姿勢推定における姿勢表現の比較 100物体を用いた実験

広島大学工学部

広島大学工学研究科情報工学専攻

田中聡子

原田健吾

玉木徹

Bisser Raytchev

金田和文

奈良先端科学技術大学院大学情報科学研究所 天野敏之

姿勢推定

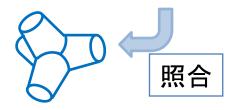
画像

物体の情報

45度 傾いている 応用例

・ロボットアーム

アプローチ


•モデルベースの手法

テスト画像形り

・見えに基づく手法

学習

姿勢

 p_2

比較

画像と姿勢を対応付ける

テスト画像

線形回帰を用いた見えに基づく手法

$$\mathbf{X}_j$$
 \mathbf{p}_j 画像ベクトル 姿勢表現

$$\mathbf{p}_{j} = F\mathbf{x}_{j}$$

$$\mathbf{X}_1$$
 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_4

姿勢 \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4 ...

画像と姿勢の:F対応関係

推定

 $\stackrel{??}{\Box} \mathbf{p} \cong F\mathbf{x}$

最適な姿勢表現りは何か?

3自由度での線形回帰による姿勢表現に必要な性質

連続性と一対一

玉木ら['08MIRU]

連続性

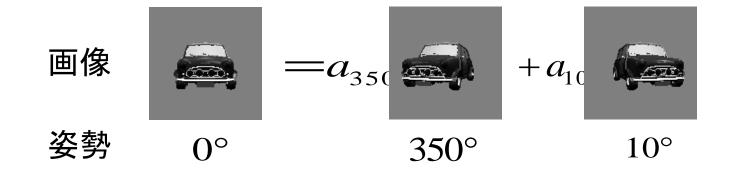
テスト画像

学習画像の線形和


$$\mathbf{x} = \sum b_j \mathbf{x}_j$$

 b_i :重み

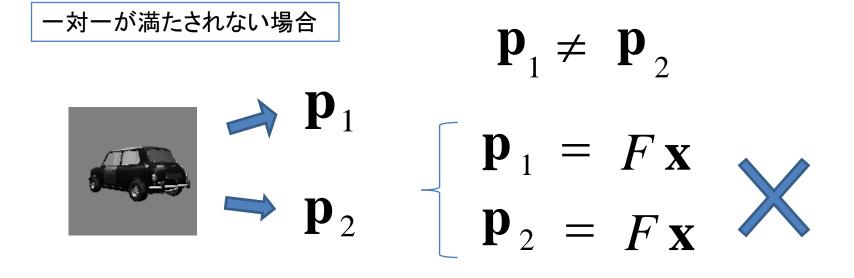
姿勢


学習姿勢の線形和

$$\mathbf{p} \cong F\mathbf{x} = \sum b_j F\mathbf{x}_j = \sum b_j \mathbf{p}_j$$

学習画像-姿勢

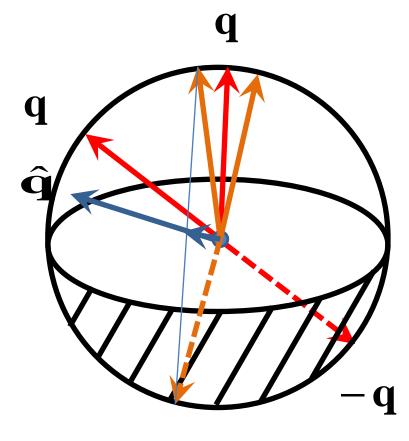
連続性



姿勢表現	不連続点	学習•推定
角度	2π	$180^{\circ} \cong a_{350} \cdot 350^{\circ} + a_{10} \cdot 10^{\circ}$
o sin cos	なし	$\sin(0^\circ) \cong a_{350} \sin(350^\circ) + a_{10} \sin(10^\circ)$ $\cos(0^\circ) \cong a_{350} \cos(350^\circ) + a_{10} \cos(10^\circ)$

姿勢表現は連続でなければならない

一対一

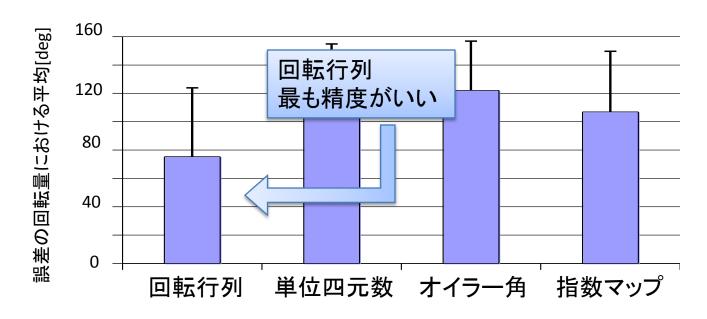

画像 Xに対して、姿勢 P が一対一に対応しなければならない

 \mathbf{p}_1 \mathbf{p}_2 を同時に学習することはできない

一対一

例:単位四元数

4次元空間の単位球


姿勢表現は連続でなければならない

姿勢表現の性質

姿勢表現	パラメータ -	一対一	連続性
回転行列	$\begin{bmatrix} r_{11}, & \cdots & r_{32}, & r_{33} \end{bmatrix}^T$		
単位四元数	$\begin{bmatrix} q_0, & q_1, & q_2, & q_3 \end{bmatrix}^T$	X	
オイラ一角	$\left[\theta_{x}, \theta_{y}, \theta_{z}\right]^{T}$	X	X
指数マップ	$[\omega_1, \omega_2, \omega_3]^T$	X	X

<u>実験</u>

原田ら['09MIRU]による実験的評価

問題点:

推定した物体が1体なので実験の信頼性が低い

実験目的

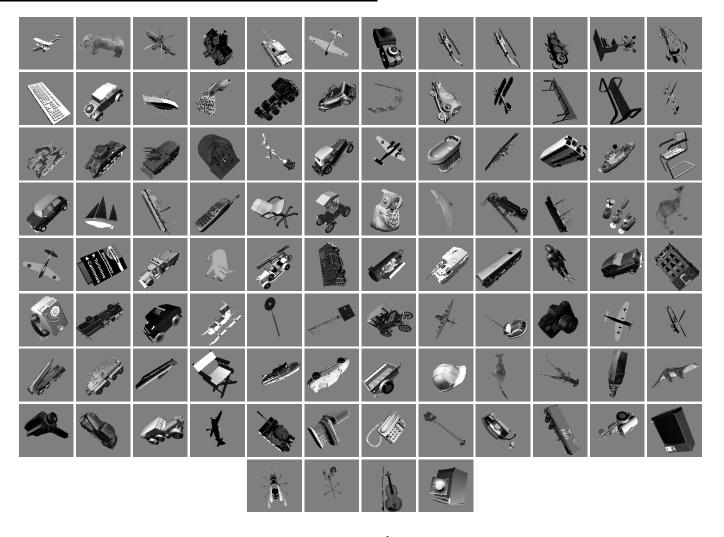
推定する物体を100体に増やす 回転行列が有意に推定誤差が低いことを示す

実験内容

•3Dモデル 500 3D-OBJECTS, vol.1 (100体)

•推定手法 線形回帰

•姿勢表現 回転行列•単位四元数


オイラー角・指数マップ

•学習画像枚数 2500枚

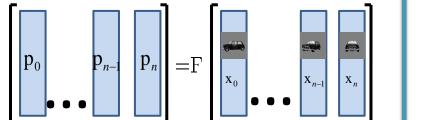
•推定画像枚数 1物体につき 100枚

•誤差の評価 回転行列の距離関数

使用した3Dモデル100物体

3Dモデル 500 3D-OBJECTS, vol.1

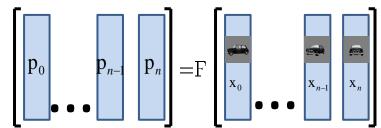
学習の流れ


学習画像枚数 n=2500

$$\mathbf{p}_{j} = F\mathbf{x}_{j}$$

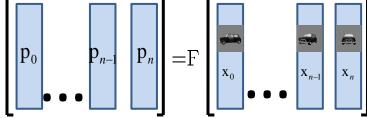
学習の流れ

$$\begin{bmatrix} p_0 & \cdots & p_{n-1} & p_n \end{bmatrix} = F \begin{bmatrix} x_0 & \cdots & x_{n-1} & x_n \end{bmatrix}$$



$$F_R = P_R X^+$$

Fを求める

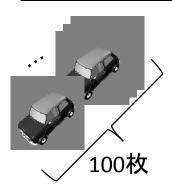

单位四元数

$$\begin{bmatrix} p_0 & \cdots & p_{n-1} & p_n \end{bmatrix} = F \begin{bmatrix} x_0 & \cdots & x_{n-1} & x_n \end{bmatrix}$$


$$F_{Qu} = P_{Qu}X^+$$

$$\begin{bmatrix} p_0 & \cdots & p_{n-1} & p_n \end{bmatrix} = F \begin{bmatrix} x_0 & \cdots & x_{n-1} & x_n \end{bmatrix}$$

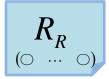
$$F_{Eu} = P_{Eu} X^+$$


オイラー角

$$F_{Exp} = P_{Exp} X^+$$

指数マップ

推定の流れ(1物体)


テスト画像 $\,x$

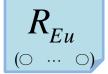
推定値 (回転行列に変換)

回転行列

$$F_R x = \hat{p}_R \implies$$

四元数

$$F_{Qu}x = \hat{p}_{Qu} \implies R_{Qu}$$



真値

オイラー角

$$F_{Eu}x = \hat{p}_{Eu} \Longrightarrow$$

比較

指数マップ
$$F_{Exp} x = \hat{p}_{Exp}$$

$$R_{Exp}$$

誤差

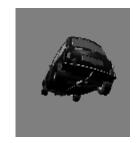
リーマン構造を用いた回転行列の距離関数を使用

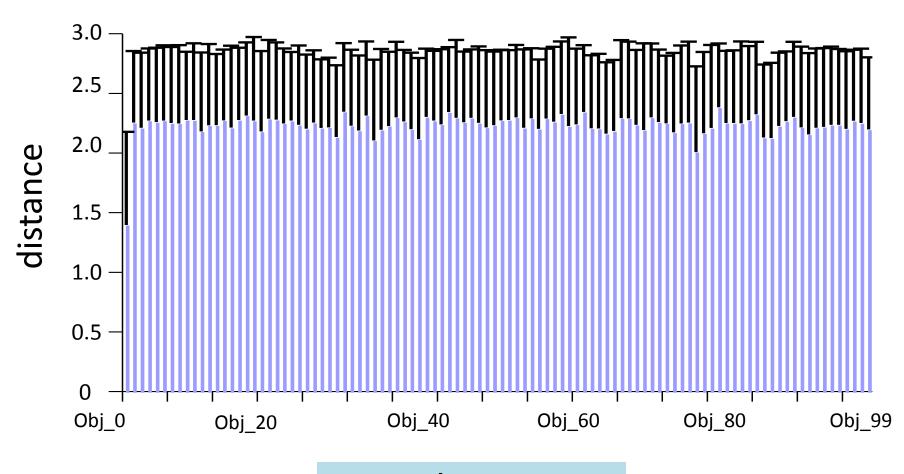

Maher Moakher ['02SIAM]

$$d_F(R_t, ilde{R}) = rac{1}{\sqrt{2}} \|\log R_t ilde{R}^t\|$$

$$\log R = \begin{cases} 0 & (\theta = 0) \\ \frac{\theta}{2\sin\theta} (R - R^t) & (\theta \neq 0) \end{cases}$$
$$\theta = \cos^{-1}(\frac{trR - 1}{2})$$

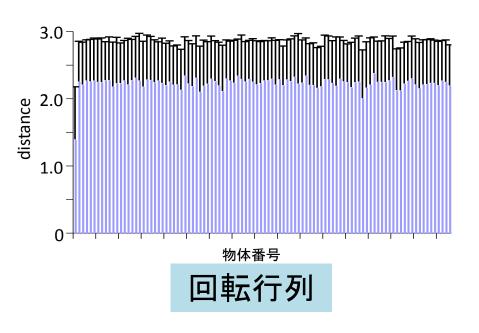
使用する画像

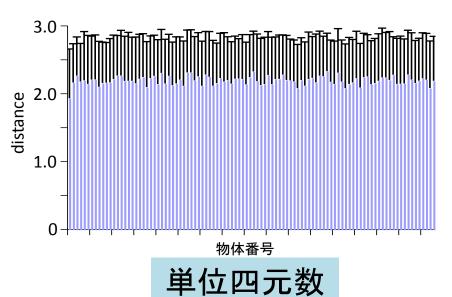


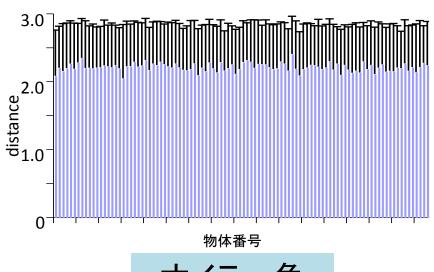


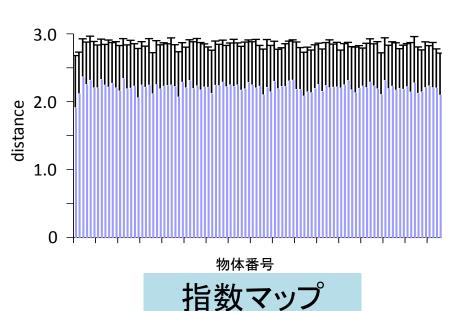
ランダムな姿勢の画像

不連続な姿勢の画像

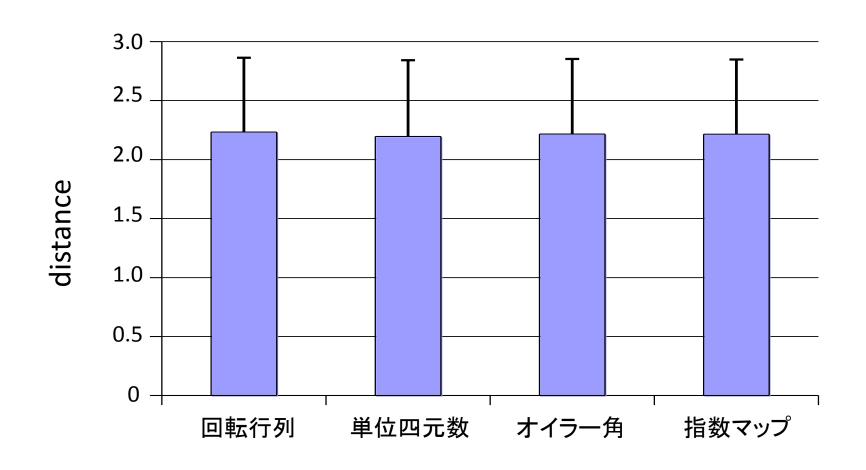

- •画像作成: OpenGLを使用
- •画像サイズ 128 × 128
- •グレースケール画像
- •照明条件・カメラ距離は一定


物体ごとの実験結果〈ランダム〉

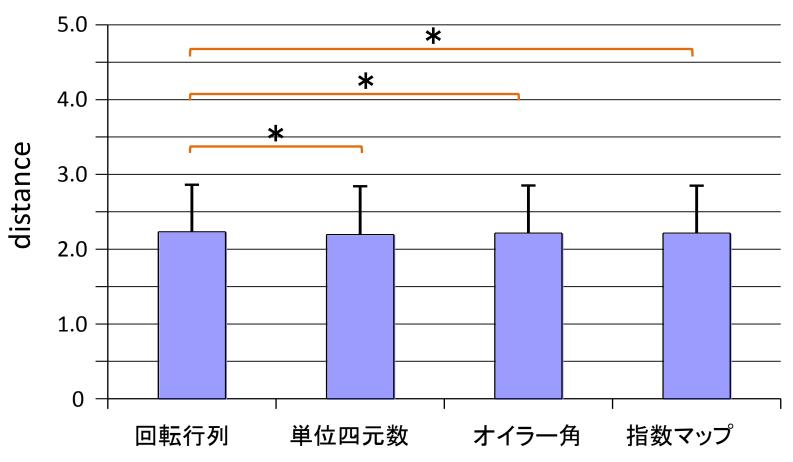



回転行列

物体ごとの実験結果〈ランダム〉

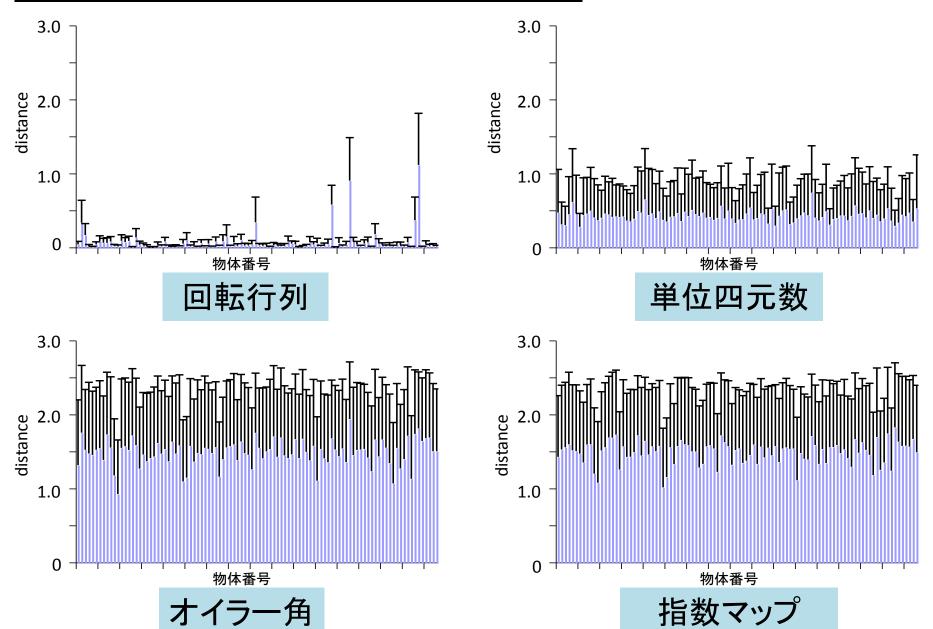


平均をとった実験結果くランダム>

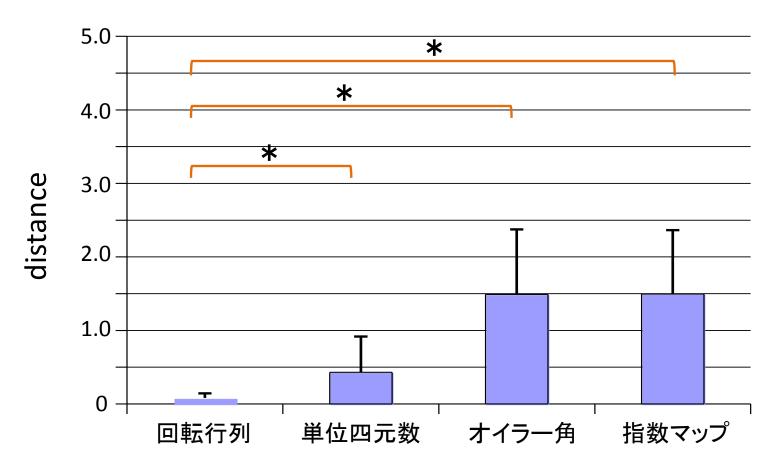


- •回転行列が一番誤差が小さい
- •相対的に誤差が大きい

t 検定


ペアワイズt検定

100枚の画像の推定誤差×100物体=10,000点



*: 棄却率1%で有意差はある

物体ごとの実験結果〈不連続〉

平均をとった実験結果くランダム>

- •回転行列の誤差が一番小さい
- •オイラー角と指数マップの誤差が大きい
- •T検定の結果 棄却率1%で有意差はあった

まとめ・考察

◎実験結果 線形回帰手法における最適な姿勢表現:回転行列

今後の方針

- ◎誤差を数式で表現し、姿勢表現の違いで誤差が異なる理由を解明する
- ◎線形回帰ではない手法でも実験SVR (Support Vector Regression)