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Abstract—=Two major approaches to deal with randomness reflect the decision maker’s preference. To overcome this
or impression involved in mathematical programming problems drawback, Sakawa et al. [16], [17] showed that satisfic-
have been developed. The one is called stochastic programming,ing solytions to multiobjective stochastic linear programming
and the other is called fuzzy programming. In this paper, we focus . . . \
on multiobjective integer programming problems involving ran- problems SUfflCle_ntIy reflecting the_ deC|S|_on maker's Pre_f‘?r'
dom variable coefficients in constraints. Using the concept of sim- €nce can be derived through the interactive fuzzy satisficing
ple recourse, such multiobjective stochastic integer programming method based on chance constrained programming models.
problems are transformed into deterministic ones. As a fusion of |n these existing methods for multiobjective stochastic linear
stochastic programming and fuzzy one, after introducing fuzzy , oqramming problems [8], [16], [17], constraints including
goals to reflect the ambiguity of the decision maker’s judgments . . i
for objective functions, we propose an interactive fuzzy satisficing ran_dom variables are reduced_to chance Constraln_ed_ cond_|t|ons
method to derive a satisficing solution for the decision maker by Which mean that the constraints need to be satisfied with a
updating the reference membership levels. certain probability (satisficing level). Then, the loss or cost
caused by the violation of constraints for observed values is
not reflected in the formulation and solution.

Under these circumstances, in this paper, focusing on the

In constructing mathematical models of actual decisigimple recourse model to consider the penalty reflecting on
making situation in the real world, we often need to reflethe degree of violation of constraints for observed values
the randomness or the imprecision involved in the situatigi], we transform a multiobjective stochastic integer program-
since we cannot always know exact values of all parametersing problems into equivalent deterministic multiobjective

Stochastic programming based on the probability theory, haseger programming problems. After introducing fuzzy goals
been developed in various ways [2], [25], e.g., two stage prolo- reflect the ambiguous judgment of the decision maker on
lem or recourse model [6], [23], chance constrained programwbjective functions, we propose an interactive fuzzy satisficing
ming [4], [5], [9]. In particular, for multiobjective stochasticmethod to derive a satisficing solution for the decision maker
linear programming problems, Stancu-Minasian [20] consitty updating the reference membership levels.
ered the minimum risk approach, Teghem et al. [21] and
Urli et al. [22] proposed interactive methods. Furthermore, 1. MULTIOBJECTIVE STOCHASTIC INTEGER
efficient solution concepts for them and their relations have PROGRAMMING PROBLEM

been discussed by Caballero et al. [3]. _ In this paper, we deal with multiobjective integer program-
On the other hand, fuzzy mathematical programming reprg;ng problems involving random variable coefficients in the

senting the ambiguity in decision making situations by fuzzy,hi_-hand side of constraints formulated as:

concepts has attracted attention of many researchers [13], [15].

Fuzzy multiobjective linear programming, first proposed by
Zimmermann [26], has been rapidly developed [11], [18], [19].
As a hybrid of the stochastic approach and the fuzzy one,
Wang et al. [24] dealt with mathematical programming prob-
lems with fuzzy random variables and Liu et al. [10] studied/herex is ann dimensional integer decision variable column
chance constrained programming involving fuzzy parametersctor, c¢;, [ = 1,2,...,k aren dimensional coefficient row
and many researches about this issue have been repovietiors, A is anm x n coefficient matrix, and(w) is anm
[12], [14]. In particular, for multiobjective stochastic lineardimensional random variable column vector.
programming problems, Hulsurkar et al. [8] discussed anWe are often faced with optimization problems involving
approach based on fuzzy programming. However, in theandomness like (1). For instance, in a company producing
method, since membership functions for the objective funes products byn processes, there may exist a multiob-
tions are supposed to be aggregated by minimum operggxtive optimization problem that the decision maker hopes
or product operator, obtained solutions may not sufficienttp minimize the production cost and minimize the amount

I. INTRODUCTION

minimize z(x)=c¢x, | =1,2,... k
subject to Ax = b(w) @)
z; €{0,1,...,v;}, j=1,2,...,n



of wastessimultaneously under the situation that for eachold for optimal recourse variable vectgi”,i~. Then, the
decision variabler; representing the discrete production levebllowing equations
for the j th process; = 1,2, ..., n, the unit production cost
coefficientc;; or the unit waste amount coefficients; and it =00 =N qme. G- =0. if B> Qs
unit production amount coefficients;; of the ¢ th product, Y ’ Z R ’ t Z R
1=1,2,...,m, are known while each dematd for the i th n n
product,i = 1,2, ...,m varies randomly. g =0, 9y = aym; — b b <> aix;

Since (1) contains random variable coefficients, we can- = j=
not directly apply solution methods or solution concepts forre led fori — 1,2,....m , whereb? is the observed value
ordinary mathematical programming problems to it. If th (@) ‘
decision maker wishes to take the cost of the shortage or e
surplus of products caused by the randomness of demand into
account, recourse models to consider the penalty dependixgpectation of the recourse Emln (plyJr +qy )} can be
on the degree of violation of constraints for observed valyiculated as:
ues seem more desirable than chance constrained condition
programming models [4], [5], [9] where chance constrained E{ min (pyt +qy~ )}
conditions mean that the constraints need to be satisfied vt~
with a certain probability (satisficing level). In this paper, N - . .
we adopt the simple recourse model [7] which would be ~ E{p" +ay } = ZE{p“’ijrq”yi }
the most fundamental and practical among recourse models m =t
fc_>r situation that the shortage or surplus of_ products can _be — ZpuE{y js Z%E{%
directly compensated by purchase of equivalent alternative
products or the disposal of products.

bi(w), ¢ = 1,2,...,m are mutually independent, the

= th/ B bz'*zaijfj dF;(b;)
i=1

[1l. M ULTIOBJECTIVE INTEGER SIMPLE RECOURSE Do i
PROBLEMS n
. ™ =1 %% [
In problem (1), we assume that the decision maker must +Z%/ > ajjz; — b | dF;(b;)
make a decision before he knows observed values of random i —oo =

variables. In recourse approaches, the penalty of violation of m m " aiey
constraints is incorporated into objective functions in order to = th-E{bi} — Z(Pzz' + qli)/ = bsd s (be)
consider the loss caused by randomness. i ; —o0

To be more specific, denoting the difference betweken

and b(w) by two random vectoryy™ = (v, v5,...,u5)7T *Zpli Zaijxa‘
andy™ = (v, Y5 ,---,Um) %, (1) can be reformulated as the ' /
following multiobjective integer simple recourse problem. m
minimize ’LU[(SU) :CZ+R1($), |l = 1,2,...7]6 +; plz+qlz Zaz_]x] Fz Z:azgmj
subject to Az +yT —y~ = b(w) @ B
z; €40,1,...,v;}, i=1,2,...,n where F;;(+) is the probability distribution function of; (w).
yt >0, y~ >0 Then, (2) is equivalent to the following problem.
In (2), minimize Z;(x), {=1,2,...,k } @)
. subject to z; € {0,1,...,v;}, 7=1,2,...,n
Ry(x) E{ymgl Py +ay )} @ here
is called the expectation of a recourse for thén objective, m
Wherepl andgq, are constant row vectors. Since each elemer#:(® szzE{b P+ Z ( Zaijpli> Zj
of y* = (y,v5,...,y5)T means the shortage of each i=
product and each element 9f = (y;,v5 ,---,¥,,)T means m n ,
the surplus of each product, each elemenppfis regarded S i+ ai) | Y agz | Bl iz,
as the unit cost to compensate the shortage of each product i=1 = =
and each element @f; is regarded as the unit cost to dispose S aijey
the surplus of each products. Fpy and g;, the assumption —/ bidFi(bi)} ,
p, + q; > 0 seems natural because we could improve the -
objective function value infinitely by increasing™ and y;” and let X ={x|z; €{0,1,...,v5,}, j=1,2,...,n}

infinitely if p;; + ¢ < 0 for somes.

From the assumption, complementary relations In general, there rarely exists a complete optimal solution

that simultaneously optimizes all objective functions for a
gF>0—97 =0, 9 >0—9 =0, i=1,2,....,m multiobjective programming problem.



As a reasonablesolution concept for (4), we define theu,(Z;(x)) > w;(Z;(x*)) for at least onej € {1,2,...,k}
following R-Pareto optimal solution. in (5).
Definition 3.1. (R-Pareto optimal solution}* € X is said to Introducing an aggregation functign, () for & member-
be anR-Pareto optimal solution if there does not exist anotheship functions in (5), problem (5) can be rewritten as:
x € X such thatZ,(x) < Z;(x*) for anyl € {1,2,...,k}

and Z;(x) < Z;(x*) for at least onej € {1,2,...,k}. maximize - fip ()

subject to z; € {0,1,...,v;} j=1,2,...,n } 6)

The aggregation functiomp(x) represents the degree of
satisfaction or preference of the decision maker for whole of
k fuzzy goals.

In order to consider imprecise nature of the decision maker'sfollowing conventional fuzzy approaches, as the aggre-
judgment for each objective functiaf;(z) in (4), we intro- gation function, Hulsurkar et al. [8] adopted the minimum
duce fuzzy goals such as (&) should be substantially lessoperator [1] define by
than or equal to a certain value.” Then, (4) can be rewritten
as: pp(x) = min ju(Z(z)) (1)

IV. AN INTERACTIVE FUZZY SATISFICING METHOD

ey

maximize (Zi(x)), 1=1,2,....k (5) and the product operator [26] defined by
subject to z; € {0,1,...,v;}, j=1,2,...,n

k
where 1;(+) is a membership function to quantify the fuzzy pp(x) = H{uz(Zz(m))}- (8)
goal for thel th objective function in (4). To be more specific, =1
if the decision maker feels thaf;(x) should be less than or Although these operators are widely used as an aggregation
equal to at least; o and Z;(x) < Z;1(< Zi ) is satisfactory, function, the usefulness of the minimum operator or the
the shape of a typical membership function is shown in Figroduct operator is limited since the preference of the decision
1. maker is not always well expressed by them in general decision
situations. It would be desirable to identify an appropri-
My (Z,(x)) ate aggregation function which well represents the decision
A maker’s preference, but it is rarely possible to identify such the
1.0 aggregation function explicitly and exactly. As an alternative,

: interactive methods which derive the local information of the
decision maker’s preference through interactions and find a
satisficing solution for the decision maker without the explicit
identification of the aggregation function seem promising to

0 Z 7 > (x) (5). In this paper, we develop an interactive fuzzy satisficing
H Lo ! method to derive a satisficing solution for the decision maker
Fig. 1. Anexample of a membership function (Z; (z)) through interaction proposed by Sakawa et al. [18]. In their

method, in order to derive a satisficing solution, the decision
maker interactively updates aspiration levels of achievement
Since (5) is regarded as a fuzzy multiobjective decisidor membership values of all fuzzy goals, called reference
making problem, there rarely exists a complete optimal solthembership levels, until he is satisfied [18].
tion that simultaneously optimizes all membership functions. To be more specific, for the decision makers reference
As a reasonable solution concept for such fuzzy multiobjemembership levelsi;,, | = 1,2,...,k, the following aug-
tive decision making problems, Sakawa et al. [18] defined Maented minimax problem is repeatedly solved.
Pareto optimality on the basis of membership function values
by directly extending the Pareto optimality for multiobjective
programming problems. k
Definition 4.1. (M-Pareto optimal solution)z* € X, where +p > (i — pi(Zi()))] ©)
X is the feasible region of the problem, is said to be an M- i=1
Pareto optimal solution if and only if there does not exist
anotherz € X such thaty; (z;(x)) > w(z(x*)) for any In (9), p is a sufficiently small positive number and the
le{l,2,...,k}andu;(z;(x)) > p;(z;(x*)) for at least one corresponding optimal solution to (9) is nearest to the require-
j€{1,2,...,k} wherez/-)s stand for objective functions. ments in the augmented minimax sense or better than them if
Based on the concept aR-Pareto optimal solution and the reference membership levels are attainable.
that of M-Pareto optimal solution, we now define MPareto  The relationship between an optimal solution to (9) and the
optimal solution. M- R-Pareto optimality can be characterized by the following
Definition 4.2. (M-R-Pareto optimal solution)z* € X is theorems.
said to be an M-R-Pareto optimal solution to (5) if andrheorem 4.1.1f * € X is an optimal solution to (9) for
only if there does not exist anothet € X such that somep;, [ =1,2,...,k, thenz* is an M-R-Pareto optimal
w (Zi(x)) > w(Zi(x*)) for all I € {1,2,...,k} and solution to (5).

minimize ll?axk[ﬂl — m(Zi(x))

yeeey

subject to xje{()_,l,...,yj}, j=1,2,...,n



Theorem 4.2.1f * € X is an M-R-Pareto optimal solution
to (5), then there existg;, | = 1,2,...,k such thatz* is an
optimal solution to (9).

We now summarize the interactive algorithm.
Interactive fuzzy satisficing method
Step 1: Calculate indiidual minimaZ; ., of objective func-
tions Z;(x), | = 1,2,...,k, in (5) by solving the following

problems.
b ao)

Then, calculateZ; ,,;, from optimal solutionsz’ ; , I
1,2,...,k to (10). Go to step 2. EJ
Step 2: Ask the decision maker to subjectively determinﬁo]
membership functionsy,;(Z;(x)) for objective functions,
based on minimal valueg i, calculated in step 1. Go to [11]
step 3.

Step 3: Ask the decision maker to set the initial referencgz)
membership levels (they are often set as = 1, | =
1,2,...,k). Go to step 4.

Step 4: Solve the following minimax problem for given

(3]

(4]
(5]

(6]
(7]

(8]

minimize Z;(x)
subject to z; € {0,1,...,v;}, j=1,2,...,n

(13

reference membership levels, [ =1,2,... k. (14
minimize l_nllaxk[ﬂl — i (Zi(x))
™ [15]
(s = i Zi(@)))] S
=1

subject to  x; e{(il,...,uj}, j=1,2,...,n

Then, calculate membership function valuegZ;(x*)),
I = 1,2,...,k corresponding to the optimal solutioma*
to (11), which is guaranteed to be an RHPareto optimal
solution to (5). Go to step 5.
Step 5: If the decision maker is satisfied with;(Z;(x*)),
l =1,2,...,k obtained in step 4, stop. Otherwise, ask the
decision maker to update the reference membership l@yels[19]
I =1,2,...,k in consideration of the current membership
function valuesu; (Z;(x*)). Go to step 4.

(17]

(18]

(20]

V. CONCLUSIONS

In this paper, we focused on multiobjective integer program-
ming problems involving random variable coefficients. Aftefy)
we reformulated them as multiobjective simple recourse prob-
lems based on the concept of simple recourse, we introduced
fuzzy goals for objective functions to consider the ambigioysy,
or fuzzy judgments of the decision maker. Then, we proposed
an interactive fuzzy satisficing method as a fusion of stochastic
approach and fuzzy one to derive a satisficing solution for tie;
decision maker.

As future problems, we are going to consider an iIIustrativg :
numerical example and show the efficiency of the proposéé
method.

[25]
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