
Rule Inductionby EDA with
Instance-Subpopulations

Hisashi Handa
Graduate School of Natural Science and Technology
Tsushima-Naka 3-1-1, Okayama 700-8530, JAPAN

email:handa@sdc.it.okayama-u.ac.jp

Abstract—In this paper, a new rule induction method by using
EDA with instance-subpopulations is proposed. The proposed
method introduces a notion of instance-subpopulation, where a
set of individuals matching a training instance. Then, EDA pro-
cedure is separately carried out for each instance-subpopulation.
Individuals generated by each EDA procedure are merged to
constitute the population at the next generation. We examined
the proposed method on Breast-cancer in Wisconsin and Chess
End-Game. The comparisons with other algorithms show the
effectiveness of the proposed method.

I. I NTRODUCTION

In recent years, as available computational resources are
growing, Evolutionary Computation has attracted much at-
tention in data mining because of its global search ability.
However, it sometime tends to find out only generalized rules:
For instance, the upper figure in Fig. 1 explains that certain
situations could be occurred in the rule acquisition by using
conventional Evolutionary Computation. In the figure, training
instances are indicated to by circles (for positive instances) and
crosses (for negative instances). This figure is simplified one
so that problem space and rules are represented by a plane
and rectangles, respectively. The generalized rules mentioned
the above mean (a) and (b) in the figure. The reason why
such situation is occurred is that by using single population,
Evolutionary Computation tends to converge better rules, i.e.,
accurate rules which can correctly explain a large number of
training instances. Rule (c) is accurate but can explain only a
few training instances.

In order to avoid such situations, the diversification of
solutions have been devised. One of such diversification
mechanisms which is not restricted to rule inductions are
fitness sharing and crowding [1]. By using either of methods,
population will be diversified. However, they often weaken
the convergence ability of Evolutionary Computation. Another
approach to acquire diverged solutions is use of Evolutionary
Multi-objective Optimization [2]. Evolutionary Multi-objective
Optimization can separately cope with the accuracy and the
complexity as objective functions. In the case of the upper
figure in Fig. 1, rules (b) and (c) are definitely accurate but
rule (b) is simpler than rule (c) so that EMO might not choose
(c). Although the rule selection of such rule involves difficult
problems from the viewpoint of the generalization property,
the proposed method tries to survive such rules.

XCS by Wilson is a promising classifier systems [3][4].
Main features of XCS are 1) accuracy based fitness calculation,
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Fig. 1. Example of Acquired Rules by single population (UPPER); by
proposed method (LOWER)

2) genetic operation against action sets, and 3) Q-Learning-like
Reinforcement Learning. Original XCS is online algorithms
while it is often used for Data Mining Problems [3][5].
Recently, XCS/BOA is proposed by Butz and Pelikan [6]. The
main difference between XCS/BOA and the proposed method
is that probabilistic models in the proposed method is prepared
for all the training instance, i.e., action sets in XCS.

In this paper, rule induction method by EDA is proposed.
At every generation, subpopulations corresponding to each of
training instances, called instance-subpopulation (cf. the lower
figure in Fig. 1), are constituted. Then, EDA procedure is
carried out in each instance-subpopulation: Better individuals
are chosen from each instance-subpopulation. The probabilis-
tic models are estimated from the selected individuals. New
individuals are sampled from the probabilistic model. All
the individuals sampled by each instance-subpopulation are
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ProcedureEstimation of Distribution Algorithm
begin

initialize D0

evaluateD0

until Stopping criterion is reached
Ds

l ← SelectN individuals fromDl−1

pl(x)← Estimate the probabilistic model fromDs
l

Dl ← SamplingM individuals frompl(x)
evaluateDl

end
end

Fig. 2. Pseudo-code of Estimation of Distribution Algorithms

merged in order to constitute the next population.

II. ESTIMATION OF DISTRIBUTION ALGORITHMS

A. General Framework of EDAs

Estimation of Distribution Algorithms are a class of evolu-
tionary algorithms which adopt probabilistic models to repro-
duce individuals in the next generation, instead of conventional
crossover and mutation operations. The probabilistic model is
represented by conditional probability distributions for each
variable. This probabilistic model is estimated from the genetic
information of selected individuals in the current generation.
Hence, the pseudo-code of EDAs can be written as Fig. 2,
where Dl, Ds

l−1, and pl(x) indicate the set of individuals

at lth generation, the set of selected individuals atl− 1th

generation, and estimated probabilistic model atlth generation,
respectively [7] As described in this figure, the main calcula-
tion procedure of the EDAs is that (1) firstly, theN selected
individuals are selected from the population in the previous
generation. (2) Secondly, the probabilistic model is estimated
from the genetic information of the selected individuals. (3)
A new population whose size isM is then sampled by
using the estimated probabilistic model. (4) Finally, the new
population is evaluated. (5) Steps (1)-(4) are iterated until
stopping criterion is reached.

B. MIMIC

In the proposed method, a large number of calls of the
EDA procedure is required. Hence, MIMIC (Mutual Infor-
mation Maximizing Input Clustering) proposed by De Bonet
et al. is adopted as an EDA algorithm for the proposed
method. MIMIC is a kind of EDAs whose probabilistic model
is constructed with bivariate dependency such as COMIT
(Combining Optimizers with Mutual Information Trees) [8][9]
Whilst the COMIT generates a tree as dependency graph, the
probabilistic model of the MIMIC is represented by a chain
based upon a permutationπ.

pl(x) =
n−1∏
j=1

pl(xin−j |xin−j+1) · pl(xin),

where the permutationπ = (i1, i2, . . . , in) indicates a se-
quence of variable indices. This permutation is obtained in

Fig. 3. Probabilistic models for MIMIC

ProcedureEDA with Instance-Subpopulations
begin
D0, Di

0 ← Initialization (i = 1 . . . S)
until Stopping criterion is reached

foreach training instancesi = 1 . . . S
Di,s

l ← SelectN individuals fromDi
l−1

pi
l(x) ← Estimate the probabilistic model from

Di,s
l

end
Dl, D

i
l ← Sampling frompi

l(x) (i = 1 . . . S)
end

end

Fig. 5. A pseudo-code of the proposed method

every generation. In Fig. 3, the permutationπ is set to
be (i1, i2, . . . , i5) = (5, 2, 4, 1, 3) for instance. Furthermore,
note that the conditional probabilitypl(xin−j |xin−j+1) is an
abbreviated form ofpl(Xin−j = xin−j |Xin−j+1 = xin−j+1).

III. EDA WITH INSTANCE-SUBPOPULATIONS

A. Overview

Fig. 4 depicts a diagram of the proposed method. The
main difference between conventional Evolutionary Compu-
tation for classification problems and the proposed method is
instance-subpopulations, which consist of individuals match-
ing the same training instance. That is, evolutionary search
in the proposed method is carried out for each instance-
subpopulations. LetS be the number of training in-
stances. Subpopulation 1 in the figure denotes the instance-
subpopulation matching the first training instance. After con-
stituting instance-subpopulations, EDA procedure is carried for
each of them as follows: Individuals are chosen from each
instance-subpopulation. Then, probabilistic models are esti-
mated. New individuals are sampled by using the probabilistic
model. Finally, the whole population at the next generation is
constituted by merging all the sampled individuals.

B. Representation and Fitness Calculation

The representation of individuals, i.e., rules, is the same
as Classifier Systems: Each gene in the antecedent part of
individuals is defined by values at corresponding attribute in
training data. In addition, some genes are set to be “Don’t Care
Symbol,” indicating that any values at corresponding attribute
are matched to the rule. The decedent part of individuals
represents a class to be classified. The following individuals
can be listed as examples for 5 attributes with 5 values and 2
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Fig. 4. A diagram of the proposed method

classes problems:

0 3 # 2 1 : 0,

# 2 4 # # : 1,

# # 3 # 2 : 1,

where the first five digits and the last digit denote the an-
tecedent part and the decedent part of individuals, respectively,
and “#” denotes “Don’t care symbol.” “Completely match” of
individuals for a training instance denotes that both of the
antecedent and decedent parts of corresponding individual is
the same as training instance except for “Don’t Care Symbol.”

Fitness functionF (x) is adopted simple one in this paper:

F (x) = nc/nm + Cr · rd,

wherenc andnm indicate the number of correct classification
and the number of matched training instances1, respectively.
Cr andrd denote coefficient and the proportion of “Don’t care
symbol” in the individual to be evaluated, respectively. The
coefficient Cr is set to be quite small value such as 0.001.
Hence, this fitness function is designed to find out accurate
rules first, then, to find out much general rules among rules
with similar accuracy.

Instead of using the proportion of “Don’t care symbol,”
as preliminary experiments, other types of fitness functions
are examined, e.g., fitness function in [10] and its mutants,
which take account into two kinds of errors, i.e., incorrect
classification for matched training instances and the number
of unmatched positive training instances. Although such fitness
functions are similar to F-value and are familiar with conven-
tional Machine Learning approaches, they did not work well
in the proposed method. The reason of this is that these fitness
functions are designed to search for rules which can explain a
large amount of data. As consequence of this, a large number
of instance-subpopulations in the proposed method converge
to the same rules. In other words, simple fitness function in

1Here, “match” means a corresponding rule is matched only in its an-
tecedent part

Matching

Population Sub-Population 2

5 3 4 0 1 : 0

* * 4 * 1 : 0

Training Instance 2

* 3 4 0 * : 0
5 * * 0 1 : 0
* 3 * * 1 : 0

Fig. 6. An example of constitution of instance-subpopulation which is
matched to a training instance5 3 4 0 1 : 0

the this paper might help to maintain the diversity of generated
rules in such subpopulation approach.

C. Constitution of Instance-Subpopulation

As depicted in Fig. 4, instance-subpopulations are con-
stituted as a set of individuals which match to each of
training instances. Fig. 6 delineates constitutions of instance-
subpopulation which is matched to a training instance
5 3 4 0 1 : 0 for example. Note that matching to con-
stitute instance-subpopulations for a certain training instance
means not only the match of the antecedent part but also the
match of the decedent part of individuals to the instance.

As depicted in this figure, generated instance-subpopulation
is composed of individuals such that each of genes in the
antecedent part is the same as the value at corresponding
attribute of the training instance or “Don’t Care Symbol.”
Therefore, EDAs should find out the best allocation of “Don’t
Care Symbols” for each subpopulation. This property is good
for EDAs. The reason of this is described as follows: EDAs
use probability models to estimate the distribution of effective
genetic patterns in selected individuals. That is, if the number
of alleles at each locus is large, a large number of selected in-
dividuals are needed to estimate probabilistic models precisely.
Therefore, in binary-encoded problems, EDAs work very well.
In each instance-subpopulation, even if training instances is
composed of various kinds of values at each attribute, it can
be regard as binary-encoded problems in each subpopulation,
i.e., whether “Don’t Care Symbol” should be assigned or not.
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ProcedureSampling (pi
l(x) (i = 1 . . . S) is given)

begin
foreach training instancesi = 1 . . . S

for Ns times
Dl ← Add a new individualk sampled bypi

l(x)
Di

l ← Call Matching-Evaluation for individualk
end

end
repeat
i is randomly chosen.
Dl ← Add a new individualk sampled bypi

l(x)
Di

l ← Call Matching-Evaluation for individualk
until the size of all the subpopulation exceedsNSPS

end

Procedure Matching-Evaluation (individualk)
foreach training instancesj = 1 . . . S

if The antecedent part ofk matchesj
Nm + +
if The decedent part ofk matchesj
Nc + +
Dj

l ← reference ofk
endif

endif
end
calculate fitness ofk by usingnc andnm

end

Fig. 7. Sampling, Matching, and Evaluation for generating a new population

D. Sampling Method

Technically speaking, after sampling a new individual,
matching and evaluation of individuals are carried out in pro-
cedure Matching-Evaluation in Fig. 7. That is, this procedure is
called a number of times in a generation in procedure Sample
in the same figure. Firstly, an individual is sampled by using
a conventional way in EDA with directed acyclic probabilistic
graphical models, i.e., Probabilistic Logic Sampling method
[7]. Sampled individual is stored in a new population. Sec-
ondly, the sampled individual is examined if its antecedent part
matches to each of training instances. If the antecedent part is
matched, the decedent part is also examined: If matched, the
reference (or pointer in C Language) is added to the reference
list of the instance-subpopulation of the corresponding training
instance andnc and nm in section III-B are incremented.
Otherwise, i.e., if the antecedent part is matched while the
decedent part is not matched, onlyNm is incremented. After
the examinations to all the training data, we can calculate the
fitness of the sampled individual.

The procedure sampling is firstly samplingNs individuals
for each probabilistic modelpi

l(x) (i = 1 . . . S). After each
sample, as mentioned in the above, the procedure Matching-
Evaluation is called. Moreover, 1) the procedure sample ran-
domly chooses training instancei. 2) For selected instancei,
if the size of corresponding subpopulation is less thanNSPS ,

then a new individual is sampled by usingpi
l(x), and the

the procedure Matching-Evaluation is called. 3) go back to
1) until the size of all the subpopulation exceedsNSPS . For
initialization, pi

0(xj) is set to be 0.5(i = 1 . . . S, j = 1 . . . n).

E. Generating final individuals

After evolution, there are a large number of individuals in
the population. Therefore, final individuals are chosen from the
population: First of all, instance-subpopulations are constituted
by using the same method as during evolution. Secondly,
individual selection is carried out for each subpopulation as
follows.

1) Find out the individual which can match training
instances with the greatest number.

2) If no individual is found, removed training instances
in 3) are recovered and selection procedure is moved
to the next subpopulation.

3) Store the individual into a set of final individual can-
didates and temporally remove the training instances
matched by the individual.

4) Go back to 1)

Finally, duplicative individuals in the set of final individual
candidates are aggregated into a single individual.

IV. EXPERIMENTAL RESULTS

A. Experimentation Settings

In this paper, two datasets from UCI Machine Learn-
ing Repository, i.e., breast-cancer in Wisconsin (bcw) and
Chess End-Game – King+Rook versus King+Pawn on a7
(kr-vs-kp), are used as benchmark problems [11][12].
bcw is composed of 699 training instances with 9 features.
kr-vs-kp has 3196 training instances with 36 features.
10-fold cross validation is used to evaluate the proposed
method. In test phase, we adopt majority voting to classify
test instances, if there are a number of matched rules with
different decedent parts.

Parameters are described as follows: The number of
instance-subpopulations is the same as the number of training
instances to be learnt. Duplicated training instances are deleted
in advance. The numberNs of individuals to be sampled by
using the probabilistic model in each subpopulation is set to be
one of 0, 50, and 100. The number of selected individuals and
the least numberNSPS of individuals in each subpopulation
are set to be 200 and 400, respectively. Truncation Selection
is used as a selection method in this paper. The number
of generations is set to be 5. It might be seemed that few
number of generations. However, it requires 5× (the number
of training instance to be learnt) EDA procedures for a single
run.

B. Results

Table I summarizes experimental results with various2 for
bcw and kr-vs-kp. “perform.,” “pop-s,” “subpop-s,” and

2Ns means the number of individuals to be sampled by using the proba-
bilistic model in each instance-subpopulation
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TABLE I
CROSS-VALIDATION PERFORMANCE WITH VARIOUS Ns ON bcw (UPPER)

AND ON kr-vs-kp (LOWER)

Ns perform. pop-s subpop-s final-s
0 96.0± 2.5 9296.1 837.1 84.8
50 96.8± 2.2 27423.6 807.0 209.8
100 96.7± 2.2 46066 1043.3 227.9
200 96.8± 2.1 82044.6 1804.1 241.8

Ns perform. pop-s subpop-s final-s
0 97.1± 10.7 20333.3 866.2 95.7
50 98.3± 0.6 155627.0 986.7 344.7
100 98.1± 0.8 291603.8 1773.9 443.1

TABLE II
COMPARISON WITH CONVENTIONAL METHODS ONbcw AND kr-vs-kp

Algorithm perform.(bcw) perform.(kr-vs-kp )
ProposedMethod 96.8± 2.2 98.3± 0.6

XCSTS 95.9± 2.3 98.9± 0.6
Majority 70.3± 1.2 52.2± 0.1
Main Ind. 91.9± 2.9 67.1± 1.8

C4.5 94.5± 2.6 99.4± 0.4
Naive Bayes 96.0± 2.1 87.8± 1.9

PART 94.7± 2.4 99.1± 0.6
Inst.b.1 95.6± 2.1 90.5± 1.6
Inst.b.3 96.6± 2.0 96.5± 1.1

SMO(poly.1) 96.7± 1.9 95.8± 1.2
SMO(poly.3) 95.9± 2.1 99.6± 0.4
SMO(radial) 96.0± 2.2 91.4± 1.6

“final-s” in the tables indicate the result of 10-folds cross
validation, the population size at the final generation, the
average size of the instance-subpopulations, and the number
of rules acquired by the proposed method, respectively. As
described in section III-E, final rule set is chosen from
the individuals at the final generation. Although instance-
subpopulations in the proposed method are constituted for all
the training instances, the number of final rules is smaller than
the number of training instances. In terms of the result of
10-folds cross validation,Ns = 0 does not work well. Too
much information propagation is carried out so that similar
instance-subpopulations are converged rapidly. In other word,
the genetic diversity in the population was easily lost. In the
case ofNs ̸= 0, performances do not differ with each other.
However, the population size is significantly different. The
large population size causes a large amount of computation
time. We examined thatNs = 10. However, its performance
is worse thanNs = 0.

As shown in Table II, we compare the proposed method with
other algorithms. In the table, data except for the proposed
method is cited from [3]. The bold numbers in the table
denote that the proposed method outperforms by correspond-
ing method with statistical significance. The italic numbers
means that the proposed method is outperformed. The propose
method is competitive with other algorithms.

V. CONCLUSIONS

In this paper, a new EDA with instance-subpopulations is
proposed. One of the main features of the proposed method
is that reproduction by using probabilistic model is carried

out for individuals matching to each instance. By constituting
such instance-subpopulations, all EDAs in each instance-
subpopulation need to do is to learn whether “don’t care
symbol” should be set or not for corresponding training
instance. We examined the proposed method on Breast-cancer
in Wisconsin and Chess End-Game. The comparisons with
other algorithms elucidate the effectiveness of the proposed
method.
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