A Maple package for verifying ultradiscrete
soliton solutions

Min Gao?, Masaaki Ito P*
& Department of Computer Science, Minjiang University,
Fuzhou Fujian 350108, China

> Department of Applied Mathematics, Faculty of Engineering,
Hiroshima University, Higashi-Hiroshima 739-8527, Japan

Abstract

We present a computer algebra program for verifying soliton solutions of ultra-
discrete equations in which both dependent and independent variables take discrete
values. The package is applicable to equations and solutions that include the max
function. The program is implemented using Maple software.

Key words: Ultradiscrete equations, Soliton solutions, Max-plus algebra,

Computer algebra
PACS: 02.30.1k, 02.70.Wz

Program summary

Title of program : Ultde

Catalogue identifier

Program obtainable from : CPC Program Library, Queen’s University of Belfast,
N. Ireland

Computers : PC/AT compatible machine

Operating systems : Windows 2000, Windows XP

Programming language used : Maple 10

Memory required to execute with typical data: Depends on the problem; mini-
mum about 1G bytes.

No. of bits in a word : 32

No. of bytes in distributed program, including test data, etc. : 3904
Restriction on the complexity of the problem : The program can only handle

* Corresponding author.
Email address: ito@amath.hiroshima-u.ac.jp (Masaaki Ito).

Preprint submitted to Computer Physics Communications 23 December 2008

single ultradiscrete equations.
Typical running time : Depends on the complexity of the equation and solu-
tion.

1 Introduction

Integrable systems comprise a primary subjects in mathematics and physics.
Soliton equations in particular have been studied as integrable systems. In
recent years, the ultradiscrete version of soliton equations has attracted a
great deal of attention [1-4]. Ultradiscretization is a procedure transforming
a discrete equation into an ultradiscrete equation in which both dependent
and independent variables take discrete values [1,5]. The formula for ultradis-
cretization is given by

lin%elog(eA/s + eP/) = max(A, B) (1)

for arbitrary real numbers A and B. Using this formula, the field of real
numbers can be transformed into a so-called “max-plus” algebra. Moreover,
this formula has been used to transform various soliton equations to cellular
automata without losing the mathematical properties of the corresponding
difference equation. However, solutions of ultradiscrete equation are not nec-
essarily derived from those of the corresponding discrete equation. Therefore,
it is important to find solutions for ultradiscrete equations directly. In ultra-
discrete systems, evolution equations and/or solutions often include the max
function. In this case, to verify a solution of an ultradiscrete equation, we
must divide the domain of parameters included in the solution into appro-
priate intervals and execute the max function in all cases. If the resulting
expression includes many parameters as in multi-soliton solutions, enormous
calculations are required to verify the solution. The use of computer algebra
can be helpful in such calculations. Computer algebra systems, such as Maple
and Mathematica, already have the mathematical capability to execute the
max function. Mathematica is particularly apt for simplification calculations,
and it can thus verify very simple solutions. However, for expressions with
many parameters, the built-in max function cannot complete verification.

In this paper, we propose an original algorithm for verifying soliton solu-
tions of ultradiscrete equations, and implement the algorithm using Maple.
This paper is organized as follows. In Section 2, we briefly review the ultradis-
cretization of discrete soliton equations and resulting solutions. In Section 3,
we outline the algorithm for verifying ultradiscrete soliton solutions. In Section
4, we give a description of the Maple package Ultde. In Section 5, we present
some examples to illustrate how to verify ultradiscrete soliton solutions. A
conclusion is given in Section 6.

2 Ultradiscretization of soliton equation and its solutions

As an example, we take the discrete Lotka-Volterra equation proposed by
Hirota and Tsujimoto [6],

ST =) = g @

Uy 1 Uy, Un+1 .

This equation possesses N-soliton solutions and infinite conserved quantities.
We transform the variables and constants using the following functions, which
include a parameter e:

um™ = Ui/ § = e Ve, (3)

Taking the limit ¢ — +0, we obtain an ultradiscrete Lotka-Volterra equation
7],

Umntt — U™ = max(0, U™

n—1

— 1) — max(0, U — 1), (4)

If initial values of U are integers, any U is also an integer. The procedure
used to generate a completely discrete equation like (4) from a difference one
like (2) using the transformation and limit as stated above is called “ultradis-
cretization.”

By using the transformation of U to F,

Up=FL + Y - Fr = FR ()
we obtain another form of the ultradiscrete Lotka-Volterra equation,

Fyoit + By 4 B+ Y 4 max(0, B+ Fys? — B — F? — 1)
= Ly + BB 4+ BT 4 B 4 max(0, By + FEY — By — F - 1),

(6)

An ultradiscrete multi-soliton solution of (6) is derived from that of (2) through
the same ultradiscretizing procedure. One-, two- and three-soliton solutions
are expressed as follows:

One-soliton solution:

F" = max(0, =),

El :Kln—le—i-E?, (7)
Q; = max(0, K1 — 1) —max(0, —K; — 1).

Two-soliton solution:

FT’T = max((), 517 EQ, El + EQ + A12)>
Q; = max(0, K; — 1) — max(0, —K; — 1), ¢=1,2,

A12 - |K1 - K2| - ’Kl —I— K2|

Three-soliton solution:

F" =max(0,2, 29, 23,21 + 22 + A2, 51 + E3 + Ays,
Eo + 23+ Aoz, 1+ Zp + Eg + Arp + Az + Ass),

= = K — Qm + 29, (9)

Q; = max(0, K; — 1) — max(0, - K; — 1), i=1,2,3,

AZ]:‘Kl_KJ‘_|KZ+KJ‘7 Z#]v Z)]:17273

We can verify one- and two-soliton solutions directly by hand, but in the
case of three- or multi-soliton solutions, an extremely tedious and enormous
calculation is required. To this end, we propose an algorithm for verifying
higher-order soliton solutions.

3 Algorithm for verifying ultradiscrete soliton solutions

In our algorithm, we consider the following max-plus equation:

Ly(Fm™ FmstF™ FETMEL) = Ly(F™ ETEL L ET FTEL),
' (10)
where Ly and L, are linear combinations of F"=7 (i, = 0,41, 2, .. .), which

includes the max function. The N-soliton solution of Eq. (10) is assumed to
have the following form:

N
F™" = max (3 wZi(m,n) + X pipidi),

pi=0,1"=1 1<i<j<N
Zi(m,n) = Kin — Qym + 29,
Q=Q(K;), i=1,2,...,N,
Ay = Ay(Ki, Kj), i#3, 4,7=12,...

(11)

N

Y Y

where max,,—o; denotes the maximum value over all possible combinations
of pp = 0,1, po = 0,1, -+, uy = 0,1, and €, A;; include the max and/or
absolute value functions. The algorithm has three steps.

Step 1. Conwvert each side of equation into a single-max expression

Substituting the solution (11) into (10), we have an expression in which
the max function is deeply nested. To convert the expression into a single-
max function form, we recursively use the following properties of max-plus
algebra:

max(A, B) + C = max(A+ C, B+ (),

(12)
max (A, max(B, C)) = max(A, B,C).

The above step can be performed by using the simplification function in
Mathematica. However, for expressions with many parameters, such as multi-
soliton solutions, the simplification cannot be completed. In Maple, such a
simplification likewise cannot be implemented.

For example, the expression max(ay, as) + max(by, by) + ¢ is converted into
a single-max expression as follows:

max(ay, az) + max(by, by) + ¢

= max(a; + max(by, bs), ag + max(by, be)) + ¢

= max(max(aj + by, a1 + by), max(as + by, as + bo)) + ¢
= max(aj + by, a; + ba,as + by, a0 + by) + ¢

=max(a; + by + ¢, a1 + by + ¢,as + by + ¢, as + by + ¢).

Setting z; = Kin — Qm + =22 (i = 1,2,..., N), the N-soliton solution (11)
is expressed as

N
Fﬁzb = max (Z wi(x; + Kia — Q;b) + Z it Aij). (13)

—0.1
pi=0.1723 1<i<j<N

Substituting the soliton solution (13) into the max equation (10) leads to a
max-plus equation in the following form:

maX(llal%lSa-") :max(/17 ;7 g’n"')v (14)

where

N
li=¢it+hi, 6= aiu,
j=1
. (15)
hi =Y (b K+ i+ > dijiAy) + e,

j=1 I=j+1

and

N

li=¢;+hi, &= ajz;,
=1

N R (16)

h; = Z(b/inj + C;ij + Z d;j,lAjl) + el

j=1 l=j+1

Here agj, bij, cij, diji, €i, iy, by, Chiy i g, €) are constants, and ¢;, ¢ correspond

to phase terms in a continuous or discrete system, respectively. Note that we
suppress the replacement of variables €; and A;; by the expressions €;(K;)
and A;;(K;, K;) in this step.

As an illustration of our algorithm, we consider the ultradiscrete Lotka-
Volterra equation (6). By adding 1 to each side of (6) and using the properties
listed above (12), we obtain the following form:

max(Fy + B+ B+ By + LB+ B+ B+)
=max(E" + F5 + F 4+ FUA? + 1L R, + B 4 R 4 FY.

(17)
Setting x; = Kin — Qym + =7, the one-soliton solution (7) is expressed as

Fgﬂ;b = max(0, 21 + Kya — 1b). (18)

Substituting (18) into (17) and using the properties listed above (12), the
left-hand side of Eq. (17) leads to

max(0, 1,21, 21 + Lzg — Q00 — K1 — Q0 — Ky — Q9 + Lo + Ky — O + 1,
r1+ 2K — 20 + 1,21 + 3K7 — 20,221 — 20 + 1,221 — Q4,227 — K7 — 20,
201 — K1 — Q1,201 — K1 — Q1+ 1,201+ K — 30 + 1,20 + K7 — O + 1,
2y + 2K, — 30,20, + 2K, — 20 + 1,221 + 3K, — 3Qy, 221 + 3K, — 3Q, + 1,
2x1 + 3K7 — 204,321 — 200 + 1,321 — K1 — 294,321 + K7 — 3097 + 1,
32, + 2K, — 40, 32, + 2K, — 40 + 1,32, + 2K, — 394, 321 + 3K, — 39,
321 + 3K; — 30 + 1, day + 2K, — 49, 4z + 2K, — 40, + 1), (19)

and the right-hand side of the equation leads to

max(0, 1,27 — O + 1,21 — 2Ky, 21 — Ky + 1,20 + Ky —2Q, 27 + K3 — 204 + 1,
1+ K1 — Q0 + 2K — Q00 + 2K — Q + 1,201 — 200 + 1, 221 — €,
201 — K1 — 201,201 — K1 — 01,200 — K1 — Oy + 1,201 + K1 — 309 + 1,
21+ Ky — Q) + 1,20, + 2K, — 30y, 20, + 2K, — 20, + 1,27, + 3K, — 30,

2:61 + 3K1 — 391 + 1,2%1 + 3K1 — 291,3]71 — 391,3&31 — 391 + 1,31’1 —+ Kl — 391,

31’1 + Kl - 291,31‘1 + K1 — 2@1 + 1,31‘1 + 2K1 - 391 + 1,31’1 + 3K1 — 491 + 1,
3%1 + 4K1 — 491,4$1 + 2K1 — 491,4331 + 2K1 — 491 + 1) (20)

Step 2. Collect the elements of the same phase and generate equations that
must be satisfied

If the function (11) is a solution of (10), equation (14) must be satisfied
for any value of z;, that is, for any value of phase ¢. As seen in Step 1, in
general, there are many elements of the same phase in (14). Hence, we collect
the elements of phase ¢ and reduce them to one element.

For example, if a max function includes two distinct phase ®, ®5, and an
element [; is given by

(I)1+hi, i:1,2,...77’,
(I)Q—I—hi, ’L.:T—f—]_,...,s,
then max(ly,lo, ..., L, l41,...,1s) is reduced as follows:

max(ll,lg, R 7l7~, lr+1, ey ls)
= max(®y + hy, @1+ ha, ..., Py + Ay, Py A+ Dy, .., Py +)
= max(®; + max(hy, ha, ..., h,), Po + max(h,y1, ..., hs)).

Using the above procedure, (14) leads to

maX(CI)1+max(h1 , 2 . h(p1), (132—i—max(hgl),hg),...,hém)),...,
@, + max(hl} L. R))
= max(P; + maX(h/(l) . hl), O,y + max(hlz(l), h;(z), e ,h;(‘”)), e
)y + max(hl ,hM " ,h;&;”“», (21)

where

(b K +C Q + Z dUl]l e(k)v

i=1 I=j+1

N
k k k k
BSVKG + e+ Y di) Ay) + €
I=j+1
'an k= 1,2,...,])1'(07“ %)7

=
=
I

Mz

<
Il

(22)

tllﬂz

S
L
—_

o

and p;,q; are positive integers. Since (21) must be satisfied for any ®;, we
obtain the following system of equations that must be satisfied:

,h;@), o h;(‘h) :
1=1,2 M) (23)

max(hgl), hz(?), e h(pi)) = max(h;(l)

(2

Example: In Step 1, we obtained single-max expressions (19) and (20) for
the one-soliton solution of the ultradiscrete Lotka-Volterra equation. Using
the procedure outlined in Step 2, the left-hand side of the equation (19) leads

to

max(0 4+ max(0, 1), z; + max(0,1, =y, —K; — Qy, —K; — O + 1, Ky — Q + 1,
2K, — 20 + 1,3K; — 20), 221 + max(—2Q; + 1, -y, —K; — 29,
CK -, K~ LK 30, 4+ 1, K, — Q) +1,2K, — 30,
2K, — 20 + 1,3K, — 394, 3K — 3Qy + 1,3K; — 20)),
3x; + max(—20 + 1, — Ky — 20y, Ky — 30 + 1, 2K, — 40y, 2K, — 40, + 1,
2K, —3Q,3K, — 304, 3K; — 30 + 1), 4z + max(2K, — 404, 2K, — 40, + 1)),

and the right-hand side of the equation (20) leads to

max(0 + max(0, 1), z; + max(— + 1, 2K, —K; + 1, K —2Qy, Ky — 20 + 1,
Ky — Q2K — Q1,2K; — Q + 1), 221 + max(—2Q; + 1, -,
— Ky =20, - K —Q, - K1 — Q0+ 1, K -3+ 1, K — Q1+ 1,
2K, —30Q1,2K, —2Q; +1,3K, — 3Q,3K; — 30 + 1, 3K, — 2),
3z + max(—3Qy, —3Q; + 1, K1 — 3Qy, K; —2Qy, K; — 20 + 1,
2K, — 30 +1,3K, — 49y + 1,4K, — 4Q), 421 + max (2K, — 494, 2K, — 40, +1)).

Consequently, we obtain a system of equations that must be satisfied:
max(0, 1) = max(0, 1),

maX(O,]., —Ql, —Kl - Ql, —K1 — Ql +]_,Kl - Ql + 172K1 — 291 + 1,3K1 — 291)
= max(—Ql +]_, —2K1, —Kl + 1, K1 - 291, K1 - 2Q1 + 1, K1 — Ql, 2K1 — Ql,
2K, — Q1 + 1),

max(—2Q; +1,—Qy, —K; — 2y, — Ky — Qy, —K; — Q1 + 1, K4 — 30 + 1,

Ki— Q) +1,2K; — 301, 2K, — 20, + 1, 3K, — 3Q,, 3K, — 30, + 1, 3K, — 20,)
=max(—20 +1,—Q, —K; —2Qy, —K; — Q, - K; — O+ 1, K3 — 3Q; + 1,
Ki— Q1 +1,2K; — 301, 2K, — 201 + 1,3K; — 301, 3K, — 301 + 1, 3K, — 20),

max(—20 + 1, =K, — 20y, K1 — 3Q + 1,2K, — 40y, 2K, — 49 + 1,2K; — 34,
3K, — 30y, 3K, — 30 + 1)

= max(—30, =30 + 1, K1 — 30, K; — 201, K1 — 204 4+ 1,2K, — 3Q; + 1,
3K, — 40 + 1,4K, — 4€),

maX(2K1 - 4917 2K1 - 491 + 1) = maX(QKl - 491, 2K1 - 491 + 1)
(24)

Step 3. Divide the domain of parameters and evaluate the max equation

In Step 2, we obtained a system of equations that consisted of parameters
K;,Q; and A;; (4,5 = 1,...,N). Since §; and A, ; are functions of K;, we
substitute the relations ; = ;(K;) and A;; = A;;(K;, K;) into (23). Then,
we derive a system of equations that consists of parameters K; (i = 1,..., N).
However, ; and/or A;; often include the max and absolute value functions.
Hence, we divide the domain of parameters K; into regions by solving the max
or absolute value equations in €; and/or A;;, and then we evaluate both sides
of the max equations in each region.

Example: We consider the one-soliton solution of the ultradiscrete Lotka-
Volterra equation. From the dispersion relation of the one-soliton solution (7),

Q; = max(0, K; — 1) — max(0, —K; — 1), (25)

we obtain the following three regions for Ki,

Ki<-1, —-1<K <1, K >1. (26)

Case 1. For K} < —1, (25) yields ©; = K; + 1. Substituting the value of €y
into (24) and evaluating (24) under the condition K; < —1,

1=1,
—2K, = —2K,
max(—3K; — 2, —2K;) = max(—3K; — 2, —2K,), (27)

—3K1 - 2 == —3K1 - 2,
—2K, —3=-2K; - 3.

Case 2. For —1 < K; < 1, (25) yields §2; = 0 and (24) reduces to

1=1,
max(1,—K; + 1, K3 +1,2K; + 1) = max(1,-K; + 1, K1 + 1,2K; + 1),

max(1, —K; + 1, Ky +1,2K, + 1,3K; + 1) = max(1, - K, + 1, K; +1,2K, + 1, 3K, + 1),
max(1, Ky +1,2K; + 1,3K; + 1) = max(1, K; + 1,2K; + 1,3K; + 1),

2K, +1=2K +1.

(28)

10

Case 3. For K; > 1, (25) yields ; = K; — 1 and (24) reduces to

1=1,
Ki+2=FK, +2

max (4, K1 + 2) = max(4, K7 + 2), (29)
4=4

—2K;+5=-2K; +5.

Thus, (24) is satisfied identically for all regions of K. Consequently, we verify
that (7) is a solution of the equation (6).

The algorithm described above is simple in principle, but it is oftentimes
tedious to carry out by hand. In the next section, we describe the Maple
package Ultde, which executes this algorithm.

4 Ultde

The Ultde package is currently available for the following one-component
max-plus equation:

m m=+1 m m=+1 o m m=1 m m=1
Ll(Fn’Fn ye o Aindls n:l:l:"')_LQ(Fn’Fn >0y At n:l:l?"')?

where L, and L, are linear combinations of F,’:EJ (1,7 =0,£1,£2,...), which

includes the max function. Ultde consists of the following procedures.

4.1 The soca operator

The soca operator is one of the main procedures in the Ultde package, and
it evaluates expressions L; and Ly under the given conditions. It is used with
the syntax

soca(Ly: expression, Lg: expression).

If L, is equivalent to Lo, the soca generates the message, “The solution is
TRUE.” This message initiates the procedures below.

11

4.2 The mazxplus operator

The maxplus operator is used to convert the max-plus expression Fxpr to a
single-max form by using the max-plus identities. It is different from the max
command in Maple and has the following syntax:

maxplus(Fzpr: expression).

This procedure corresponds to Step 1 of the above algorithm.

4.8 The geteqxl operator

The getegxl operator collects the elements of the same phase X! (that is,
a list of coefficients of xy, x5, ..., zx) in the expression Expr and generates a
system of equations that must be satisfied. It uses the following syntax:

geteqxl(Expr: expression, X1: list).

This procedure corresponds to Step 2 of the above algorithm.

4.4 The getconds operator

The getconds operator divides the domain of parameters Ki,Ks, ..., Ky
into regions using the dispersion relation Oml and the phase shift term Al.
The syntax is as follows:

getconds(Oml: list, Al: list).

This procedure corresponds to Step 3 of the above algorithm.

4.5 The redueqs operator

The redueqs operator evaluates the expression Expr in each region of pa-
rameters Ki,Ks, ..., Ky in C using the following syntax:

redueqs(Expr: expression, Cl: list).

This procedure corresponds to Step 3 of the above algorithm. Note that in

12

our program, we use symmetry among parameters K; to save the calculation
time.

5 Examples

We now use three examples to illustrate our program. The dependent vari-
able Fg’fgb , phase term =;, wave number K, frequency €2; and phase shift term
A;; used in the above algorithm are expressed as F'(a,b), zi, ki,omi, aij in the
Maple program, respectively.

Example 1. Let us first consider the ultradiscrete Lotka-Volterra equation
(6). After loading the package Ultde and running the main procedure soca,
we input the max-plus form of equation (17), and solutions (7), (8) and (9).
Outputs show that all solutions identically satisfy equation (17). The running
times for one-, two- and three-soliton solutions are 0.5, 20 and 2705 seconds,
respectively.

Example 2. Next we consider an ultradiscrete bilinear box-and-ball sys-
tem(BBS) equation [§],

Ert+ Bl = max(F, + FY RN+ -1, (30)
A multi-soliton solution of (30) is

= max Z iZi(m,n) — Z 1k Aig), (31)

1<i<N 1<i<j<N
where N is a natural number indicating a number of solitons and

Zi(m,n) = Kym — Qi + =3,

1
Q= (K +1 - K~ 1)), i=12...N (32)
Aljlei+Kj|_|K’i_Kj|7 Z?’é]a t,j=12,...,N.

One-, two- and three-soliton solutions are expressed as follows:
One-soliton solution:

F" = max(0,=,),

El = Klm — an + E?, (33)
= (| Ky + 1] = [Ky = 1)).

13

Two-soliton solution:

F™ = max(0,Z;, 29,51 + Zg — Aja),

A12 == ’Kl -+ K2| - |K1 - K2|

(34)

Three-solution solution:

F" =max(0,21, 25, 23,21 + 29 — A2, 51 + =3 — Aus,
o+ 23— Ao, =1 +E9+ 55 — Ajg — Az — Agg)
Q= S(IKi + 1] = |Ki —1]), i=1,2,3,

Al]:|KZ+KJ|_|Kl_KJ|7 7’7&]7 27]:1a273

After inputting equation (30) and solutions (33), (34) and (35), the outputs
show that all solutions identically satisfy equation (30). The running times for
one-, two- and three-soliton solutions are 0.2, 2 and 30 seconds, respectively.

Example 3. Finally, we consider the ultradiscrete Burgers equation [9],

Uyt = U — max(=UpLy, Uy — L) + max(=Uy", Uy — L), (36)

n—1» n
By using the transformation from U to F
L
Up = B = 4 . (37
we obtain another form of the ultradiscrete Burgers equation,

max(F)" + FPAUE G+ FRAY) = max (B + EPTU R - FL). (38)

One-, two- and three-soliton solutions are expressed as follows:
One-soliton solution:

F™ = max(0, =),
El = Kl')’L+le+E(l), (39)
0 = |Ky.

Two-soliton solution:

Fﬁn = rnax((), El: Eg),

O =|K;|, i=1,2.

14

Three-soliton solution:

an = maX(O, El, EQ, 53),

2 = Kin + Qym + =20, (41)
Qi: ’KZ|, 7,21,2,3

After inputting the expressions of equation (38) and solutions (39), (40) and
(41), the outputs show that all solutions identically satisfy equation (38). The
running times for one-, two- and three-soliton solution are 0.1, 0.3, and 0.5
seconds, respectively.

The corresponding Maple system responses for these examples are given in
the Test run output in Appendix A: note that intermediate output messages
are omitted.

6 Conclusions

We have presented an algorithm for verifying ultradiscrete soliton solutions
and have developed a corresponding Maple program. Using this program, we
verified the solutions of the ultradiscrete Lotka-Volterra equation, the ultra-
discrete bilinear BBS equation, and the ultradiscrete Burgers equation.

Acknowledgements

This work was supported by the Project of Innovation for Young Researchers
in Fujian Province, China, under grant NO. 2005J057.

Appendix A. Test run output

Example 1. Ultradiscrete Lotka-Volterra equation

Definition of equation

restart:

read"ultde.txt":
Left:=max(F(-1,1)+F(2,2)+F(0,0)+F(1,1)+1,F(0,1)+F(3,2)+F(-1,1)+F(0,0)):
Right:=max(F(-1,0)+F(2,1)+F(0,1)+F(1,2)+1,F(-2,0)+F(1,1)+F(1,2)+F(2,1)):
et:=(i,n,m)-> x| |i+n*cat(k,i)-m*cat(om,i):

1-soliton solution

15

F:=(n,m)-> max(0,et(1,n,m)):
oml:=max(0,k1-1)-max(0,-k1-1):
soca(Left,Right):

sxkkkkkkkk The solution is TRUE | skskskskskskskskskokok

2-soliton solution

F:=(n,m)—> max(0,et(1,n,m),et(2,n,m),et(1,n,m)+et(2,n,m)+’al2’):
oml:=max(0,k1-1)-max(0,-k1-1):

om2:=max(0,k2-1)-max(0,-k2-1):

al2:=abs(k1-k2)-abs (k1+k2):

soca(Left,Right):

sxkkkkkk*kkx The solution is TRUE | sskkskskkokskskokk

3-soliton solution

F:=(n,m)-> max(0,et(1,n,m),et(2,n,m),et(3,n,m),et(1,n,m)+et(2,n,m)+’al2’,
et(1,n,m)+et(3,n,m)+’al13’,et(2,n,m)+et(3,n,m)+’a23’,
et(1,n,m)+et(2,n,m)+et(3,n,m)+’al2’+’a13’+’a23’):

oml:=max(0,k1-1)-max(0,-k1-1):

om2:=max(0,k2-1)-max(0,-k2-1):

om3:=max(0,k3-1)-max(0,-k3-1):

al2:=abs(k1-k2)-abs(k1+k2):

al3:=abs(k1-k3)-abs(k1+k3):

a23:=abs (k2-k3) -abs (k2+k3) :

soca(Left,Right):

kxkkxkkkxkk The solution is TRUE | skskokskskokskskokkk

Examples 2. Ultradiscrete bilinear equation of BBS
Definition of equation

restart:

read"ultde.txt":

Left:=F(1,1)+F(0,-1):
Right:=max(F(1,0)+F(0,0),F(1,-1)+F(0,1)-1):
et:=(i,n,m)->x||i+m*cat(k,i)-n*cat(om,i):

1-soliton solution
F:=(n,m)-> max(0,et(1,n,m)):
oml:=(abs(kl+1)-abs(kl-1))/2:
soca(Left,Right):

sxkkkkkkk*k*% The solution is TRUE ! skkskskskskokkkk

16

2-soliton solution

F:=(n,m)—> max(0,et(1,n,m),et(2,n,m),et(1,n,m)+et(2,n,m)-’al2’):
oml:=(abs(kl+1)-abs(k1-1))/2:

om2:=(abs(k2+1)-abs (k2-1))/2:

al2:=abs(k1+k2)-abs (k1-k2):

soca(Left,Right):

sxkkkkkkk*k*% The solution is TRUE ! sckskskskskskokkkk

3-soliton solution

F:=(n,m)-> max(0,et(1,n,m),et(2,n,m),et(3,n,m),et(1,n,m)+et(2,n,m)-’al2’,
et(1,n,m)+et(3,n,m)-’al13’,et(2,n,m)+et(3,n,m)-’a23’,
et(1,n,m)+et(2,n,m)+et(3,n,m)-’al2’-’al3’-’a23’):

oml:=(abs(kl+1)-abs(k1-1))/2:

om2:=(abs(k2+1)-abs (k2-1))/2:

om3:=(abs (k3+1)-abs(k3-1))/2:

al2:=abs(k1+k2)-abs(k1-k2):

al3:=abs(k1+k3)-abs(k1-k3):

a23:=abs (k2+k3) -abs (k2-k3) :

soca(Left,Right):

soaokkkkkkkk The solution is TRUE | skskokskskokokskokoksk

Examples 3. Ultradiscrete Burgers equation
Definition of equation

restart:

read"ultde.txt":

Left:=max(F(-1,0)+F(1,1) ,F(1,0)+F(1,1)):
Right:=max (F(0,0)+F(0,1),F(0,1)+F(2,0)):
et:=(i,n,m)-> x| |i+n*cat(k,i)+m*cat(om,i):

1-soliton solution
F:=(n,m)-> max(0,et(1,n,m)):
oml:=abs(kl):
soca(Left,Right):

srokkkokkkkk The solution is TRUE | skskokskskokokskokokk

2-soliton solution

F:=(n,m)-> max(0,et(1,n,m),et(2,n,m)):
oml:=abs (K1) :

om2:=abs(K2):

soca(Left,Right):

17

saokkkokkkkk The solution is TRUE | skskokskskokokskokoksk

3-soliton solution

F:=(n,m)-> max(0,et(1,n,m),et(2,n,m),et(3,n,m)):
oml:=abs (K1) :

om2:=abs (K2) :

om3:=abs (K2) :

soca(Left,Right):

sxkkkkkkkk The solution is TRUE | skskskskskskskskskokok

References

1]

T. Tokihiro, D. Takahashi, J. Matsukidaira, J. Satsuma, Phys. Rev. Lett. 76
(1996) 3247.

D. Takahashi, J. Satsuma, J. Phys. Soc. Jpn. 59 (1990) 3514.

D. Takahashi, T. Tokihiro, B.Grammaticos, Y. Ohta, A. Ramani, J. Phys. A
30 (1997) 7953.

J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro, M. Torii, Phys. Lett.
A 225 (1997) 287.

T. Tokihiro, D. Takahashi, J. Matsukidaira, J. Phys. A 33 (2000) 607.
R. Hirota, S. Tsujimoto, J. Phys. Soc. Jpn. 64 (1995) 3125.

D. Takahashi, J. Matsukidaira, J. Phys. A 30 (1997) L733.

D. Takahashi, R. Hirota, J. Phys. Soc. Jpn. 76 (2007) 104007.

K. Nishinari, D. Takahashi, J. Phys. A 31 (1998) 5439.

18

