
Representing images of a rotating object
with cyclic permutation

for view-based pose estimation✩

Toru Tamakia, Toshiyuki Amanob, Kazufumi Kanedaa

aDepartment of Information Engineering, Hiroshima University
1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8527 Japan

bGraduate School of Information Science, NAIST
8916-5 Takayama, Ikoma, Nara, 630-0192 Japan

Abstract

In this paper, we propose a novel approach using a cyclic group to model the
appearance change in an image sequence of an object rotated about an arbitrary
axis (1DOF out-of-plane rotation). In the sequence, an image xj is followed by
an image xj+1. We represent the relationship between images by a cyclic group
as xj+1 = Gxj , and obtain the matrix G by real block diagonalization. Then, G
to the power of a real number is used to represent the image sequence and also
for pose estimation. Two estimation methods are proposed and evaluated with
real image sequences from the COIL-20, COIL-100, and ALOI datasets, and
also compared to the Parametric Eigenspace method. Additionally, we discuss
the relationship of the proposed approach to the pixel-wise Discrete Fourier
Transform (DFT) and to linear regression, and also outline several extensions.

Key words:
view-based pose estimation, global appearance, cyclic group, column
permutation matrix, block diagonalization, subspace methods

1. Introduction

When a three-dimensional object rotates about an axis, as shown in Fig. 1,
the sequence of images of the object is cyclic: the last image is followed by the
first image. When we have that kind of a sequence of n images x0,x1, . . . ,xn−1,
this cyclic property can be represented by the action of a cyclic group:

xj+1modn = Gxj , (1)

✩This paper extends the conference version [1] with additional experimental results and
extra detailed discussions.

Email addresses: tamaki@hiroshima-u.ac.jp (Toru Tamaki), amano@is.naist.jp
(Toshiyuki Amano), kin@hiroshima-u.ac.jp (Kazufumi Kaneda)

Preprint submitted to Computer Vision and Image Understanding November 25, 2009

where G is an element of the cyclic group. Although this relationship is essential
for images of one parameter (1DOF) rotation, no attention has been paid to it
before. Utilizing this cyclic property, we first propose a novel representation of
an image sequence of a rotating object, and then use it for pose estimation.

(a) (b)

Figure 1: Images of an object obtained by (a) in-plane and (b) out-of-plane rotations.

Previously, several analytical studies have been done on the representation
of an image sequence of a rotating object. The primary motivation has been
to efficiently compute the Eigenspace of the sequence. For example, Uenohara
and Kanade [2] proposed an efficient Eigenspace computation by DCT (or DFT,
DHT [3]) for images of an object rotating about the optical axis of the camera
as shown in Fig. 1(a). This case corresponds to two-dimensional image rotation,
therefore being called in-plane rotation [4]. The above analytical method has
been extended to handle other in-plane cases, such as translation [5], multiple
objects [6], and the case when the number of images becomes infinite [4].

However, extending the above analysis to a general 1DOF rotation is difficult.
Usually, an object is rotated about an arbitrary axis as shown in Fig. 1(b), and
this rotation is called out-of-plane rotation [4]. Previous efforts to analyze and
represent out-of-plane rotation [5, 4, 7] have resulted only in approximations
and the problem has not been solved yet in its full generality.

In this paper, we propose a novel approach for representing out-of-plane ro-
tation with a cyclic group acting on an image sequence. The proposed method
focuses on a transformation from an image to another image in the sequence,
and both out-of-plane and in-plane rotations can be represented by the transfor-
mation. Our goal here is to use this approach for pose estimation rather than for
efficient Eigenspace computation. Applying the first equation (1) several times,
we can obtain another equation, xj = Gjx0. Actually here G is an operator of a
cyclic group, but we can think of it as a matrix, and x is an image vector. Then
this equation can be regarded as a linear equation. Now, pose estimation can be
formulated as the following problem: find some optimal j that gives x = Gjx0

for a given image x with the first image x0. Moreover, we can use the equation
in a different way: if j is known then xj = Gjx0 would represent a novel view.

However, then the following question would arise: How the jth image xj can
be obtained from the first image x0 by just multiplying a matrix j times? For
example, when x0 is a frontal image and xj is an image of the back side, due to
self-occlusion, xj does not seem to have any common information with x0. But

2

the answer is simple: G is a very large matrix whose dimension is N ×N (N is
the number of pixels), and it contains all the necessary information needed to
obtain xj from x0.

G incorporates information about the specific object, rather than being a
generic rotation matrix (or operator). This object-specific information comes
from n images of the object used to construct G, and this leads to an efficient
computation of Gj by block diagonalization with rank-n matrices, instead of
N × N matrix computations. The rank-n matrices relate the matrix G to a
subspace spanned by the n images of the object. Intuitively, generating novel
views can be seen as DFT of the n images as shown in Section 5.

The decomposition of G by block diagonalization is then used to estimate
the pose of an unknown view of the object. In this paper we propose two
estimation methods. One is based on a distance in a subspace, and searches for
the minimum over all possible values j. The other method is based on an angle
in a subspace that uses some properties of block diagonalization.

Some of the limitations of the proposed method need also to be addressed.
The proposed methods can be classified as global appearance-based (view-based)
pose estimation, similar to [8, 9, 10, 11, 12, 13, 14]. In this paper we only con-
sider 1DOF out-of-plane rotations. Although extending the proposed method
to general 3DOF rotations, using cyclic permutations, would not be as straight-
forward as might be for other global appearance-based methods, possible ways
to extend it to 3DOF rotations will also be discussed later on. Another limi-
tation is that the proposed method cannot deal with cases in which the object
is occluded or the background is changed. To handle such cases, recent object-
specific pose estimation methods [15, 16] and object recognition and localization
methods [17, 18, 19, 20, 21, 22, 23, 24] utilize local features for highly cluttered
scenes.

The main contribution of this paper lies in demonstrating that the appear-
ance change resulting from out-of-plane 1DOF rotation can be represented by
a cyclic permutation, even though the proposed method is based on global ap-
pearance of the object. This enables us to simultaneously represent a sequence
of images and estimate the pose of an unknown view, something which has
never been achieved by any of the conventional pose estimation methods or by
the analytical Eigenspace methods.

The paper is organized as follows: the cyclic property of an image sequence
formulated by a matrix, and the decomposition of the matrix by block diago-
nalization are described in section 2. Based on this decomposition, two pose
estimation methods are proposed in section 3. Section 4 shows experimental
results for pose estimation using image sequences from several datasets. In sec-
tion 5, we discuss several properties of the proposed formulation from the view
point of DFT and regression, and then we conclude the paper in section 6.

2. Formulation of a cyclic image sequence with cyclic permutation

In this section, we describe the proposed method for representing an image
sequence by a cyclic permutation. First, we introduce a matrix G to represent

3

a given cyclic image sequence, and show how the matrix G can be decomposed
using a permutation matrix M . Then, the block diagonalization of M is shown
and its interpretation from a subspace point of view is given. Finally, we describe
how the matrix G can be used to represent object’s pose.

2.1. Matrix representation of relationship between images

We represent n consecutive images in a given out-of-plane rotation sequence
by vectors x0,x1, . . . ,xn−1. Each image xj = (xj1, xj2, . . . , xjN)T is an N -
dimensional vector taken at view angle θj = 2πj

n . Throughout the paper, we
assume N > n because usually the number of pixels is larger than the number
of images.

First we consider the following transformation with an operator G:

xj+1modn = Gxj , xj = Gjx0, xj = IGxj . (2)

Here G transforms an image xj into xj+1 as the angle is incremented from
θj to θj+1. This transformation can be seen as the action of a cyclic group
Gn = {IG, G,G2, . . . , Gn−1} of degree n, acting from the left side of the image.
G is called a generator (or primitive element) of Gn, and IG is the identity
element of Gn.

Although group theoretical transformations represent a much broader math-
ematical concept, here we restrict our attention only to linear transformations,
that is, G is an N ×N matrix. Therefore, the transformation can be written in
a matrix form as

[x1 x2 · · · xn−1 x0] = G[x0 x1 · · · xn−2 xn−1], (3)

or in a more compact form as

X1 = GX0, (4)

where X1 = [x1 x2 · · · xn−1 x0], and X0 = [x0 x1 · · · xn−2 xn−1].
We obtain G with X+

0 , a Moore-Penrose generalized (pseudo) inverse of X0

as follows:

G = X1X
+
0 , (5)

X+
0 = (XT

0 X0)
−1XT

0 = V Σ−1ET , (6)

where the singular value decomposition ofX0 isX0 = EΣV T . G is the minimum
norm solution to Eq. (4) that is a rank-n approximation, and therefore G itself
is not invertible. XT

0 X0 should be full rank, or rank(X0) = n for the inverse
to be unique. In that case, X+

0 X0 = In, the n × n identity matrix. Note that
this assumption is violated if an image is exactly identical to another image
(i.e., repeated texture), or a linear combination of other images (which rarely
happens).

4

When we consider the transformation from X0 to X1, it can also be repre-
sented by an n× n column permutation matrix M multiplied to the right side
of X0:

X1 = X0M, where M =


0 1
1 0

1 0

.
.
.
.
.
.

1 0
1 0

 . (7)

Then Eq. (5) can be rewritten as follows:

G = X0MX+
0 . (8)

Note that G represents the action of X0MX+
0 on the column space of X0,

that is, the linear subspace spanned by x0,x1, . . . ,xn−1. Since G is an N ×N
matrix of rank n, G is not invertible and Gn is not the identity matrix. However,
Gn acts as the identity operator IG if the action is restricted to the column space,
which means that (X0MX+

0)nxj = X0M
nX+

0 xj = xj .

2.2. From discrete transformation to continuous rotation

Figure 2: Two projections X+
0 , X0 and a rotation M composing the transformation G.

In Eq. (8), it is interesting that we can interpret G as a combination of X+
0 ,

M , and X0 (see Fig. 2):

1. X+
0 transforms the sequence X0 into In because of X+

0 X0 = In. This
means that the (j − 1)th image xj−1 is mapped to the jth standard unit

vector ej = (0, . . . , 0,
j

1̌, 0, . . . , 0)T .

2. Next,M moves the jth standard unit vector ej to the (j+1)th standard unit
vector ej+1. This can be done by just shifting elements in ej : MIn = M .

3. Finally, X0 projects the vectors back to image space: X0M = X1.

5

(a) (b)

Figure 3: Interpretations of M as a continuous rotation. (a) n = 3, (b) n = 2.

From this observation, we can see that image xj is projected by X+
0 to point

ej in n-D subspace. There, the corresponding points are well separated, with
distance

√
2 from each other, because ||ej − ek|| =

√
1 + 1 =

√
2 if j ̸= k.

The permutation matrix M transforms ej to ej+1, and this is a discrete
transformation because j is just an integer between 0 and n− 1. Our proposed
method further extends the value of j from integer to all real values 0 ≤ j < n,
so that any pose between given discrete poses can be represented. This idea is
illustrated in Fig. 2. M can be regarded as a rotation in n-D subspace in the
hyperplane with equation x1 + · · · + xn = 1, which is orthogonal to the vector
(1, 1, . . . , 1)T ∈ Rn, and all ej are on the hyperplane. Therefore, M is a discrete
rotation, and if we extend it to a continuous rotation, then it would make ej
form a hypercircle on the hyperplane.

But in fact, as an n× n matrix, M is not always a rotation matrix. Indeed,
if n is odd, then |M | = 1 and M is a rotation matrix; but when n is even,
then |M | = −1 and M cannot be a rotation matrix. For example, if n = 3 in
Fig. 3(a), there are three points (1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T on a circle
with a center (13 ,

1
3 ,

1
3)

T . In the case of n = 2, however, there is such a circle for
the points (1, 0)T and (0, 1)T , which are mirror images of each other about the
axis (1, 1)T . In this case, we consider an additional axis as an imaginary part,
as shown in Fig. 3(b). Now, similar to Fig. 2, M can be regarded as a rotation
in the plane with equation x1+x2 = 1 that is orthogonal to the vector (1, 1, 0)T ,
where the last component is considered as being in imaginary space. Although
the circle M is no longer in the real space, both points (1, 0)T and (0, 1)T are
on the circle. Therefore, the concept is applicable to both even and odd cases.

The discussions in the following sections naturally involve complex numbers
to extend discrete rotation M to continuous rotation.

6

2.3. Decomposition of G

Now, let us consider again the equation xj = Gjx0. Substituting Eq. (8)
into it, it can be written as:

xj = Gjx0 = (X0MX+
0) · · · (X0MX+

0)x0 = X0M
jX+

0 x0, (9)

since X+
0 X0 = In.

To compute M j for any value j, we decompose M as M = WDWT , with a
block diagonal matrix D and an orthogonal matrix W , where

D =

{
diag(1, A1, A2, . . . , As), n is odd,

diag(1, A1, A2, . . . , As,−1), n is even,
(10)

W =


√

2
n

(
c0√
2
, c1, s1, c2, s2, . . . , cs, ss

)
, n is odd,√

2
n

(
c0√
2
, c1, s1, c2, s2, . . . , cs, ss,

cn
2√
2

)
, n is even,

(11)

s =

{
n−1
2 , n is odd,

n−2
2 , n is even,

(12)

Ak =

(
cos θk sin θk

− sin θk cos θk

)
, (13)

ck = (cos(n− 1)θk, cos(n− 2)θk, . . . , cos θk, 1)
T , (14)

sk = (sin(n− 1)θk, sin(n− 2)θk, . . . , sin θk, 0)
T . (15)

Here diag(·) means that a matrix has blocks in its diagonal part. Details of the
block diagonalization of M are given in the Appendix.

By combining G = X0MX+
0 and M = WDWT , we have the following

decomposition: G = U2DU1, where U1 = WTX+
0 and U2 = X0W .

Here, the matrix U1 can be regarded as a projection from the image space
onto an n-dimensional (n-D) subspace. Each pair of row vectors of U1 cor-
responds to Ak. These rows project an image onto the two-dimensional (2-D)
subspace spanned by the row vectors. These 2-D subspaces are independent and
orthogonal to each other because the blocks in D do not overlap. Therefore, the
projection x′ obtained by U1 is produced by a set of projections onto different
2-D subspaces, and multiplying x′ by D corresponds to a set of 2-D rotations
(with Ak by θk).

2.4. G to the power of a real number and its properties

Using the decomposition of G, the transformation from x0 to xj can be
rewritten as:

xj = Gjx0 = U2D
jU1x0, (16)

which follows from U1U2 = In. Therefore, j (the exponent of Dj) determines
how much the image x0 is transformed in the image sequence.

7

We can easily calculate Dj for a real number j because D is a block diagonal
matrix and the angles in the 2× 2 blocks Ak are just multiplied by j:

Dj =

{
diag(1, Aj

1, A
j
2, . . . , A

j
s), n is odd,

diag(1, Aj
1, A

j
2, . . . , A

j
s, (−1)j), n is even,

(17)

Aj
k =

(
cos jθk sin jθk

− sin jθk cos jθk

)
. (18)

When n is even, the last diagonal element in D becomes a complex number
when j is not an integer. As we mentioned before, M can be regarded as a
rotation if we use an additional 1-D imaginary space when n is even and j is
not an integer. The last element in D corresponds to the imaginary space, and
we use Euler’s formula to compute it: (−1)j = eiπj = cos(πj)+ i sin(πj), where
i =

√
−1.

This property is the most useful one in the proposed formulation, because
Gj can be calculated by just multiplying the angle θk by j. If the block diago-
nalization were not used, it would not have been so straightforward to compute
Gj for any real number j.

x0 x1

x0.0 x0.1 x0.2 x0.3 x0.4 x0.5 x0.6 x0.7 x0.8 x0.9 x1.0

x1 x2

x1.0 x1.1 x1.2 x1.3 x1.4 x1.5 x1.6 x1.7 x1.8 x1.9 x2.0

Figure 4: Generated images x0.1j . Images in the bottom row are created by repeatedly
multiplying a matrix G0.1 to the first image x0. Images in the upper row are taken from
COIL-20 (object 4). 36 images including x0,x1,x2 (0, 10, 20[deg]) are used for learning.
Two images (5,15 [deg]) corresponding to x0.5,x1.5 are shown for comparison. The lower row
shows that 9 images are created between each learned images. The full sequence is available
online as a supplemental material.

Now we are interested in extending the range of the exponent j from several
integer numbers (0, 1, . . . , n−1) to the real numbers in [0, n[. Fig. 4 demonstrates

8

an example of view generation for an out-of-plane rotation sequence. After the
first image x0, all other images x0.1, . . . ,x2.0 were created by Eq. (16). Thirty-
six images x0,x1, . . . ,x35 were used as training images for computing G, and
images in-between (such as x0.5,x1.5, . . .) were not used. Since the number of
images is even, the generated images have complex values. In the figure, the
moduli of the complex values were used as the gray values of the pixels.

The generated images x1.0 and x2.0 are exactly the same with the learned
images x1 and x2. For the other images generated between the learned images
(for example, see x0.5 and x1.5 for comparison), the appearances are very similar
to the actual intermediate images. They look as if they were made by blending
two learned images. However, our goal here is not to make these generated
images close to the real ones, but to utilize them for pose estimation. Pose
estimation using Gj is described in the next section.

3. Pose estimation

In this section, we propose two methods (a distance-based and an angle-
based one) for estimation of the pose of a new image by using the subspace
described in the previous section.

3.1. Estimation by searching the minimum distance in the n-D subspace

In the previous section, we have shown that D to the power of a real number
j generates images between the learned samples. Based on this observation and
Eq. (2), we make the assumption that a test image x matches Gjx0 for some j.
Further, we assume that this also holds in the n-D subspace: x′ matches Djx′

0

for some j, where x′ = U1x is a projection of x in the subspace.
For matching, we minimize the Euclidean distance in the n-D subspace:

ĵ = argmin
j∈[0,n)

dist(x′, j), where dist(x′, j) = ||x′ −Djx′
0||2, (19)

and pose is estimated as θ̂ = θĵ =
2πĵ
n . We call this estimation the distance-based

method. dist(x′, j) continuously changes as j changes from 0 to n continuously.
Since Djx0 has complex numbers when n is even, the Euclidean distance is
defined as ||x||2 = xHx, where H denotes the transpose of a complex conjugate.

Although this minimization requires an exhaustive search over j and it
is computationally expensive, we can use a coarse-to-fine strategy effectively.
Fig. 5 shows distances dist(x′

ℓ, j) for some given test image xℓ. As in Fig. 4,
only 36 images x0,x1, . . . ,x35 were used as training images for computing G,
and in-between images (x0.5,x1.5, . . .) were not used during the training. For
the learned samples ℓ = 5, 11, 17, we can see that the distances have sharp min-
ima at j = ℓ because x′

ℓ and Dℓx′
0 are exactly the same. Even for images which

were not learned (ℓ = 22.5, 28.5, 34.5), the distance has a smooth minimum
around the correct pose. The learned images have the same distance

√
2 to each

other (as described before). When the exponent j is a real number, the distance
deviates from

√
2, but it is so small that the search for minimum is not affected.

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

j

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

d
is

ta
n

c
e

 i
n

 n
-D

 s
u

b
sp

a
c
e

x_5 (training)

x_11 (training)

x_17 (training)

x_22.5 (test)

x_28.5 (test)

x_34.5 (test)

Figure 5: The Euclidean distance dist(x′
ℓ, j) for different values of j, where j is is the exponent

of Dj . Some distance curves are shown as examples for learned images ℓ = 5, 11, 17, and not
learned images ℓ = 22.5, 28.5, 34.5.

Based on this observation, first we search for a minimum of j using a large
search step, then search around the minimum again with a smaller step, and
gradually the search interval shrinks. This strategy reduces the computational
cost and estimation at any pre-defined precision can be achieved.

3.2. Estimation using an angle between two vectors in a 2-D subspace

Here we propose a direct estimation method without any searching (in con-
trast to the distance-based method from the previous section, which involves
iterative search, even if the algorithm is efficient).

As mentioned before, the projection of x by U1 is a set of projections to many
different 2-D subspaces, and in each 2-D subspace the projection is rotated by
Ak. Now we focus on two elements corresponding to A1, because A1 is a 2× 2
rotation matrix of θ1 (the angle between images in the sequence). Since two
images xj and xj+1 are related by A1 in the 2-D subspace corresponding to A1,
x0 and xj are related by jθ1.

(a) (b)

Figure 6: (a) Extraction of x′′ and x′′
0 from x and x0. (b) Relation between x′′ and x′′

0 in
the 2-D subspace.

The two elements x′′,x′′
0 ∈ R2 are extracted from the second and the third

10

elements (corresponding to A1) as shown in Fig. 6(a):

x′′ =
(

0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
x′ =

(
0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
U1x = U ′

1x, (20)

x′′
0 =

(
0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
x′
0 =

(
0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
U1x0 = U ′

1x0, (21)

where
U ′
1 =

(
0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
U1, (22)

i.e. U ′
1 is a 2×N matrix consisting of the second and the third row of U1.

Those extracted vectors x′′,x′′
0 are just related by A1 as x′′ = A1x

′′
0 (see

Fig. 6(b)). Therefore, the angle θ between x′′ and x′′
0 is obtained by solving a

system of equations:

x′′ =

(
cos θ sin θ
− sin θ cos θ

)(
x′′
0

y′′0

)
=

(
x′′
0 y′′0

y′′0 −x′′
0

)(
cos θ

sin θ

)
, (23)

where x′′
0 = (x′′

0 , y
′′
0)

T , and the solution is
(

cos θ
sin θ

)
=
(

x′′
0 y′′

0

y′′
0 −x′′

0

)−1

x′′. Finally

θ = tan−1
(
sin θ
cos θ

)
is the angle between x′′ and x′′

0 ; the pose estimate of x.
Note that Ak (k ≥ 2) can not be used in the same way as A1 because the

angle between vectors is not uniquely determined. Combining Ak with A1 is
our future work.

4. Experimental results

Figure 7: Images from the databases used in the experiments. (Top) All 20 objects in COIL-20,
grayscale, 128×128. (Middle) First 20 of 100 objects in COIL-100, color, 128×128. (Bottom)
First 20 of 1000 objects in ALOI, color, 192×144.

The proposed methods were implemented and evaluated on three datasets
(Fig. 7): COIL-20 [25] (20 objects), COIL-100 [26] (100 objects), and ALOI [27]
(1000 objects). Each object in the datasets has 72 images obtained by rotating
the object in 5 degrees steps. The rotation is 1DOF out-of-plane rotation be-
cause the rotation axes are not identical to the optical axis. All grayscale images
(COIL-20) have been represented as vectors x. For color images (COIL-100 and
ALOI) with N pixels, RGB values have been stacked to obtain vectors x with
3N elements.

11

For comparison, the Parametric Eigenspace Method [8] (in the following, we
call it PEM for short), which is one of the conventional methods, was also imple-
mented. This method is well known and widely used for performance evaluation
of 1DOF pose estimation. The dimensionality of the Eigenspace was fixed to 11
for all experiments, based on preliminary experiments. The exhaustive search
on a cubic spline in the Eigenspace was done by every 0.1 degrees. All images
were normalized as described in [8] so that image vectors have norm 1, whereas
the angle-based and distance-based methods do not require the normalization.

Computation times per test image for estimation by our implementation
in C++ are about 1 [ms] with a 2.4-GHz CPU. Averages for 1440 images from
COIL-20 are 0.0683±0.00454 [ms] for the angle-based method, 1.16±0.0373 [ms]
for the distance-based method, and 1.99±0.0703 [ms] for PEM.

4.1. Overall performance of the proposed methods

· · ·

Figure 8: A subset of the images used in the experiments for n = 36. x0,x1, . . . are learned
(designated by box marks), while x0.5,x1.5, . . . are test images.

We evaluated the performance of pose estimation by the error (difference)
between the estimated and true angles. The root mean square error (RMSE) of
pose estimates for an object was calculated for test images only (not including
learned images). The number of images n used for learning was set to 36,
24, 18, and 12. For example, in the case of n = 36 (see Fig. 8), we used 36
images x0,x1, . . . ,x35 corresponding to 0, 10, 20, . . . , 350 [deg]. The other 36
images x0.5,x1.5, . . . ,x35.5 corresponding to 5, 15, 25, . . . , 355 [deg] were used
for evaluation.

Fig. 9 compares the performance of the different methods. Each figure shows
the average and standard deviation of the RMSE for different n. The number
of objects for taking the average is 20 for COIL-20, 100 for COIL-100, and 1000
for ALOI. The averages of the RMSE tend to increase as the number of images
n decreases. In each case, the angle-based method is better than the distance-
based method. The difference between the angle-based method and PEM seems
to be small.

To see the differences, we performed tests for significance with the paired
t-test (two-tailed). The results for COIL-20 are not significantly different in
most cases because of the small number of objects. In all cases for COIL-100
and ALOI, the angle-based method outperformed the distance-based method.
The results for the distance-based method are also worse than those for PEM,
which means that the distance in the n-D subspace may not be a good metric
for pose estimation.

Overall, the angle-based method seems to be competitive to PEM. The per-
formance of the angle-based method is worse (in the sense of significance) only

12

COIL-100 (color)

0

10

20

30

40

50

36 24 18 12

number of images used

R
M

S
E

 [
d

e
g

]

ALOI (color)

0

10

20

30

40

50

36 24 18 12

number of images used

R
M

S
E

 [
d

e
g

]

**
**

**
**

**
**

** **
**

**

*
**

**
**

** **
**

**

COIL-20 (grayscale)

0

10

20

30

40

50

36 24 18 12

number of images used
R

M
S

E
 [

d
e

g
]

*

PEM

angle-based

distance-based

Figure 9: RMSE of pose estimation for three datasets. (Top) ALOI, (Bottom Left) COIL-
100, (Bottom Right) COIL-20. RMSE averages with standard deviations of three methods
are shown for fixed n. ** stands for significance p < 0.01 (and * for p < 0.05) by the paired
t-test.

in three out of eight cases: n = 12 for COIL-100, and n = 36, 12 for ALOI. In
all other cases, there is no significant difference between the two methods.

cumulative historgram of COIL-100 (n=36)

0

20

40

60

80

100

0 10 20 30 40 50 60

RMSE [deg]

c
o

u
n

t

cumulative historgram of ALOI (n=36)

0

200

400

600

800

1000

0 10 20 30 40 50 60

RMSE [deg]

c
o

u
n

t

PEM

angle-based

PEM

angle-based

Figure 10: Cumulative histograms of RMSE for ALOI and COIL-100.

However, the standard deviations of the angle-based method are smaller
than those of PEM in all cases, and this means that the angle-based method
may be more stable than PEM. This fact may be supported by the cumulative
histograms of RMSE shown in Fig. 10 for two cases: n = 36 for ALOI in which
PEM outperforms the angle-based (p < 0.01), and n = 36 for COIL-100. In
both cases, the cumulative histograms of PEM have longer tails than those
of the angle-based method. This observation shows that: (1) in most of the

13

estimations (80 ∼ 95 %) the RMSEs of the angle-based method are larger than
those of PEM, and (2) in few cases PEM has quite a large RMSE, while the
angle-based method does not have so many large errors. We will discuss later
the reason for this by analyzing the worst cases.

4.2. Performance comparison with 20 objects

Next, we focus on the results for each object in COIL-20 because averages
of the RMSE do not show how the methods differ for a certain type of objects
and for what types the methods work well.

Fig. 11 shows the RMSEs for 20 objects. In general, all methods tend to
have larger error as n decreases. The angle-based method performs as well as
PEM when n = 36, but the distance-based method has a large error for some
objects (object 6, and 12).

When n ≤ 24, the angle-based method is not as good, especially for objects
6, 9, and 19. But there are still moderate cases, such as object 1, 4, and 20.
Table 1 shows the RMSEs for object 4. If an error up to 5 [deg] is acceptable
for an estimation, this moderate case needs at least 12 images (n = 12) for
the proposed methods. Of course, the number of images for a good estimation
depends on the type of objects. n = 36 is required for satisfactory results for
all cases.

Table 1: RMSE [deg] for object 4 in COIL-20.
n 36 24 18 12 9 8 6 4 3 2

PEM 0.794 1.22 1.71 1.94 2.41 3.06 11.5 35.4 42.7 90.6
angle-based 1.23 1.64 2.42 3.20 6.23 6.75 12.3 29.1 38.2 74.2

distance-based 1.80 2.23 2.91 4.32 5.74 6.49 8.89 30.3 38.2 74.2

Note that the results for PEM on COIL-20 reported here seem to be quite dif-
ferent from those described in [8]. The reason is that in [8], a global Eigenspace
has been used for estimation: that is, all 72 images of all 20 objects have been
used to construct a single Eigenspace. This means that the number of images
used for constructing the Eigenspace is very large (totally 1440). In contrast,
the experiments reported here used a small number of images (up to 36 images).

4.3. Analysis of the worst cases

Here we discuss the cases where the proposed methods do not work well.
According to the discussion above, we chose object 6 for the worst case.

First, we discuss the performance of the distance-based method and compare
it to PEM, because the two methods are similar: both use distance in a subspace
where a test image is projected, and compute a point in a pose manifold which
gives the minimum distance. But they use different subspaces and different
interpolation methods: PEM uses PCA and cubic spline, while the distance-
based method uses DFT (as shown in Section 5).

Fig. 12 shows distances to pose manifolds (n = 36, 24) from two test images
of object 6 at 35 and 275 [deg]. There are two minima for each image because

14

80 comparison (n=36) angle-based distance-based PEM (dim=11)

0

20

40

60

80
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]
comparison (n=36) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=36) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=36) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=36) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=36) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=36) angle-based distance-based PEM (dim=11)

(a)

40

60

80

b
je

c
t
[d

e
g

]

comparison (n=24) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=24) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=24) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=24) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=24) angle-based distance-based PEM (dim=11)

(b)

20

40

60

80

E
 o

f
e

a
c
h

 o
b

je
c
t
[d

e
g

]

comparison (n=18) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=18) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=18) angle-based distance-based PEM (dim=11)

(c)

60

80

e
c
t
[d

e
g

]

comparison (n=12) angle-based distance-based PEM (dim=11)

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20R
M

S
E

 o
f

e
a

c
h

 o
b

je
c
t
[d

e
g

]

object No.

comparison (n=12) angle-based distance-based PEM (dim=11)

(d)

Figure 11: Estimation results for angle-based, distance-based and Parametric Eigenspace
methods for (a) n = 36, (b) n = 24, (c) n = 18, (d) n = 12.

15

1.5
Distances for the distance-based method and PEM for obj6

1

1.5
a
n
c
e

Distances for the distance-based method and PEM for obj6

(n=24)

0.5

1

1.5
d
is

ta
n
c
e

Distances for the distance-based method and PEM for obj6

PEM (n=36)PEM (n=24)
(n=24)
PEM

(n=36)
(n=24)

distance-based

(n=24)
(n=36)

distance

0

0.5

1

1.5

0 60 120 180 240 300

d
is

ta
n
c
e

angle [deg]

Distances for the distance-based method and PEM for obj6

PEM (n=36)PEM (n=24)
(n=36)

(n=24)
PEM

(n=36)
(n=24)

distance-based

(n=24)
(n=36)

distance
based

0

0.5

1

1.5

0 60 120 180 240 300

d
is

ta
n
c
e

angle [deg]

Distances for the distance-based method and PEM for obj6

PEM (n=36)PEM (n=24)
(n=36)

(n=24)
PEM

(n=36)
(n=24)

distance-based

(n=24)
(n=36)

distance
based

Figure 12: Comparison of the distance-based method and PEM for object 6 (n = 36, 24). The
horizontal axis is pose angle, and the vertical axis is the distance to the pose on the manifold.

the appearance of object 6 is quite similar to that from the opposite side (180
[deg]). The image at 35 [deg] has a minimum around 215 [deg], but the minimum
around 35 [deg] is still smaller than the other, and the pose is estimated (almost)
correctly by both PEM and the distance-based method. However, the image
at 275 [deg] has a minimum around 95 [deg], and this makes the estimation
completely wrong. This is the reason why PEM and the distance-based method
have large variances of RMSE.

This “similar appearance from opposite side” effect occurs for objects 6,
9, and 19, which have oblong shapes. The distance-based method is affected
by this effect. The distance curves in Fig. 12 for the distance-based method
are not as flat as those in Fig. 5, which means that it is difficult to find the
correct minimum. Also, it is sensitive to the number of learning images because
the distance differs greatly when n changes from 36 to 24. In contrast, the
performance of PEM is bettter although it is also affected by this effect. The
reason may be that the distance to the pose manifold retains a similar shape
when n changes.

The angle-based method should be also affected by this effect, but in a
different way. Eq. (21), the definition of a 2-D vector x′′ used for the angle-

based method, can be rewritten as: x′′ = U ′
1x =

(
cT
1

sT
1

)
X+

0 x (see Section 5

for a detailed explanation). This means that vector x′′ is actually a linear
combination of (cos jθ1, sin jθ1)

T , with different phases of cos and sin, with a
weight b = X+

0 x. For a learned image x0, b becomes a standard vector e1
and the estimated pose is exactly correct because the inappropriate terms are
eliminated from the linear combination. If the weight has a large value around
a correct phase for a test image to be estimated, then as a result of the linear
combination the phase comes close to the true phase of the pose.

Fig. 13 shows weights for two test images at 35 and 275 [deg] for object
6, and also for object 4 for comparison. The weights for object 4 behave as
we expect: the two test images have larger values around the correct phases
than for other phases. However, the image at 275 [deg] of object 6 has large
weights at a phase opposite to the true pose, and as a result, pose estimation

16

obj6 (n=24)

-0.2

0

0.2

0.4

0.6

0.8

0 4 8 12 16 20

phase j

w
e

ig
h

t

obj6 (n=36)

-0.2

0

0.2

0.4

0.6

0.8

0 6 12 18 24 30

phase j

w
e

ig
h

t

obj4 (n=24)

-0.2

0

0.2

0.4

0.6

0.8

0 4 8 12 16 20

phase j

w
e

ig
h

t

obj4 (n=36)

-0.2

0

0.2

0.4

0.6

0.8

0 6 12 18 24 30

phase j

w
e

ig
h

t

35 deg 275 deg

Figure 13: Weights of angle-based method for (Top) image at 35 [deg], (Bottom) image at
275 [deg]. n = 36, 24. Horizontal axis is j of phase jθ1, and vertical axis is the weight value.

fails for such oblong objects. Weight b which includes the pseudoinverse of X0

is sensitive to similarity (or correlation) between images. Further discussion on
the pseudoinverse can be found in [28, 29].

4.4. Estimation for noisy images

Figure 14: RMSEs of estimation with std. for 10 trials for noisy images (n = 36). The
horizontal axis is the magnitude [−d, d] of uniform noise added. The vertical axis is the
average RMSE for 20 objects in COIL-20 for only test images with noise.

The proposed methods estimate pose exactly for the learned images, but
if we get the image at 0 [deg] again after learning, it is not the one used for
learning, because of image noise.

17

Fig. 14 compares the robustness of the methods for the noisy images shown
in the figure. These images are contaminated by uniform noise without any
intensity normalization (negative pixel values and large values also included).
The range of pixel values are between 0 and 255, and the magnitude of the
uniform noise is up to ±200. Even when the largest uniform noise is added, the
average RMSE of the angle-based method is less than 7 [deg], while error for
the distance-based method increases to 14 [deg]. The performance degradation
for PEM may be caused by the normalization required by PEM.

This result demonstrates how robust the angle-based method is. The reason
for this lies in the weight of different phases of sin and cos, mentioned above.
Contribution from noise to the weight is small relative to that from pixel values
from the image. Even if noise is not so small, weights from noise might cancel
each other. Then, the weights from the image have larger contribution to the
estimate pose.

5. Discussion

Here we discuss some topics related to the proposed method. We have shown
that the matrix G is decomposed into U2DU1, and the power of D to the real
number j is used to generate images in-between the learned sample images. Dj is
also used for pose estimation. Now, we will discuss what does the decomposition
mean, and to what kind of image sequences the proposed method is applicable.

5.1. Interpreting G as a DFT

First, we show why we can generate xj+1 by Gxj .
This generation can be seen as a DFT for each pixel because U2 = X0W .

The first row of X0 is a function of the first pixel, and the first column of W is
the first basis function of a DFT basis. Therefore, U2 stores coefficients for all
pixels, and element j-k in U2 is the coefficient of the jth pixel for the kth basis
function of DFT.

Using these coefficients, the original images can be reconstructed with the
DFT basis. Since pixel value functions are stored in rows in X0 (not in column),
the transpose of W is used as X0 = U2W

T . To reconstruct X1, shift the column
of WT (not W) by one because X1 is just a column shift of X0 by one: this
can be done with WTM . This means shifting the phase of the basis WT by one
step θ1 = 2π

n .
As a result, X1 is reconstructed by U2W

TM . Here WTM can be replaced
with DWT because M = WDWT . Then we have X1 = U2DWT , and finally
multiply it by X+

0 X0 = In from the right side,

X1 = U2DWTX+
0 X0 = U2DU1X0 = GX0, (24)

and this is the reason why Eq. (4) holds.
For the equation above, the first assumption N > n is necessary: the num-

ber of pixels N of an image is larger than the number of images n. In this
case, Eq. (4) is an under-determined system, and of course, the pseudoinverse in

18

Eq. (5) is not a unique (it is unique in the sense that a minimum norm solution
is given). However, if N < n then the solution of Eq. (5) becomes least-square
solution and Eq. (4) does not hold.

5.2. Shifting the phase of the DFT basis with Dj

Here we show that in Eq. (24) Dj shifts the basis in phase continuously, while
D shifts it discretely. We focus on the k-th pair of rows in DjWT : cTk and sTk
corresponding to Ak (other rows are not involved because D is block diagonal).
The phases of ck and sk are shifted by multiplying with Ak from the left side:

Aj
k

(
cTk
sTk

)
=

(
cos jθk sin jθk
− sin jθk cos jθk

)(
cos(n− 1)θk, . . .
sin(n− 1)θk, . . .

)
, (25)

=

(
cos jθk cos(n− 1)θk + sin jθk sin(n− 1)θk, . . .
cos jθk sin(n− 1)θk − sin jθk cos(n− 1)θk, . . .

)
, (26)

=

(
cos(n− 1− j)θk, . . .
sin(n− 1− j)θk, . . .

)
. (27)

Therefore, Dj shifts the DFT basis W in phase continuously by jθk, while D
does so discretely by θk.

As a result, each pixel in the generated image sequence xj = Gjx0 (as shown
in Fig. 4) changes its value according to a sinusoidal curve. In other words, the
pixel values in an intermediate image are calculated by interpolation with DFT.
This is different from image blending that uses the same weights for all pixels.

5.3. Generating images in sequences with varying illumination

As shown above, the proposed scheme uses pixel-wide DFT to reconstruct
images with continuously phase-shifted DFT basis. From this point of view,
Eq. (4) can be applied to any cyclic image sequence, for example one obtained
as a light source turns around in front of a face (even though the proposed
method is formulated for a single axis rotation).

Fig. 15 illustrates an example of face images with different light directions.
However, discussing the estimation of the light direction is out of the scope of
this paper. This example implies that the proposed method can be also used
for estimating illumination change.

5.4. On the estimations

Here we show how U1 can be used for the estimation in the angle-based
method. It uses U ′

1 which is constructed from two rows extracted from U1.
Expanding Eq. (22), we obtain the following relationship:

U ′
1 =

(
0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
U1 =

(
0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
WTX+

0 =

(
cT1
sT1

)
X+

0 . (28)

Multiplying both sides by X0, we obtain a system of equations
(

cT
1

sT
1

)
= U ′

1X0,

and Eq. (28) is its solution. In this system, each image xj on the right-hand

19

x0 x1 x2

x0.0 x0.25 x0.50 x0.75 x1.0 x1.25 x1.50 x1.75 x2.0

x2 x3 x4

x2.0 x2.25 x2.50 x2.75 x3.0 x3.25 x3.50 x3.75 x4.0

Figure 15: Images created by multiplying the first image x0 with the matrix G0.25. The
images in the upper row are taken from the Yale face database B [30, 31]. 20 images including
x1,x2,x3,x4,x5 are used for learning. The lower row shows every three images created
between each pair of the learned images. The full sequence is available online as a supplemental
material.

side (a column of X0) is related by U ′
1 to the corresponding pose parameters

(cos jθ1, sin jθ1)
T (the order of elements is reversed from Eq. (14) and (15) to

simplify explanation). Since the system has two equations for a number of un-
knowns, it is underdetermined and the solution is a minimum-norm solution.
Therefore, the angle-based method is theoretically identical with linear under-
determined regression[9].

Similarly, U1 = WTX+
0 (the definition of U1) is a minimum-norm solution of

the system of equationsWT = U1X0. In this system, each image xj is related by
U1 to the corresponding pose parameters (1, cos jθ1, sin jθ1, cos jθ2, sin jθ2, . . . ,
cos jθs, sin jθs)

T where n is odd (again the order of the components is reversed
from that in Eq. (14) and (15) to simplify explanation). The distance-based
method compares the Euclidean distance between vectors in this form.

5.5. Overview of the proposed scheme and its extensions

Above we have shown what the matrix Gj actually does, and here we sum-
marize that information. Gj can be thought of as consisting of three parts:

• Phase estimation part: U1 estimates the phase jθ1 corresponding to image
xj . This phase information is stacked in cos and sin vectors.

• Phase shifting part: Dj shifts the phase of the vector.

20

• Reconstruction part: U2 stores the coefficients for all images, and recon-
structs an image from the phase-shifted vector.

Now we outline several possible extensions based on this decomposition into
three building blocks.

One straightforward extension would be to replace the estimation part U1

with any other estimation method, such as CCA [12, 32], nonlinear regression[11,
33], Gaussian processes [34, 35], or even using the Parametric Eigenspace method
[8]. Subspace based methods [36] might be more useful because certain prefer-
able properties could be naturally included. For example, classification can be
done simultaneously [37], robust recognition can be achieved under occlusion
and nonuniform background [38, 39], and so on.

Another extension would address the case when the rotation angle increment
is not constant. Until now, we have assumed that the images are taken at regular
angles. The proposed method can estimate poses for non-regular samples, but
the estimates should be corrected. For example, if n = 4 but the given images
are taken at 0, 89, 180, and 270 [deg]. The image at 89 [deg] is estimated as 90
[deg] and the image at 90 [deg] may be estimated to be around 91 [deg]. This
error is not random — it is systematically distributed among the images from
0 to 180 [deg]. Images at 0 and 180 [deg] are estimated correctly. Therefore,
the error is so small and the estimation is not sensitive to the irregularity. To
correct for the systematic error, we can introduce a function that converts 0, 89,
180, and 270 [deg] to 0, 90, 180, and 270 [deg]. For general non-regular rotation
angles, we may replace the regular DFT with a non-regular DFT that would be
applicable to nonequispread data [40].

The most interesting extension would be to deal with 3DOF rotation. In
general, a pose of an object is described as a 3× 3 rotation matrix R in SO(3).
When we have images xj for different poses Rj , it is necessary to find a way
how to fit them into the proposed scheme. To do so, we have to realize that
the 1DOF case (this paper) uses the DFT basis that is an orthonormal basis for
periodic functions defined on S1 (the unit circle). U1 estimates the phase of the
basis for all frequencies, and U2 uses the basis for reconstruction. Therefore,
we may use an orthonormal basis for a function defined on SO(3), the so-called
spherical functions [41]. This is similar to the spherical harmonics [42, 43] which
form an orthonormal basis for S2 (the unit sphere). Using spherical functions
for SO(3), we may modify U1 to estimate the phases of the spherical functions
for all frequencies, and Dj to shift the phases, then U2 would reconstruct with
coefficients that are estimated in advance. Reconstruction and coefficient esti-
mation are well developed for spherical harmonics (such as [42]), and we can use
these techniques. However, the phase shifting Dj may no longer be a (block)
diagonal matrix, but rather something like a procedure to interpolate 3DOF
pose [44, 45]. This extension is the subject of our future work. In addition to
rotation, translation can be incorporated with a basis for rigid motion[46].

21

6. Conclusions

We have proposed a framework to use a cyclic group for appearance change of
an image sequence of a rotating (1DOF, out-of-plane) object. The matrix G that
transforms one image in the sequence to another, is decomposed as U2DU1 by
block diagonalization of the column permutation matrix M . Then, we extended
the exponent j of Gj from an integer to a real number, and showed how G to the
power of a real number j transforms the images. In section 3, we proposed two
methods for pose estimation. One is the distance-based method that finds the
minimum distance in n-D subspace, and the other is the angle-based method,
that uses an angle between two vectors in 2-D subspace. Experimental results
with real datasets of 1120 objects in total demonstrated that the angle-based
method is robust against noise and performs better than the distance-based
method. In Section 5, we have shown the relation of Gj to linear regression
and pixel-wise DFT. A limitation of the proposed method in addition to those
described in the introduction is that it works only for sequences in which the
images are revolved. There are many inapplicable cases, for example, a face
sequence taken from the left side to the right side, with a frontal face included,
would have no images of the back of the head. However, we have demonstrated
an example of view generation for a non-rotation sequence.

To summarize, the cyclic property of the proposed formulation is based on
DFT, and the proposed angle-based estimation method is equivalent to a linear
regression. However, it should be noted that before the proposed formulation no
other methods have ever combined DFT and regression in a unified approach,
and this is the main contribution of this paper.

Acknowledgments

We would like to thank Hiroshi Tamaru and Yumiko Ichihara at Hiroshima
University for discussions on the subspaces. Also we are grateful to Hitoshi
Sakano at NTT Communication Science Laboratories and Bisser Raytchev at
Hiroshima University for their comments which have helped us to improve the
current paper. This work was supported in part by KAKENHI (20700163) from
JSPS.

References

[1] T. Tamaki, T. Amano, K. Kaneda, The secret of rotating object images
—using cyclic permutation for view-based pose estimation—, Proc. of Sub-
space2007 (2007) 24–31 http://ir.lib.hiroshima-u.ac.jp/00020419.

[2] M. Uenohara, T. Kanade, Optimal approximation of uniformly rotated
images: Relationship between Karhunen-Loeve expansion and discrete co-
sine transform, IEEE Trans. on Image Processing 7 (1) (1998) 116–119,
http://www.ri.cmu.edu/pubs/pub 928.html.

22

http://ir.lib.hiroshima-u.ac.jp/00020419
http://www.ri.cmu.edu/pubs/pub_928.html

[3] R.-H. Park, Comments on ”Optimal approximation of uniformly ro-
tated images: Relationship between Karhunen-Loève expansion and
discrete cosine transform”, IEEE Trans. on Image Processing 11 (3)
(2002) 332–334, http://www.ieeexplore.ieee.org/xpl/freeabs all.

jsp?tp=&arnumber=988965&isnumber=21305.

[4] M. Sengel, H. Bischof, Efficient representation of in-plane rotation within
a PCA framework, Image and Vision Computing 23 (2005) 1051–1059,
http://dx.doi.org/10.1016/j.imavis.2005.07.007.

[5] C.-Y. Chang, A. Maciejewski, V. Balakrishnan, Fast eigenspace decompo-
sition of correlated images, IEEE Trans. on Image Processing 9 (9) (2000)
1937–1949, http://www.ieeexplore.ieee.org/xpl/freeabs all.jsp?

tp=&arnumber=877214.

[6] M. Jorgan, E. Žagar, A. Leonardis, Karhunen-Loéve expansion of a set of
rotated templates, IEEE Trans. on Image Processing 12 (7) (2003) 817–
825, http://ieeexplore.ieee.org/xpl/freeabs all.jsp?isnumber=

27275&arnumber=1212657&count=12&index=8.

[7] K. Saitwal, A. A. Maciejewski, R. G. Roberts, Eigendecomposition of
correlated images characterized by three parameters, 2006 IEEE South-
west Symposium on Image Analysis and Interpretation (2006) 203–207
http://www.engr.colostate.edu/∼aam/pdf/conferences/91.pdf.

[8] H. Murase, S. K. Nayar, Visual learning and recognition of 3-D objects
from appearance, International Journal of Computer Vision 14 (1) (1995)
5–24, http://dx.doi.org/10.1007/BF01421486.

[9] T. Okatani, K. Deguchi, Yet another appearance-based method for pose es-
timation based on a linear model, IAPR Workshop on Machine Vision Ap-
plications 2000 (2000) 258–261 http://www.mva-org.jp/Proceedings/

CommemorativeDVD/2000/papers/2000258.pdf.

[10] T. Amano, T. Tamaki, An appearance based fast linear pose estimation,
IAPR Conference on Machine Vision Applications 2009 (2009) 182–186
http://www.mva-org.jp/Proceedings/2009CD/papers/06-03.pdf.

[11] S. Ando, Y. Kusachi, A. Suzuki, K. Arakawa, Appearance based pose esti-
mation of 3D object using support vector regression, ICIP2005 1 (2005) I–
341–344, http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=

1529757&isnumber=32660.

[12] T. Melzer, M. Reiter, H. Bischof, Appearance models based on kernel
canonical correlation analysis, Pattern Recognition 36 (2003) 1961–1971,
http://dx.doi.org/10.1016/S0031-3203(03)00058-X.

[13] L.-W. Zhao, S.-W. Luo, L.-Z. Liao, 3D object recognition and pose es-
timation using kernel PCA, Proc. of Intl. Conf. Machine Learning and

23

http://www.ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=988965&isnumber=21305
http://www.ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=988965&isnumber=21305
http://dx.doi.org/10.1016/j.imavis.2005.07.007
http://www.ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=877214
http://www.ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=877214
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=27275&arnumber=1212657&count=12&index=8
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=27275&arnumber=1212657&count=12&index=8
http://www.engr.colostate.edu/\protect \unhbox \voidb@x \penalty \@M \ {}aam/pdf/conferences/91.pdf
http://dx.doi.org/10.1007/BF01421486
http://www.mva-org.jp/Proceedings/CommemorativeDVD/2000/papers/2000258.pdf
http://www.mva-org.jp/Proceedings/CommemorativeDVD/2000/papers/2000258.pdf
http://www.mva-org.jp/Proceedings/2009CD/papers/06-03.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1529757&isnumber=32660
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1529757&isnumber=32660
http://dx.doi.org/10.1016/S0031-3203(03)00058-X

Cybernetics 5 (2004) 3258–3262, http://ieeexplore.ieee.org/xpls/

abs all.jsp?arnumber=1378598.

[14] T. Vik, F. Heitz, P. Charbonnier, Robust pose estimation and recogni-
tion using non-gaussian modeling of appearance subspaces, IEEE Trans.
on Pattern Analysis and Machine Intelligence 29 (5) (2007) 901–905,
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1028.

[15] D. G. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision 60 (2) (2004) 91–110, http:

//www.springerlink.com/content/h4l02691327px768.

[16] F. Rothganger, S. Lazebnik, C. Schmid, J. Ponce, 3D object model-
ing and recognition using local affine-invariant image descriptors and
multi-view spatial constraints, International Journal of Computer Vi-
sion 66 (3) (2006) 231–259, http://www-cvr.ai.uiuc.edu/ponce grp/

publication/paper/ijcv04d.pdf.

[17] V. Ferrari, T. Tuytelaars, L. V. Gool, Simultaneous object recognition and
segmentation from single or multiple model views, International Journal of
Computer Vision 67 (2) (2006) 159–188, http://dx.doi.org/10.1007/

s11263-005-3964-7.

[18] A. Kushal, J. Ponce, Modeling 3D objects from stereo views and recognizing
them in photographs, ECCV2006 (2006) 563–574 http://www-cvr.ai.

uiuc.edu/∼kushal/papers/conf/ECCV06/eccv06.pdf.

[19] A. Kushal, C. Schmid, J. Ponce, Flexible object models for category-level
3D object recognition, CVPR2007 (2007) 1–8 http://www2.computer.

org/portal/web/csdl/doi/10.1109/CVPR.2007.383149.

[20] H.-P. Chiu, L. P. Kaelbling, T. Lozano-Pérez, Virtual training for multi-
view object class recognition, CVPR2007 (2007) 1–8 http://www2.

computer.org/portal/web/csdl/doi/10.1109/CVPR.2007.383044.

[21] P. Yan, S. M. Khan, M. Shah, 3D model based object class detection in
an arbitrary view, ICCV2007 (2007) 1–6 http://www2.computer.org/

portal/web/csdl/doi/10.1109/ICCV.2007.4409042.

[22] D. Hoiem, C. Rother, J. Winn, 3D LayoutCRF for multi-view object
class recognition and segmentation, CVPR2007 (2007) 1–8 http://www2.

computer.org/portal/web/csdl/doi/10.1109/CVPR.2007.383045.

[23] S. Savarese, L. Fei-Fei, 3D generic object categorization, localization and
pose estimation, ICCV2007 (2007) 1–8 http://www2.computer.org/

portal/web/csdl/doi/10.1109/ICCV.2007.4408987.

[24] A. Thomas, V. Ferrar, B. Leibe, T. Tuytelaars, B. Schiel, L. V.
Gool, Towards multi-view object class detection, CVPR2006 2
(2006) 1589–1596, http://www2.computer.org/portal/web/csdl/doi/

10.1109/CVPR.2006.311.

24

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1378598
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1378598
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1028
http://www.springerlink.com/content/h4l02691327px768
http://www.springerlink.com/content/h4l02691327px768
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/ijcv04d.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/ijcv04d.pdf
http://dx.doi.org/10.1007/s11263-005-3964-7
http://dx.doi.org/10.1007/s11263-005-3964-7
http://www-cvr.ai.uiuc.edu/\protect \unhbox \voidb@x \penalty \@M \ {}kushal/papers/conf/ECCV06/eccv06.pdf
http://www-cvr.ai.uiuc.edu/\protect \unhbox \voidb@x \penalty \@M \ {}kushal/papers/conf/ECCV06/eccv06.pdf
http://www2.computer.org/portal/web/csdl/doi/10.1109/CVPR.2007.383149
http://www2.computer.org/portal/web/csdl/doi/10.1109/CVPR.2007.383149
http://www2.computer.org/portal/web/csdl/doi/10.1109/CVPR.2007.383044
http://www2.computer.org/portal/web/csdl/doi/10.1109/CVPR.2007.383044
http://www2.computer.org/portal/web/csdl/doi/10.1109/ICCV.2007.4409042
http://www2.computer.org/portal/web/csdl/doi/10.1109/ICCV.2007.4409042
http://www2.computer.org/portal/web/csdl/doi/10.1109/CVPR.2007.383045
http://www2.computer.org/portal/web/csdl/doi/10.1109/CVPR.2007.383045
http://www2.computer.org/portal/web/csdl/doi/10.1109/ICCV.2007.4408987
http://www2.computer.org/portal/web/csdl/doi/10.1109/ICCV.2007.4408987
http://www2.computer.org/portal/web/csdl/doi/10.1109/CVPR.2006.311
http://www2.computer.org/portal/web/csdl/doi/10.1109/CVPR.2006.311

[25] S. A. Nene, S. K. Nayar, H. Murase, Columbia object image library (COIL-
20), Tech. Rep. CUCS-005-96, Columbia University, http://www1.cs.

columbia.edu/CAVE/software/softlib/coil-20.php (1996).

[26] S. A. Nene, S. K. Nayar, H. Murase, Columbia object image library (COIL-
100), Tech. Rep. CUCS-006-96, Columbia University, http://www1.cs.

columbia.edu/CAVE/software/softlib/coil-100.php (1996).

[27] J. M. Geusebroek, G. J. Burghouts, A. W. M. Smeulders, The Amster-
dam library of object images, International Journal of Computer Vision
61 (1) (2005) 103–112, http://www.science.uva.nl/∼mark/pub/2005/

GeusebroekIJCV05a.pdf.

[28] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Appli-
cations, Wiley, 1977.

[29] S. L. Campbell, C. D. Meyer, Generalized Inverses of Linear Transforma-
tions, Dover, 1991.

[30] A. S. Georghiades, The Yale face database B, online, http://cvc.yale.

edu/projects/yalefacesB/yalefacesB.html (accessed 2008.6.9).

[31] A. S. Georghiades, P. N. Belhumeur, D. J. Kriegman, From few to many:
Illumination cone models for face recognition under variable lighting and
pose, IEEE Trans. on Pattern Analysis and Machine Intelligence 23 (6)
(2001) 643–660, http://doi.ieeecomputersociety.org/10.1109/34.

927464.

[32] T. Sun, S. Chen, Locality preserving CCA with applications to data vi-
sualization and pose estimation, Image and Vision Computing 25 (5)
(2007) 531–543, http://www.sciencedirect.com/science/article/

B6V09-4K9C6GM-2/2/a1930d130b2c0f9fec65465579d50d11.

[33] A. J. Smola, B. Schölkopf, A tutorial on support vector regression,
NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College,
University of London, UK, http://www.kernel-machines.org/papers/

tr-30-1998.ps.gz (1998).

[34] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine
Learning, MIT Press, 2006, http://www.gaussianprocess.org/gpml/

chapters/.

[35] C. E. Rasmussen, Advances in gaussian processes, NIPS2006 Tutorial,
http://www.kyb.tue.mpg.de/bs/people/carl/gpnt06.pdf (2006).

[36] F. De la Torre, Component analysis for computer vision, ECCV2006 Tuto-
rial, http://eccv2006.tugraz.at/tutorials.html#M1 (2006).

25

http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.science.uva.nl/\protect \unhbox \voidb@x \penalty \@M \ {}mark/pub/2005/GeusebroekIJCV05a.pdf
http://www.science.uva.nl/\protect \unhbox \voidb@x \penalty \@M \ {}mark/pub/2005/GeusebroekIJCV05a.pdf
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
http://doi.ieeecomputersociety.org/10.1109/34.927464
http://doi.ieeecomputersociety.org/10.1109/34.927464
http://www.sciencedirect.com/science/article/B6V09-4K9C6GM-2/2/a1930d130b2c0f9fec65465579d50d11
http://www.sciencedirect.com/science/article/B6V09-4K9C6GM-2/2/a1930d130b2c0f9fec65465579d50d11
http://www.kernel-machines.org/papers/tr-30-1998.ps.gz
http://www.kernel-machines.org/papers/tr-30-1998.ps.gz
http://www.gaussianprocess.org/gpml/chapters/
http://www.gaussianprocess.org/gpml/chapters/
http://www.kyb.tue.mpg.de/bs/people/carl/gpnt06.pdf
http://eccv2006.tugraz.at/tutorials.html##M1

[37] S. Fidler, D. Skočaj, A. Leonardis, Combining reconstructive and dis-
criminative subspace methods for robust classification and regression
by subsampling, IEEE Trans. on Pattern Analysis and Machine Intelli-
gence 28 (3) (2006) 337–350, http://doi.ieeecomputersociety.org/

10.1109/TPAMI.2006.46.

[38] A. Leonardis, H. Bischof, Robust recognition using eigenimages, Computer
Vision and Image Understanding 78 (1) (2000) 99–118, http://dx.doi.

org/10.1006/cviu.1999.0830.

[39] C.-Y. Chang, A. A. Maciejewski, V. Balakrishnan, R. G. Roberts, K. Sait-
wal, Quadtree-based eigendecomposition for pose estimation in the pres-
ence of occlusion and background clutter, Pattern Analysis & Applications
10 (1) (2007) 15–31, http://dx.doi.org/10.1007/s10044-006-0046-6.

[40] D. Potts, G. Steidl, M. Tasche, Fast fourier transforms for nonequispaced
data: A tutorial, in: J. J. Benedetto, P. J. S. G. Ferreira (Eds.), Mod-
ern Sampling Theory: Mathematics and Applications, Birkhäuser, 2001,
Ch. 12, pp. 249–274, http://www.math.mu-luebeck.de/mitarbeiter/

potts/paper/ndft.pdf.

[41] M. Takeuchi, Modern Spherical Functions, American Mathematical Society,
1994.

[42] P.-M. Lam, C.-S. Leung, T.-T. Wong, Noise-resistant fitting for spheri-
cal harmonics, IEEE Trans. Visualization and Computer Graphics 12 (2)
(2006) 254–265, http://doi.ieeecomputersociety.org/10.1109/TVCG.
2006.34. doi:http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.34.

[43] A. Matheny, D. B. Goldgof, The use of three- and four-dimensional surface
harmonics for rigid and nonrigid shape recovery and representation, IEEE
Trans. on Pattern Analysis and Machine Intelligence 17 (10) (1995) 967–
981, http://doi.ieeecomputersociety.org/10.1109/34.464561.

[44] K. Shoemake, Animating rotation with quaternion curves, SIGGRAPH’85
19 (3) (1985) 245–254, http://doi.acm.org/10.1145/325165.325242.
doi:http://doi.acm.org/10.1145/325165.325242.

[45] J. Morrison, Quaternion interpolation with extra spins, Graphics Gems III
(1992) 96–97.

[46] R. Lenz, Group Theoretical Methods in Image Processing, Vol. 413 of Lec-
ture Notes in Computer Science, Springer Verlag, 1990, http://staffwww.
itn.liu.se/∼reile/LNCS413/index.htm.

[47] I. Satake, Linear Algebra, Marcel Dekker Inc., 1975.

26

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.46
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.46
http://dx.doi.org/10.1006/cviu.1999.0830
http://dx.doi.org/10.1006/cviu.1999.0830
http://dx.doi.org/10.1007/s10044-006-0046-6
http://www.math.mu-luebeck.de/mitarbeiter/potts/paper/ndft.pdf
http://www.math.mu-luebeck.de/mitarbeiter/potts/paper/ndft.pdf
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.34
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.34
http://doi.ieeecomputersociety.org/10.1109/34.464561
http://doi.acm.org/10.1145/325165.325242
http://staffwww.itn.liu.se/\protect \unhbox \voidb@x \penalty \@M \ {}reile/LNCS413/index.htm
http://staffwww.itn.liu.se/\protect \unhbox \voidb@x \penalty \@M \ {}reile/LNCS413/index.htm

Appendix

A. Complex diagonalization of M

Here we show how matrix M can be diagonalized. This diagonalization of
M is nothing new, it is just a standard exercise in linear algebra [47]. It can
also be found in studies on the analytical Eigenspace approach [5, 3, 6].

The characteristic equation of M is:

|M − λI| = (−1)n

∣∣∣∣∣∣∣
λ −1
−1 λ

−1 λ

.
.
.
.
.
.

−1 λ
−1 λ

∣∣∣∣∣∣∣ = (−1)n(λn − 1), (29)

so the eigenvalues λ are ζn, n different primitive nth roots of unity: λk = ζkn =
eθki for k = 0, 1, 2, . . . , n− 1, where i =

√
−1 and θk = 2π

n k.
Let wk = (w1, w2, . . . , wn)

T ∈ Rn be the eigenvector corresponding to ζkn:
Mwk = ζknwk. From the elements on both sides,

(wn, w1, w2, . . . , wn−1)
T = (ζknw1, ζ

k
nw2, . . . , ζ

k
nwn)

T , (30)

it follows that the eigenvector is wk = (ζ
(n−1)k
n , . . . , ζ2kn , ζkn, 1)

T .
Then M is diagonalized as M = W ′D′W ′H with:

D′ = diag(1, ζn, ζ
2
n, . . . , ζ

n−1
n), (31)

W ′ =
1√
n
(w0,w1,w2, . . . ,wn−1) , (32)

where H denotes the transpose of a complex conjugate, and W ′ is the basis of
complex DFT.

B. Real block diagonalization of M

Here we give the block diagonalization of M . This can also be found in
textbooks on linear algebra [47] and also in [5, 3, 6]. As Park [3] pointed out,
this real block diagonalization is not unique, and there are other ways how it
can be done.

ζkn and ζn−k
n (two eigenvalues of M) are complex conjugate to each other. To

make the correspondingwk andwn−k (a pair of complex conjugate eigenvectors)
real vectors, divide them into real and imaginary parts: wk = ck + isk and
wn−k = ck − isk, where

ck = (cos(n− 1)θk, cos(n− 2)θk, . . . , cos θk, 1)
T , (33)

sk = (sin(n− 1)θk, sin(n− 2)θk, . . . , sin θk, 0)
T . (34)

Using ck and sk, the multiplications of M by vectors wk,wn−k

M(wk,wn−k) = (wk,wn−k)

(
ζkn 0
0 ζn−k

n

)
, (35)

27

are rewritten as M(ck, sk) = (ck, sk)Ak, where

Ak =

(
cos θk sin θk
− sin θk cos θk

)
∈ R2×2. (36)

Now M = W ′D′W ′H is rewritten as a block diagonalization M = WDWT .
Here, D is a block diagonal matrix, and W is the basis of real DFT, as follows:

D =





1

A1

A2

. . .

As

 , n is odd,



1

A1

A2

. . .

As

−1


, n is even,

(37)

W =


√

2
n

(
w0√
2
, c1, s1, c2, s2, . . . , cs, ss

)
, n is odd,√

2
n

(
w0√
2
, c1, s1, c2, s2, . . . , cs, ss,

w n
2√
2

)
, n is even,

(38)

s =

{
n−1
2 , n is odd,

n−2
2 , n is even,

(39)

where w0 = (1, 1, . . . , 1)T = c0, w n
2
= (−1, 1,−1, 1, . . . ,−1, 1)T = cn

2
. The

orthogonality of W is shown in an appendix available online as a supplemental
material.

Note that there is another famous block diagonalization called the Jordan
(normal or canonical) form. In our case, M has n different eigenvalues and
therefore the Jordan form is no more block diagonal but just a diagonal form.
It is the same as Eq. (32).

28

C. Orthogonality of W

For the sake of completeness, here we show that the columns of W are
orthogonal to each other in n dimensional space. Intuitively, the columns ck
form a DCT basis, and sk form a DST basis, and those are orthogonal bases
and also orthogonal to each other. However, since the definitions of ck and
sk used here differ somewhat from those widely used in the signal processing
community, we give proofs for their orthogonality.

First, we show that the following equations hold for 0 < k:

n−1∑
j=0

cos

(
2πj

n
k

)
=

1

2

n−1∑
j=0

(
ei

2πj
n k + e−i 2πj

n k
)

=
1

2

(
1− ei

2π
n kn

1− ei
2π
n k

+
1− e−i 2π

n kn

1− e−i 2π
n k

)

=
1

2

(
1− e(2πk)i

1− ei
2π
n k

+
1− e−(2πk)i

1− e−i 2π
n k

)
=

1

2

(
1− 1

1− ei
2π
n k

+
1− 1

1− e−i 2π
n k

)
= 0,

n−1∑
j=0

sin

(
2πj

n
k

)
=

1

2i

n−1∑
j=0

(
ei

2πj
n k − e−i 2πj

n k
)
= 0.

Here we have used the geometric series fomula with a common ratio e±i 2π
n k.

Now we show that columns ck are orthogonal to each other for 0 < k ≤
s, 0 < l ≤ s:

cTk cl =

n−1∑
j=0

cos(jθk) cos(jθl) =

n−1∑
j=0

cos(
2πj

n
k) cos(

2πj

n
l)

= 2
n−1∑
j=0

(
cos(

2πj

n
(k + l)) + cos(

2πj

n
(k − l))

)
= 0,

cTk ck =

n−1∑
j=0

cos2(jθk) =

n−1∑
j=0

cos2(
2πj

n
k)

=
1

2

n−1∑
j=0

(
1 + cos(2

2πj

n
k)

)
=

1

2

n−1∑
j=0

1 =
n

2
.

1

Similarly, columns sk are orthogonal to each other for 0 < k ≤ s, 0 < l ≤ s:

sTk sl =
n−1∑
j=0

sin(jθk) sin(jθl) =
n−1∑
j=0

sin(
2πj

n
k) sin(

2πj

n
l)

= −2
n−1∑
j=0

(
cos(

2πj

n
(k + l))− cos(

2πj

n
(k − l))

)
= 0,

sTk sk =

n−1∑
j=0

sin2(jθk) =

n−1∑
j=0

sin2(
2πj

n
k)

=
1

2

n−1∑
j=0

(
1− cos(2

2πj

n
k)

)
=

1

2

n−1∑
j=0

1 =
n

2
.

Also, columns ck and sk are orthogonal to each other:

sTk cl =

n−1∑
j=0

sin(jθk) cos(jθl) =

n−1∑
j=0

sin(
2πj

n
k) cos(

2πj

n
l)

= 2
n−1∑
j=0

(
sin(

2πj

n
(k + l)) + sin(

2πj

n
(k − l))

)
= 0,

sTk ck =

n−1∑
j=0

sin(jθk) cos(jθk) =

n−1∑
j=0

sin(
2πj

n
k) cos(

2πj

n
k)

= 2
n−1∑
j=0

(
sin(

2πj

n
(2k)) + sin(

2πj

n
(0))

)
= 0.

2

Finally, columns w0 and w n
2
are orthogonal to the other columns:

wT
0 w0 = cT0 c0 =

n−1∑
j=0

1 = n,

wT
n
2
w n

2
= cTn

2
cn

2
=

n−1∑
j=0

1 = n,

wT
0 ck = cT0 ck =

n−1∑
j=0

cos

(
2πj

n
k

)
= 0,

wT
0 sk = cT0 sk =

n−1∑
j=0

sin

(
2πj

n
k

)
= 0,

wT
n
2
ck = cTn

2
ck = −

n−1∑
j=0

(−1)j cos(
2πj

n
l) = −1

2

n−1∑
j=0

eiπj
(
ei

2πj
n k + e−i 2πj

n k
)

=
1

2

(
1− eiπnei

2π
n kn

1− eiπei
2π
n k

+
1− eiπne−i 2π

n kn

1− eiπe−i 2π
n k

)

=
1

2

(
1− 1

1− eiπei
2π
n k

+
1− 1

1− eiπe−i 2π
n k

)
= 0,

wT
n
2
sk = cTn

2
sk = −

n−1∑
j=0

(−1)j sin(
2πj

n
l) = − 1

2i

n−1∑
j=0

eiπj
(
ei

2πj
n k − e−i 2πj

n k
)
= 0.

Although ck and sk are not normal vectors, defining matrix W with the

factor
√

2
n makes it an orthonormal matrix.

3

