
Volume Rendering using Grid Computing for
Large-Scale Volume Data

Kunihiko Nishihashi, Toru Higaki, Kenji Okabe
Bisser Raytchev, Toru Tamaki, Kazufumi Kaneda

Hiroshima University, Japan

IEEE CAD/Graphicsʼ09
August 20, 2009

Background
Volume Rendering

- Useful in the medical field
- Higher resolution of volume data
- Increase in computational costs

Fast Volume Rendering!!

Background

Grid Computing

- Effective use of a large number of idle computers

- Low cost

- Scalability of computational power

Goal

Computing resources often changing over time

➡ The return order of results rarely matches the sending order.

➡ Less efficient in sequential job-scheduling

Fast volume rendering using grid computing!!

In a grid:

Dynamic Job-scheduling

Contents
• Related Work

• Proposed Method

- Disadvantages of Sequential Job-Scheduling

- Obstacle-Flag

- Dynamic Job-Scheduling

• Exception Handling

• Experimental Results

• Conclusions

Related Work
• GPU: [Callahan ’05], [Hofsetz ’08], [Keles ’06]

- GPU based calculation
- Visibility sorting, texture slab, z-occlusion culling

• PC Clusters: [Matsui ’04], [Lacroute ’96], [Stompel ’03]

- Real time volume rendering of a 10243 volume data
- Parallel image compositing algorithm

• Grid Computing: [Alfonso ’05], [Norton ’03], [Bethel ’03]

- Visibility-driven compression schemes

- Connectionless protocols

System
Client: Send a volume rendering request to a server.
Server: Sending jobs, combining of rendering results, etc...
Agent: Volume rendering

System Configuration

Combined Image

Central

Manager

Agent

Agent

Agent

Client

Dividing volume data
Sub-Volume

Rendering Result
!RGB values,Opacity"!

Proposed Method
Obstacle-Flag

- Management the occlusion state of the sub-volume

Dynamic Job-Scheduling

- Updating the obstacle-flags

➡ Determining dynamically sending order of sub-volumes

Sequential Job-Scheduling

Disadvantages of Sequential Job-Scheduling

! ! ! ! ! !

Agents CombinedScreen

Viewing direction Sub-Volume

high

low

Visibility

! " #
$ % &
' ()

Sequential Job-Scheduling

Disadvantages of Sequential Job-Scheduling

!

! ! ! ! !

Agents CombinedScreen

Viewing direction Sub-Volume

high

low

Visibility

! " #
$ % &
' ()

Sequential Job-Scheduling

Disadvantages of Sequential Job-Scheduling

!

! ! ! ! !

Agents CombinedScreen

Viewing direction Sub-Volume

high

low

Visibility

! " #
$ % &
' ()

Sequential Job-Scheduling

Disadvantages of Sequential Job-Scheduling

! !

!

!

! !

Agents CombinedScreen

Viewing direction Sub-Volume

high

low

Visibility

! " #
$ % &
' ()

Sequential Job-Scheduling

Disadvantages of Sequential Job-Scheduling

Can not be sent sub-volume ⑨!!

! !

!

!

! !

Agents CombinedScreen

Viewing direction Sub-Volume

high

low

Visibility

! " #
$ % &
' ()

Obstacle-Flag
The obstacle-flags manage the relationships between sub-volumes.

- Need 4 bits
- Occluded: 1, Not occluded: 0
- All zero → No occluding sub-volumes

upper !! !! !!

right "! !! "!

lower !! !! "!

left !! !! !!

!!

!!

"!

!!

#! $! %! &!

Obstacle-Flag

%! &!

#! $!

Screen

upper

lower
right left

Sub-Volume Viewing direction

Obstacle-Flag

Dynamic Job-Scheduling

Visibility of Sub-Volumes Based on Obstacle-Flags
upper

lower
right left

Screen

Sub-Volume

! " #
$ % &
' ()

high

low

Visibility upper 0 0 0

right 1 0 1

lower 0 0 1

left 0 0 0

0

0

1

0

() % &
0

0

1

0

Obstacle-Flag

Viewing direction

Dynamic Job-Scheduling

Sub-Volume ③ has already been rendered and combined.

➡ Sub-volumes ② and ⑥ have their obstacle-flags updated.

Dynamic Job-Scheduling using Obstacle-Flags
upper

lower
right left

Screen

Sub-Volume

! " #
$ % &
' ()

high

low

Visibility upper 0 0 0

right 1!0 0 1

lower 0 0 1

left 0 0 0

0

0

1!0

0

() % &
0

0

1

0

Obstacle-Flag

Viewing direction

Dynamic Job-Scheduling

Sub-Volume ⑥ has already been rendered and combined.

➡ Sub-volumes ⑤ and ⑨ have their obstacle-flags updated.
➡ Sub-volume ⑨ will be sendable.

Dynamic Job-Scheduling using Obstacle-Flags
upper

lower
right left

Screen

Sub-Volume

! " #
$ % &
' ()

high

low

Visibility upper 0 0 0

right 0 0 1!0

lower 0 0 1

left 0 0 0

0

0

0

0

() % &
0

0

1!0

0

Obstacle-Flag

Viewing direction

Dynamic Job-Scheduling
Dynamic Job-Scheduling using Obstacle-Flags

upper

lower
right left

Screen

Sub-Volume

! " #
$ % &
' ()

high

low

Visibility upper 0 0 0

right 0 0 1!0

lower 0 0 1

left 0 0 0

0

0

0

0

() % &
0

0

1!0

0

Obstacle-Flag

Viewing direction

Sequential Job-Scheduling

! !

!

!

! !

Agents CombinedScreen

Viewing direction Sub-Volume

high

low

Visibility

! " #
$ % &
' ()

○

×

0

0

Exception Handling

Sub-Volumes have three states:

- Not-occluded
- Partially-occluded
- Fully-occluded

Sending partially-occluded sub-volumes

Minimize waiting time, while maximize agent utilization

If an idle agent is available...

Experiments
• We used our university’s campus grid.
• The computer grid’s managing software is Condor.

Number of Agents OS CPU Memory

34
Linux

Xeon 3.06GHz 2GB

469
Linux

Pentium4 3.06GHz 990MB

Case Resolution
[voxel]

VD size
[GB]

Number of
Divisions

SV size
[MB]

Screen size
[pixel]

SS
2048^3 16

64 256
3000x3600

SL
2048^3 16

512 32
3000x3600

LL 4096^3 128 512 256 5800x7200

Experimentation Environment

Test Data

Experimental Results

• Proposed methods used more agents.

• Elapsed time was reduced only in the SS and LL cases.
➡ Depending on agent processing time

 0

 10

 20

 30

 40

 50

2048^3/64 2048^3/512 4096^3/512

 A
ve

ra
ge

 N
um

be
r o

f A
ge

nt
s

Ut
iliz

ed

Resolution [voxel]/Number of Divisions

Seq
Dyn
EH

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2048^3/64 2048^3/512 4096^3/512

El
ap

se
d

Ti
m

e
[s

ec
.]

Resolution [voxel]/Number of Divisions

Seq
Dyn
EH

: SS : SS: SL : SL: LL : LL

Results for Various Agent Processing Times

• The longer the agent processing time becomes,

the better the performance

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

60*512 120*512 180*512

El
ap

se
d

Ti
m

e
[s

ec
.]

Processing Time per Agent [sec.]*Number of Divisions

Seq
Dyn
EH

 0

 5

 10

 15

 20

 25

60*512 120*512 180*512

Av
er

ag
e

Nu
m

be
r o

f A
ge

nt
s

Ut
iliz

ed

Processing Time per Agent [sec.]*Number of Divisions

Seq
Dyn
EH

Results in the case of Interruptions
The interruption time:

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

Re
nd

er
in

g
Pr

og
re

ss
 [%

]

Elapsed Time [sec.]

Seq
Dyn
EH

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

Re
nd

er
in

g
Pr

og
re

ss
 [%

]
Elapsed Time [sec.]

Seq
Dyn
EH

Interruption Time [sec.]
Speed-Up RatioSpeed-Up Ratio

Interruption Time [sec.]
Dynamic Job-Scheduling Exception Handling

0 1.30 1.93
120 (short) 1.65 2.20
480 (long) 1.71 3.02

120 sec. 480 sec.

Conclusions
• New method for large-scale volume data rendering in a

grid computing system is proposed.

- Dynamic Job-Scheduling using obstacle-flags

- Performs better than the sequential job-scheduling as verified
experimentally

Future work
• Experiments using larger volume data

- Terabyte volume data

- Increasing the number of divisions

