
Production lot size models for perishable seasonal 
products 

Abdul, Ibraheem1 and Atsuo Murata2 
Department of Intelligent Mechanical Systems, Division of Industrial Innovation Sciences, Graduate School of Natural 

Science and Technology, Okayama University, Okayama,  
3-1-1, Tsushimanaka, Okayama, 700-8530 Japan. 

1ibraheem@iims.sys.okayama-u.ac.jp 
2murata@iims.sys.okayama-u.ac.jp 

 
 

Abstract — Seasonal items like fruits, fish, winter cosmetics, 
fashion apparel, etc. generally exhibits different demand 
patterns at various times during the season. Production and 
inventory planning must reflect this property for cost 
effectiveness and optimization of resources. This paper presents 
two production-inventory models for perishable seasonal 
products that minimize total inventory costs.   The models 
obtains optimal production run time and optimal production 
quantity for cases when the production rate is constant and 
when it is allowed to vary with demand. The products are 
assumed to deteriorate at an exponential rate and demand for 
them follows a three-phase ramp type pattern during the season. 
Numerical examples and sensitivity analysis are carried out. 
Production run time and production quantity obtained by the 
model were found to be independent of cost parameters. The 
variable production rate strategy was also found to give lower 
inventory costs and production quantity than the constant 
production rate strategy. 

I. INTRODUCTION 
The demand for seasonal items like fruits, fish, winter 

cosmetics, fashion apparel, etc. generally varies with the 
season. It usually begins with increasing trend, attains a peak 
and becomes steady at the middle of the season. Researchers 
have used various time dependent functions to depict this 
demand pattern in literature. This includes time dependent 
quadratic function, ramp-type function etc.  A correct 
representation of the demand pattern is essential for 
production and inventory planning. Khanra and Chaudhuri [1] 
proposed the use of the quadratic function to represent the 
demand pattern of seasonal products since its coefficients can 
be selected to reflect the accelerated growth/decline in 
demand usually experienced at the beginning/end of the 
season. This view is supported by others like Sana and 
Chaudhuri [2], Ghosh and Chaudhuri  [3] and others.  

On the other hand, the demand of seasonal products has 
been found to exhibit a ramp-type pattern during their life 
cycle in the market [4]. The increasing-steady-decreasing 
demand pattern usually exhibited by most seasonal products 
during the season, can be represented by a three-phase ramp 
function. The ramp pattern allows three-phase variation in 
demand representing the growth, the steady and the decline 
phases commonly experienced by most seasonal products 
during their life cycle in the market. Panda et at [4] used this 

pattern to generate optimal replenishment policies for 
perishable seasonal products over a finite time horizon. 
Another form of this pattern, called trapezoidal demand 
pattern, was used by Cheng and Wang [5] in developing an 
economic order quantity model for deteriorating items.   

The production–inventory systems of perishable items are 
very common in reality and have been studied by a number of 
researchers.  Balkhi and Benkherouf [6] developed a fixed 
production schedule for perishable items having constant rate 
of deterioration. Teng and Chang [7] developed a 
deterministic inventory model for perishable items with price-
and stock-dependent demand rate, finite production rate, and 
constant deterioration rate. Abad [8] considered the pricing 
and lot sizing problem for a perishable good under finite 
production, exponential decay and partial backordering and 
lost sale. Sana et al [9] developed an economic production lot 
size (EPLS) model for a deteriorating item over a finite 
planning horizon. The model adopted the critical design 
production rate (CDPR) for a machine as the production rate 
in the model. None of the models above considered demand 
as a ramp type function.  

Since the introduction of the ramp-type demand pattern by 
Hill [10], efforts of researchers focus mainly on the EOQ 
models and only few have considered the production aspect 
of the problem. This may be due to the fact that studies 
linking ramp-type demand pattern to seasonal products are 
very recent. Manna and Chaudhuri [11] developed a 
production-inventory model for deteriorating items having 
ramp type demand pattern. The model assumes a finite 
production rate that is proportional to the demand rate and a 
time-proportional deterioration rate. Recently Panda et al [12] 
developed a single item economic production quantity (EPQ) 
model with ramp type demand function. Like Manna and 
Chaudhuri [11] they assumed the production rate is finite and 
proportional to the demand rate. The model determines the 
optimal production stopping time to maximize total unit profit 
of the system. However, both production models mentioned 
above considered only the growth and the steady phases of 
demand for the product. As mentioned earlier the demand for 
seasonal products is often characterized by a growth-steady-
decline pattern. Hence, these models will not be suitable for 
seasonal products with this type of demand pattern.   
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Two production-inventory models that consider the 
growth, the steady and the decline phase of demand for 
seasonal products are presented in this paper.   In the first 
model, the production rate is constant and assumed to be 
equal to the critical design production rate (CDPR) of the 
machine, the product deteriorates at an exponential rate and 
demand follows a three-phase ramp type pattern.  The second 
model allows production rate to vary proportionally with 
demand. In both models, the production run time is 
constrained within the steady phase of demand. This 
represents an aspect of an elaborate model in which 
production run time will be unconstrained. While the constant 
production rate model will be useful for production systems 
that still uses the traditional manufacturing techniques, the 
variable production rate model is applicable to industries 
using the flexible manufacturing systems whereby production 
rate can be adjusted according to demand. 

 
 f (t) 
 
 
 
 
 
 
 
       0                    μ                       γ                t 
Figure 1. The Ramp type demand pattern 

II. MODEL ASSUMPTIONS AND NOTATIONS 
The model is developed under the following assumptions 

and notations: 
• A single item, single period, production 

inventory cycle is considered. 
• Demand rate f (t) for the item is a general time 

dependent ramp-type function of the form:  
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The function g(t) can be any continuously 
increasing function of time, while h(t) is any 
continuously decreasing function of time in the 
given interval. Parameters ‘ μ ’ and ‘ γ ’ 
represent the parameter of the ramp type 
demand function. The pattern f (t) is as depicted 
in Fig. 1. 

• Production rate, K, is constant for Model A, and 
a known function of demand rate for Model B.  

• The productions run time (t1) and quantity 
produced (Q) are decision variables. 

• Shortages are not allowed. 
• A constant fraction ( θ ) of on-hand inventory 

deteriorates per unit time. 

• Set up cost per cycle (AS), Deterioration cost per 
unit (CD) and Inventory holding cost per unit 
(Ch), are known and constant during the cycle. 

• The inventory level at any time (t) during the 
cycle is I(t) 

• The Length of the cycle is T. 
• No repair, replacement of deteriorated items 

during the cycle. 

III. MODEL FORMULATION 

A. Model with Constant production rate 
The cycle begins with production at time t = 0 with zero 

stock level. As production continues, inventory begins to pile 
up continuously after meeting demand and deterioration. 
Production stops at time t1 and the accumulated inventory is 
gradually depleted due to demand and deterioration until it 
becomes zero at time T. Production commences again and the 
cycle repeats itself.  Due to the nature of the demand pattern, 
production can be stopped while the demand is increasing, 
steady or decreasing. However, in this aspect of the model 
formulation, production is constrained to stop during the 
demand stabilization period. The variation of the inventory 
level with time for the cycle is shown in figure 2 below. 
 
     I (t) 
 
 
 
 
 
 
 
          0                μ               1t                  γ                      T   t 
        Figure 2. Variation of Inventory level with time.  
 

The behavior of the inventory level is described by the 
following differential equations: 
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The boundary conditions are: 
( ) ( ) ( ) ( ) ( ) ( ).;;00 +−+− ==== γγμμ IIIITII     

The solutions to this set of equations are given in Eq. (2) 
below.      
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 The total number of units carried in inventory during the 
cycle is given in Eq. (3) below. 
   ( ).0∫=

T
I tII                                                                          (3) 
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Inventory holding cost for the cycle is given by 
HC = Ch ( )∫
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    =

( )( )( )
( )( ) ( )( )( )( )

( ) ( )( )( )
( )( ) ⎟⎟

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

++

−+−+

−

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

−

−

−

−

T T
t

xt

t t
T xxt

t t xxt

tt

h

dxxhee

dtdxxhedxgee

dtdxxgKedxgKee

dtdxxgKee

C

γ
θθ

γ γ
γ

θθθ

μ μ
μ θθθ

μ θ

μ

μ

1

1
0

0 0

.   (5) 

Total number of items that deteriorate during the cycle is 
given by ID II θ= . 

Deterioration cost for the cycle is DC = CD ID. Set-up cost 
for the cycle, AS, is constant. 

 
Total relevant inventory cost per unit time, TRCA(t1),is 

given by: 
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The necessary and sufficient condition for minimizing 
relevant inventory cost per unit time, ( )1tTRCA  , is 
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Using Eq. (6) and Eq. (4) we establish the first condition 

for minimum total relevant inventory cost per unit time in Eq. 
(8) below. 
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Theorem 1: ( )1tTRC A is strictly convex for all .0*

1 ≥t  
Proof: See Appendix A.  
 
From Theorem 1, it follows that all necessary and sufficient 
condition for minimum total relevant inventory cost per unit 
time is satisfied by Eq. (6). Hence, solving Eq. (8) gives the 

optimal value of the production run time, t1
*, for minimum 

total relevant inventory cost per unit time. 

B. Model with variable production rate 
The production rate, K(t), in this model is a known function 
of demand rate such that ( ) ( ) .1; >= ββ tftK The behavior of 
the system is similar to that of Model A and its equation is 
given below. 
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The boundary conditions are: ( ) ( ) .00 == TII     
The solutions to this set of equations are given below.      
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 Number of units in inventory during the cycle is ( ).0∫=

T
I tII                   
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Using same procedure as in Model A, the holding cost is: 
( ) ( )( )
( ) ( ) ( ) ( )( )( )
( ) ( )( )( )
( )( ) ⎟⎟

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

++

−+−+

−

=

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

−

−

−

−

T T
t

xt

t t
T xxt

t t xxt

t xt

h

dxxhee

dtdxxhedxgee

dtdxxgedxgee

dtdxxgee

CHC

γ
θθ

γ γ
γ

θθθ

μ μ
μ θθθ

μ θθ

μ

βμβ

β

1

1
0

0 0

11

1

.        

 
Total relevant inventory cost per unit time ( ( )1tTRCB ) is given 
by 

  ( ) ( ) ( )( ).11
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T
DCHCA

T
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A unique optimal value of production run time t1 will be 

obtained by setting ( )
0

1

1 =
dt

tdTRCB , if and only if,  ( )1tTRCB  is 

a convex function of t1.  
This condition leads to Eq. (13) below. 
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Theorem 2: ( )1tTRCB is strictly convex for all .0*

1 ≥t  
Proof: See Appendix B. 
  

From the two theorems above, the existence and 
uniqueness of an optimal value of *

1t  that minimizes total 
relevant inventory cost per unit time for the two models is 
guaranteed. The procedure for obtaining the optimal 
production run time, quantity to be produced and total 
relevant inventory cost per unit time is outlined below. 

Step 1: To obtain the optimal production run time, *
1t , 

solve Eq. (8) (for Model A), and Eq. (13) (for Model B).  
 
Step 2: Obtain optimal production quantity using Eq. (14) 

and Eq. (15) below for Model A and Model B respectively. 
 
 1

* tKQA ∗= .           (14) 
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Step 3: Obtain optimal total relevant inventory cost per 
unit time for model A, ( )1tTRCA , using Eq. (6), while that of 
Model B, ( )1tTRCA , can be obtained from Eq. (12).  

Two numerical examples are presented below to illustrate 
the application of the models and analyze its performance. 

IV. NUMERICAL EXAMPLES AND SENSITIVITY 
ANALYSIS 

Example 1: For constant production rate model. 
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Example 2: For the variable production rate model. 
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For appropriate comparison, the only difference in the two 

examples presented above is the rate of production. The 
variable production rate in Example 2 is such that it does not 

exceed the constant value used in Example 1. While Example 
1 is solved using Model A, the solution to Example 2 is 
obtained using Model B. The results obtained are presented in 
Table 1 below.  

To further analyze the behavior of the models, sensitivity 
analysis is carried out to examine the effect of changes in 
parameters on the optimal result using Model A as case study. 
The result of the analysis is presented in Table 2. 
 
   Table 1. Result of numerical examples  

 Model A Model  B 
*
1t  9.279weeks 9.429weeks 
*Q  1623.8units 1591.7units 

*TRC  $189.105 $165.061 
 
Table 2. Sensitivity analysis of Model A 

Parameters % Change 
in value of 
parameters

% Change 
in Cost 
( *TRC )  

% Change in 
Order Quantity 

( *Q ) 
θ  -25 -11.93 -3.17 

-50 -25.58 -6.73 
+25 10.33 2.80 
+50 19.22 5.24 

AS -25 -0.83 0 
-50 -1.65 0 
+25 0.83 0 
+50 1.65 0 

γ -25 -1.19 1.74 
-50 -12.15 5.81 
+25 3.19 2.43 
+50 21.52 11.04 

K -25 -65.43 -10.16 
-50 -157.90 -24.52 
+25 49.19 7.64 
+50 87.69 13.61 

 

V. DISCUSSION OF RESULTS 
It is evident from Table 1 that the production run time in 

Model A is lower than in Model B. This can be explained 
from the fact that the production rate in Model A is constant 
at the maximum value while the production rate in Model B 
varies between this maximum value and other lower values 
due to changes in demand rate. However, in spite of this 
longer production run time, Model B gave lower values of 
optimal inventory cost and production quantity than Model A. 
This shows that varying the production rate will be a better 
strategy to ensure optimal cost in a production-inventory 
system. Observations from the sensitivity analysis can be 
stated as follows: 

1. The total relevant inventory cost obtained by the 
model is very sensitive to changes in production rate 
(K), deterioration rate ( θ ), and demand parameter 
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( γ ). The sensitivity to changes in set-up cost and 
indeed all other costs is very low. 

2. The optimal production quantity does not respond to 
changes in costs and is moderately sensitive to 
changes in deterioration rate ( θ ), and demand 
parameter ( γ ). It is, however, very sensitive to 
changes in production rate. 

3. The sensitivity of the model to changes in production 
rate is so high that the production run time exceeds 
the set limits in some cases.  

The insensitivity of the production quantity obtained by 
the models to changes in cost parameters follows from Eq. (8) 
and Eq. (13). These equations shows that the production run 
time is independent of cost parameters, hence the resulting 
production quantity will be equally independent of costs. The 
high sensitivity of the model to production rate also follows 
from the system equations, as the production rate is a 
significant component in all the equations. 

VI. CONCLUSIONS 
In this paper, two production inventory models are 

developed for perishable seasonal products having ramp type 
demand. The models obtained optimal production run time 
and optimal production quantity for cases when the 
production rate is constant and when it is allowed to vary with 
demand. The production run time is however constrained to 
the steady phase of the ramp type demand in both cases.  

The optimal results obtained from numerical examples 
presented showed that the variable production rate strategy 
gives lower inventory costs and production quantity than the 
constant production rate strategy. It is also shown that the 
production run time and production quantity is independent of 
cost parameters. Production run time was discovered to be 
longer in variable production rate model than when the 
production rate is constant. 

The models can be improved by removing the constraint 
on production run time and allowing shortages and 
backlogging of demand in future works. This will allow for a 
more flexible production policy in which production can be 
stopped at any time during the season. 
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Proof of Theorem 1 
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On simplification A1 yields: 
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T
CC

dt
tTRCd IDhA θ+

= .        (A4) 

But using (A2) above, we obtain: 

( )( ) ( ) ( ) ( ).1111
212

1

2
ttttI egFeFeegK

dt
Id −−−− ++−−= γθθθμθ μθθμ (A5) 

Substituting (A3) in (A5) gives: .2
1

2
K

dt
Id I =  

Using the above result in (A4) gives 
( ) ( )

.2
1

1
2

K
T

CC
dt

tTRCd DhA θ+
=         (A6) 

It follows from (A6) that ( )
02

1

1
2

>
dt

tTRCd A at the minimum 

point. Hence, ( )1tTRCA is strictly convex for all .0*
1 ≥t  

 
APPENDIX B 

 
Proof of Theorem 2 

( ) ( ) ( )( ).11
1 IDhssB ICCA

T
DCHCA

T
tTRC θ++=++=           

The first derivative of ( )1tTRCB  with respect to 1t is: 
( ) ( )

11

1
dt
dI

T
CC

dt
tdTRC IDhB θ+

= .  
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     (B1) 
On simplification B1 yields: 
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Where, ( ) ( )∫∫ == T xx dxxheFanddxxgeF γ

θμ θ ., 201  

Applying the first condition for minimizing ( )1tTRCB  (i.e. 
( )

0
1

1 =
dt

tdTRCB ) leads to:                    
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Further simplification gives: 

( ) ( ) ( )( ) ( ) ( )( ).111 1111
21 −+=⎟

⎠
⎞

⎜
⎝
⎛ +−− −−−− tttt egFeFeeg γθθθμθ

θ
μ

θ
μβ . 

     (B3) 
The second derivative of ( )1tTRCB  gives: 

( ) ( )
2
1

2

2
1

1
2

dt
Id

T
CC

dt
tTRCd IDhB θ+

= .        (B4) 

Using (B2) above, we obtain: 
( ) ( ) ( ) ( )
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Substituting (B3) in (B5) gives: ( ).2
1

2
μβg

dt
Id I =  

Using the above result in (B4) gives 
( ) ( ) ( ).2

1

1
2

μβ
θ

g
T

CC
dt

tTRCd DhB +
=         (B6) 

It follows from (B6) that ( )
02

1

1
2

>
dt

tTRCd B at the minimum 

point. Hence, ( )1tTRCB is strictly convex for all .0*
1 ≥t  
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