(4)
q (yk)

. (11)
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The four functions ψ
(1)
l (xk), ψ

(2)
m (ak), ψ

(3)
n (bk) and

ψ
(4)
q (yk) are orthonormal polynomials of degreesl, m =

(m1,m2, · · · ,mI), n = (n1, n2, · · · , nJ) and q with weight-
ing functionsP0(xk|Yk−1), P0(ak|Yk−1) , P0(bk|Yk−1) and
P0(yk|Yk−1), which can be chosen as the probability functions
describing the dominant parts of the actual fluctuation or as
the well-known standard probability distributions.

As an example of standard probability functions for the
specific signal and the parameter, consider the Gaussian dis-
tribution:

P0(xk|Yk−1) = N(xk; x∗
k, Γxk

), (12)

P0(ak|Yk−1) =
I∏

i=1

N(ai,k; a∗
i,k, Γai,k

), (13)

P0(bk|Yk−1) =
J∏

j=1

N(bj,k; b∗j,k, Γbj,k
) (14)

with

N(x; µ, σ2) =
1√

2πσ2
exp{− (x − µ)2

2σ2
},

x∗
k =< xk|Yk−1 >, Γxk

=< (xk − x∗
k)2|Yk−1 >,

a∗
i,k =< ai,k|Yk−1 >, Γai,k

=< (ai,k − a∗
i,k)2|Yk−1 >,

b∗j,k =< bj,k|Yk−1 >, Γbj,k
=< (bj,k − b∗j,k)2|Yk−1 > . (15)

Furthermore, as the fundamental probability function on the
level-quantized observation, the generalized binomial distribu-
tion [6] with level difference intervalhy can be chosen:

P0(yk|Yk−1) = B(yk;Nyk
,My, pyk

, hy) (16)

with

B(y;N,M, p, h) =
(N−M

h )!

(y−M
h )!(N−y

h )!
p

y−M
h (1 − p)

N−y
h ,

pyk
=

y∗
k − My

Nyk
− My

, y∗
k =< yk|Yk−1 >,

Nyk
=

(y∗
k − My)hyy∗

k − yMΩyk

(y∗
k − My)hy − Ωyk

,

Ωyk
= < (yk − y∗

k)2|Yk−1 >, (17)

where My is the minimum level of the observation. The
orthonormal polynomials with four weighting probability dis-
tributions in (12)-(14) and (16) can be determined as

ψ
(1)
l (xk) =

1√
l!

Hl(
xk − x∗

k√
Γxk

), (18)

ψ(2)
m (ak) =

I∏
i=1

1√
mi!

Hmi(
ai,k − a∗

i,k√
Γai,k

), (19)

ψ(3)
n (bk) =

J∏
j=1

1√
nj !

Hnj (
bi,k − b∗i,k√

Γbi,k

), (20)

ψ(4)
q (yk) = Bpq(yk; Nyk

,My, pyk
, hy) (21)

with

Bpq(y; N,M, p, h) = {(N − M

h
)(q)q!}−1/2(

1 − p

p
)q/2

1
hq

q∑
j=0

qCj(−1)q−j(
p

1 − p
)q−j(N − y)(q−j)(y − M)(j), (22)

whereHl( ) denotes the Hermite polynomial withlth order
[7], andy(j) is thejth order factorial function defined by [6]

y(q) = y(y − hy)(y − 2hy) · · · (y − (q − 1)hy),
y(0) = 1. (23)

Using the property of conditional expectation and (3)(4), the
two variablesy∗

k andΩyk
in (17) can be expressed in functional

forms on predictions ofxk, ak andbk at a discrete timek−1
(i.e. the expectation value of arbitrary functions ofxk, ak and
bk conditioned byYk−1), as follows:

y∗
k =<

∫
ykP (yk|xk)dyk|Yk−1 >

=<
∞∑

r=0

1∑
t=0

d1tAr0tθ
(1)
r (xk)|Yk−1 >

=<
∞∑

r=0

1∑
t=0

d1tAr0t

∫
θ(1)

r (xk)P (xk|xk−1)dxk|Yk−1 >

=
∞∑

r=0

1∑
t=0

d1t < Ar0tA(r),kΘ(xk−1)|Yk−1 >, (24)

Ωk =<

∫
(yk − y∗

k)2P (yk|xk)dyk|Yk−1 >

=
∞∑

r=0

2∑
t=0

d2t < Ar0tA(r),kΘ(xk−1)|Yk−1 > (25)

with

A(r),k = (0,a(r),k), (r = 1, 2, · · ·),
A(0),k = (1, 0, 0, · · · , 0),

Θ(xk) = (θ(1)
0 (xk), θ(1)

1 (xk), · · · , θ(1)
R (xk))

′
, (26)

where ′ denotes the transpose of a matrix. The coefficients
d1s and d2s in (24) and (25) are determined in advance by
expandingyk and(yk−y∗

k)2 in the following orthogonal series
forms:

yk =
1∑

i=0

d1iθ
(2)
i (yk), (yk − y∗

k)2 =
2∑

i=0

d2iθ
(2)
i (yk). (27)

Furthermore, using (3) and (4), and the orthonormal condition
of θ

(1)
r (xk) and θ

(2)
t (yk), each expansion coefficientBlmnq

defined by (9) can be obtained through the similar calculation
process to (24) and (25), as follows:

Blmnq =
∞∑

r=0

q∑
t=0

l+r∑
j=0

dqtwl+r,j < ψ(2)
m (ak)ψ(3)

n (bk)

Ar0tA(j),kΘ(xk−1)|Yk−1 >, (28)
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where dqi and wl+r,j are appropriate coefficients satisfying
the following equalities:

ψ(4)
q (yk) =

q∑
i=0

dqiθ
(2)
i (yk),

ψ
(1)
l (xk)θ(1)

r (xk) =
l+r∑
j=0

wl+r,jθ
(1)
j (xk). (29)

Furthermore, by substituting the dynamical models ofak

and bk into (24), (25) and (28), the parametersy∗
k,Ωyk

and
the expansion coefficientBlmnq can be given in functional
forms on estimations ofxk−1, ak−1 andbk−1. Therefore, the
recurrence estimation of the specific signal can be achieved.

B. Estimation Algorithm by Introducing a Fuzzy Theory

In the observations of actual sound environment system, the
sound level data often contain fuzziness due to human subjec-
tivity in noise evaluation, confidence limitations in sensing
devices, and quantizing errors in digital observations, etc. Let
zk be fuzzy observation obtained fromyk. For example, for
the psychological evaluation in sound environment,xk and
yk denote respectively the physical sound level and human
response quantity for it. Since the system characteristics are
unknown, the observation model in a form of a conditional
probability in (4) is adopted. Furthermore,zk expresses the
loudness scores (1.very calm, 2.calm, 3.mostly calm, 4.little
noisy, 5.noisy, 6.faily noisy, 7.very noisy) taking the individual
and psychological situation into consideration foryk. The
fuzziness ofzk is characterized by the membership function
µzk

(yk). As the membership function, a Gaussian type func-
tion:

µzk
(yk) = exp{−α(yk − zk)2}, (30)

whereα(> 0) is a parameter, is adopted from the viewpoint
of mathematical analysis. Though the parameterα in (30) can
be generally given based on the prior information (or, through
trial and error), it can be regarded as unknown parameter
and estimated simultaneously with the specific signalxk and
the parameterbk. First, a simple dynamical model for the
parameter,αk+1 = αk, is naturally introduced.

Next, as the similar manner to (7), by paying our attention
to the conditional joint probability density function ofxk, bk

andαk, the following expression is obtained.

P (xk,bk, αk|Zk) =
P (xk,bk, αk, zk|Zk−1)

P (zk|Zk−1)
= P0(xk|Zk−1)P0(bk|Zk−1)P0(αk|Zk−1)

∞∑
l=0

∞∑
m=0

∞∑
n=0

∞∑
q=0

Dlmnrψ
(1)
l (xk)ψ(3)

m (bk)

ψ(5)
n (αk)ψ(6)

q (zk)/
∞∑

r=0

D000qψ
(6)
q (zk) (31)

with

Dlmnq =< ψ
(1)
l (xk)ψ(3)

m (bk)ψ(5)
n (αk)ψ(6)

r (zk)|Zk−1 >, (32)

whereZk(= {z1, · · · , zk}) is a set of fuzzy observation data.
The two functionsψ(5)

n (αk) andψ
(6)
q (zk) denote the orthonor-

mal polynomials of degreesn and q, with the fundamental
probability density functionsP0(αk|Zk−1) and P0(zk|Zk−1)
of αk andzk as weighting functions. Based on (31), through
the similar calculation process to (11), the estimate of an
arbitrary polynomial functionfL,M,N (xk,bk, αk) of xk, bk

andαk of (L,M, N)th order can be derived, as follows:

f̂L,M,N (xk,bk, αk) =< fL,M,N (xk,bk, αk)|Zk >

=

L∑
l=0

M∑
m=0

N∑
n=0

∞∑
q=0

ELMN
lmn Dlmnqψ

(6)
q (zk)

∞∑
q=0

D000qψ
(6)
q (zk)

. (33)

All the coefficientsELMN
lmn are appropriate constants in the

case when the functionfL,M,N (xk,bk, αk) is expressed in
a series expansion form similar to (10) using{ψ(1)

l (xk)},
{ψ(3)

m (bk)} and{ψ(5)
n (αk)}.

As a concrete example of the fundamental probability
density functions for the parameterαk and zk, the Gaus-
sian distribution and the generalized binomial distribution are
adopted respectively:

P0(αk|Zk−1) = N(αk; α∗
k, Γαk

), (34)

P0(zk|Zk−1) = B(zk;Nzk
,Mz, pzk

, hz) (35)

with

α∗
k = < αk|Zk−1 >, Γαk

=< (αk − α∗
k)2|Zk−1 >,

pzk
=

z∗k − Mz

Nzk
− Mz

, z∗k =< zk|Zk−1 >,

Nzk
=

(z∗k − Mz)hzz
∗
k − MzΩzk

(z∗k − Mz)hz − Ωzk

,

Ωzk
= < (zk − z∗k)2|Zk−1 > . (36)

Then, the orthonormal polynomials with two weighting prob-
ability density functions in (34) and (35) can be given as

ψ(5)
n (αk) =

1√
n!

Hn(
αk − α∗

k√
Γαk

), (37)

ψ(6)
q (zk) = Bpq(zk; Nzk

,Mz, pzk
, hz). (38)

After applying moment statistics of fuzzy events which are
generalization of mean and variance of fuzzy events [8], by
applying (4), the two variablesz∗k and Ωzk

in (36) and the
expansion coefficientDlmnq are expressed in concrete forms,
as follows:

z∗k =

T∑
t=0

< etB(t),kΘ(xk)|Zk−1 >

T∑
t=0

< htB(t),kΘ(xk)|Zk−1 >

, (39)
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Ωzk
=

T∑
t=0

< ftB(t),kΘ(xk)|Zk−1 >

T∑
t=0

< htB(t),kΘ(xk)|Zk−1 >

, (40)

Dlmnq =
T∑

t=0

< gtψ
(1)
l (xk)ψ(3)

m (bk)ψ(4)
n (αk)B(t),k

Θ(xk)|Zk−1 >

/
T∑

t=0

< htB(t),kΘ(xk)|Zk−1 > (41)

with

B(t),k = (0,b(t),k), (t = 1, 2, · · ·),
B(0),k = (1, 0, 0, · · · , 0), (42)

whereet, ft, gt and ht are expansion coefficients satisfying
the following relations:

µzk
(yk)yk =

∞∑
i=0

eiθ
(2)
i (yk), (43)

µzk
(yk)(yk − z∗k)2 =

∞∑
i=0

fiθ
(2)
i (yk), (44)

µzk
(yk)ψ(6)

r (yk) =
∞∑

i=0

giθ
(2)
i (yk), (45)

µzk
(yk) =

∞∑
i=0

hiθ
(2)
i (yk). (46)

The expansion coefficientDlmnq in (41) can be given by the
predictions ofxk, bk andαk. Furthermore, by introducing the
following simple system model instead of (3),

xk+1 = Fxk + Guk, (47)

whereuk is the random input with mean 0 and varianceσ2
u

andF,G are system parameters, the prediction algorithm for
an arbitrary polynomial function can be given in the form
of estimates for the polynomial functions ofxk, bk and αk.
Therefore, by combining the estimation algorithm of (33)
with the prediction algorithm, the recurrence estimation of the
specific signal can be obtained.

III. A PPLICATION TO PSYCHOLOGICAL EVALUATION FOR

LOUDNESS

To find the quantitative relationship between the loudness
for human and the physical sound level for environmental
noise is important from the viewpoint of noise assessment.
Especially, in the evaluation for a regional sound environment,
the investigation based on questionnaires to the regional in-
habitants is often given when the experimental measurement
at every instantaneous time and at every point in the whole
area of the region is difficult. Therefore, it is very important
to estimate the sound level based on the loudness data. It
has been reported that the loudness based on the human
sensitivity can be distinguished each other from 7 loudness

scores, for instance, 1.very calm, 2.calm, 3.mostly calm, 4.little
noisy, 5.noisy, 6.fairly noisy, 7.very noisy, in the psychological
acoustics [2]. After recording the road traffic noise by use
of a sound level meter and a data recorder, by replaying
the recorded tape through amplifier and loudspeaker in a
laboratory room, 6 female subjects (A, B,· · ·, F) aged of
22-24 with normal hearing ability judged one score among 7
loudness scores (i.e., 1, 2,· · ·, 7) at every 5 [sec.], according
to their impressions for the loudness at each moment using
7 categories from very calm to very noisy. The mean and
standard deviation of the road traffic noise were 71.4 [dB(A)]
and 7.23 [dB(A)], respectively. Furthermore, the mean and
standard deviation for the loudness scores of each subject,
and the correlation coefficients between the road traffic noise
levels and the loudness scores are shown in Table 1.

The state estimation method proposed in Section II.A was
applied to an estimation of the time seriesxk for sound level
of a road traffic noise based on the successive judgmentsyk on
loudness scores. Figure 1 shows one of the estimated results
of the waveform fluctuation of the sound level based on the
loudness score by a subject. In this figure, the horizontal axis
shows the discrete timek, of the estimation process, and the
vertical axis represents the sound level (A-weighted sound
pressure level). The finite numbers of expansion coefficients
Blmnq(q ≤ 2) in the proposed estimation algorithm (11)
employing the system models of conditional probability type
(3) and (4) withR = S = T = 2 were used in this estimation.
In principle, it is expected that the successive addition of
higher expansion terms reflecting higher order statistics in
the proposed algorithm moves the theoretical estimation closer
to the true values. However, higher order statistics based on
the finite numbers of observed sample data give us unstable
information with less reliability. It remains as one of the future
problems to derive a method for determining an optimal order
for the conditional probability distribution in expansion series
form like (3) and (4).

One of the estimated results by applying the algorithm
proposed in Section II.B is shown in Fig.2. For comparison,
the estimated results by the previously reported method [1]
and the extended Kalman Filter [9] are shown in Fig.3. The
estimated results of the parameterα of membership function in
(30) are shown in Table 2. The root mean squared error of the
estimation is shown in Table 3. It is obvious that the proposed
methods show more accurate estimations than the results based
on the previous estimation method and the extended Kalman
filter. By comparing Table 3 with Table 1, it can be found
that the more accurate estimation results are obtained in cases
with the larger values of the correlation coefficient between
the sound levels and the loudness scores.

IV. CONCLUSIONS

In this paper, based on the quantized or fuzzy observation
data, a new method for estimating the specific signal for sound
environment systems with uncertainty has been propoesd. The
proposed estimation method has been realized by introduc-
ing a system model of conditional probability type and a
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Table 1 Statistics of loudness scores and correlation coefficients between the
sound level and the loudness scores.

Subject A B C D E F

Mean 4.18 4.46 4.19 4.20 4.93 5.05
Standard
Deviation 1.11 1.06 0.781 0.784 0.712 0.915

Correlation
Coefficient 0.891 0.823 0.811 0.796 0.826 0.870

fuzzy theory. The proposed method has been applied to the
estimation of an actual sound environment, and it has been
experimentally verified that better results have been obtained
as compared with the results by use of the previous method
and the extended Kalman filter.
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Fig. 1. Estimation results of the sound level by use of the method 1.
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Fig. 2. Estimation results of the sound level by use of the method 2.
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Table 3 Root mean squared error of the estimation in [dB(A)].

Subject A B C D E F
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Extended
KalmanFilter 5.04 7.53 16.6 7.99 5.46 4.17
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