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1 Introduction

Since Granger's (1969) definition on causality between economic time

series proposed, the so-called Granger causality test has been attracting

manyresearchers in both theoretical and empirical aspects. In 1970's, the

causality test was established mainly in the framework of stationary1*

autoregressive (VAR) processes, based on the approach of Box and Jenkins

(1976), and as a result, the standard asymptotic theory2' based on

asymptotic normality was applied to usual test statistics known as Wald

tests. This approach which uses a stationary VAR was verified by the

empirical belief that many economic time series are not stationay in levels

of the original time series but can be transformed to stationary ones by

differencing or detrending.

The remarkble development of statistical inferences for nonstationary

time series from the late 1970's suggested the possibility that even the

1 ) It may be appropriate that the term 'stationarity' weuse here is refered as 'weak

one' than 'strong one'.
2 ) The most essential requirement to make this theory hold is not 'stationarity' but

'regurality'. See Grenander and Rosenblatt (1957) etc. for example.
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Granger causality may be tested using level series under VAR modeling in

which some unit toots are postulated to exist. On the other hand, the

concept of cointegration formulated by Engle and Granger (1987) etc.

revealed the situations in which individual time series considered are

integrated of an order (i.e. have nonstationarity caused by one unit root)

but some linear combinations of those are stationay. The so-called the

Granger Representation Theorem (GRT) of Engle and Granger (1987)

states that modelling under such a situation should be done based on either

a VARrepresentation in levels of the orginal series or the error correction

model (ECM) derived equivalently from it. In other words, any cointegrated

system of time series cannot be transformed to a stationary VAR by

differencing. The ECM consists of stationay series only; that is, such linear

combinations called cointegarating relations and first differences.

Numerous literatures have studied the inferences on cointegration

theoretically and empirically, and as a result those on the VAR or ECM

framework have got the reputation of being most general and desirable:

Sims et al. (1990)'s OLS in the VAR (often referred as the unrestricred VAR)

and Johansen (1988)'s ML in the ECM.

Those developments based on the inference theory for nonstationary

time series and the concept of cointegration or error correction suggested

the possibility that the Granger causality may be tested using level seies

under VARmodeling in which some unit roots are postulated to exist, and

the consideration of this matter drives us into a new testing procedure for

Granger causality. Toda and Phillips (1993) tried to discuss Granger

causality tests in the general framework of VAR's in which the presence of

unit roots and cointegration is considered. More concretely, they replaced

stationay VAR's used in 1970's by VAR's with a unit root (the unrestricted

levels VAR's in terms of Sims et al. (1990)) and ECM's, and investigated

statistical properties of the Wald statistics to test null hypotheses of the
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absence of Granger causality under both models. In the paper, the vector

time sries system which are the target of the analysis is partitioned into

three subsystems and Granger causality between two subsystems of them

is dealt with. In levels VAR's whose individual series are supposed to be

stationary after differencing once and are thought to be models for level

series themselves, the Wald test are simply constructed based on OLS

estimation for coefficient parameters. On the other hand, in ECM's the

Wald tests are more complex in structure because the null hypothesis is

not expressed simply by linear restrictions of the coefficients and it may be

redundant in some cases. Estimation for coefficients are made by not OLS

but Johansen's (1988) style of ML method, as stated already.

The main purpose of Toda and Phillips (1993) was to evaluate their Wald

tests asymptotically. They conclude that under cointegrated VAE system,

the Wald tests asymptotically follow %2 distribution under the null of the

absence of Granger causality if some conditions on the parameters are

imposed. That is, their results are restrictive in the sense that there exist

many situations which are not valid to use those tests based on %2critical

values. Particularly, in the unrestricted levels VAR, the deviation from x2

wasmore serious.

The purpose of the present paper is to establish a valid Granger causality

test under the same framework of Toda and Phillips (1993) without

imposing any condition on the parameters. Our arguments are developed in

ECM's, taking account of that VAR's are redundant on the parameters

concerning to the cointegration. Therefore, our testing method will be

constructed based on Johansen's (1988) ML estimation. Unlike Toda and

Phillips (1993), the system considered is always to be cointegrated since

the cases which are not cointegrated corresponds not to ECM's but to

stationary VAR's for differenced series and the analysis for such a series is

conventional within the framework of Box and Jenkins (1976). The ECM's
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parameter we must noticeably pay attention to in both Johansen's (1988)

ML estimation and our testing method is the cointegrating matrix which

consists of all linearly independent cointegrating vectors. Before we get to

estimating the cointegrating matrix, the rank of the cointegrating matrix,

named the coitegrating rank, need to be first decided via some statistical

procedure or pretested usually by Johansen's (1988) likelihood ratio test.

As some elaboration to actualize our purpose, we introduce another form

of the cointegrating matrix derived by an orthogonal transformation of its

original one, so that the null hypothesis is expressed by some linear

restrictions on the parameters. Along that line, as the estimator of the

cointegrating matrix we use not Johansen's (1988) one but an orthogonal

transformation of it. One of the characteristics of our testing method is that

in order to decide the rank of a submatrix of the matrix transformed from

the Johansen's (1988) estimator of the cointegrating matrix, another pretest

need to be executed. Given an estimator of the rank, our testing method

can be constructed using it as a usual Wald test for a linear hypothesis. We

prove that both the pretest to decide the rank and our Granger causality

test following it are asymptotically valid as %2 criterion. An emphasized

matter is that those results are established without imposing any condition

on the ECM's parameters.

The remained part of the present paper is as follows. Sections 2 and 3

play the role of some preliminaries, in which the models, notations and

assumptions for the paper are introduced to formulate our hypothesis and

some fundamental statistics and asymptotic results are also presented.

Section 4 discusses the above-mentioned pretests. Our Granger causality

test, based on the pretests, is provided in section 5. Asymptotic properties

of those are presented in each of sections 4 and 5. In section 6 we give

some remarks and implications on the testing method proposed in this

paper. Featuring different special cases explains why the asymptotic
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validity of our method holds unconditionally unlike Toda and Phillips'

(1993) one. Section 7 concludes the paper. Some of the proofs for theorems

and lemmas presented in this paper are placed in the appendix.

2 The model and formulation of Granger noncausality

In what follows, we shall consider the k-dimensional vector time series

\yt} generated by the p-th order VAR model, which is supposed to be the

same one as that of Toda and Phillips (1993) except for some differences in

notation, i. e.

Vi=£A}yt-j+Et Vt>l, (1)

where (e<) is an iid sequence of A;-dimensional random vectors with mean

zero and nonsingular covariance matrix A, such that E I £u \2*1 < °° for

some <5 > 0 with the i-th element ofe«, tu, i = l,..., k. It is also assumed that

Ayi( is stationary (in weak sense) for any i = 1,..., k, where yu is the i-th

element ofyt and A denotes the first differenced operator, i. e. Ayu = yu.\.

Defining

4 (*.) =/*-£ 4/V,
i=i

with the notation / denoting the n x n identity matrix for any positive

integer n and a complex number X, this implies that the root of det A (X) =

0 is confined to one such that either I X I > 1 or X = 1, and requires some

initial condition on y,. We shall impose an assumption on the intial values

[y», V-h -> 2/-j»i) so that those do not affect asymptotic results; for example,

those initial values are supposed to be constant vectors. Furthermore, the

present paper assumes that y, is cointegrated in the sense of Engle and

Granger's (1987) formulation. (1) is the data-generating process for this

paper.

As shown in Engle and Granger (1987) or Johansen (1988), from the VAR
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representation as the data-generating process (1), we can derive the

equivalent ECM

Ay<= En,-(A2/y)-.4(1)?/,., +£,, V<>1, (2)
7-1

wheren,= -ELJ+iAm,j= 1,...,p - 1, andA (1) =h-ZjLiAj. With(2),we

make other assumptions embodying that yt is cointegrated, which are also

put in Toda and Phillips (1993):

A(l)=-aj3' (3)

where aand /J3 are k x rmatrices offull column rankr, with 1 < r<k-l.

rankSTI(1)y=s = k-r, (4)

whereris given asthe rank ofaor/} in (3) and 8andyare k x s matrix of

full column rank s such that

5'a=0=y',j3, n(1)=/*- 211,.
H

(3) and (4) just imply that the cointegrating rank and the cointegrating

matrix are r and /? respectively. Throughout the paper, r (or s) is assumed

to known. Notice that a statistical method 'to estimate' r is a consecutive

application of Johansen's (1988) likelihood ratio tests we mentioned

already.

Now, consider how Granger noncausality can be expressed by the

parameters in (2). Suppose that our interest is in Granger causality from

the first fci elements of yt to the last fa elements of yt, with positive integers

fci, k3 and a nonnegative integer ft2 such that fci + k2 + k3 = k. For

convenience, we introduce some notations to partition the system; that is,

3 ) The decomposition ofA (1) into a and /? is not unique. The expression of P

can be freely chosen in later discussion as long as it satisfies the conditions stated
in(3).
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letting k** = ki + k%and k^ = k,2+ fe3, write

Vt=

å  y«'(i)"

2/< (2)

L yt (3)J

å [ 0< e*ri
Vt(3) J ,£<=

E( (3) J

withki x 1 vectorsyt (i) andz, (i), i = l, 2, 3, andaA>* x l vectoryt (**),

P'= [P'-Pi], a= [al, oC+]', y-=[y«, yH,

whereP'**\isr x k**,p'sisr x fc3>aiis&i x r,awisfcw x r,y-isr x fc«

andj3isr x £3,

f n,(i,**) n,(i,3) I
nj=U(++,**) nj(++)3)J' y= 1' -'p-1'

whereIT| (1,**)iski x k», Uj(1, 3) iski x k3, n, (++,**) isk* x A;«andTlj

(++, 3) is fcw x ks. We must note here that the partition of y< into two

subsystems, i. e. the case in which y» = yu (therefore fc.« = fci), is also

included in the above partition of yt into three systems. Using parts of the

above notations, the first fci equations of (2) are written as

Ay* (1) =L rij(l, **),Ay^(**) + ^ ^« j/n(**)
7=1

+ 2 n,(1, 3)Ay,.j (3) + «!^32/M(3) + e« (1),

for all t > 1. Moreover, this is rewritten as

Ay,(1) =G'xt(**)+Fxt(3) +e((1), Vt> 1, (5)

where

G'= [11,(1, **),.... rv,(l, **), «i P-], *,(**) = [Ay',i(**l

..., AylP.i(**) yU(**)),

F'= [n,(l, 3),..., rWl, 3),o,fa], x,(3) = [Ay;i(3),.... Ay^,(3)j/H(3)].
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Following the notion proposed by Granger (1969), the null hypothesis of

the absence of causality from yt (1) to yt (3) is formulated as

H0:F=0. (6)

Notice that F = 0 is a nonlinear hypothesis on parameters because it

contains ai jS-i = 0 and such 'nonlinearity' causes difficulty for Granger

causelity test which Toda and Phillips (1993) has just faced.

Now, we shall discuss another form of the cointegrating matrix and

another formulation for the null based on it. Hereafter, let the notation diag

(Vi,..., vm) denote a m x m diagonal matrix which possesses Vi as the i-th

diagonal element. LetLand Xi, i = \,..., r, be an orthogonal matrix of r x r

and real numbers such that

L'frfrL=diag[Xh...,h), 0<Xi<X2< -<K. (7)

It is ensured that there exist suchL and Xi, i = l,..., r, because Xj,j = 1,..., i,

are the i smallest eigenvalues of P'3/fe, 1 < i < r, and the columns of L are

the corresponding eigenvectors. Let us write the rank of /fe as r$. Then it is

confirmed that 0 > r$ > mi, with mi = min [r, fo). Also, let

r»=r-r3, J3=PL, fi~=P~L,

J53 =P3L, a=aL,ai=ail.

F\irthermore, note that r > r** > m-i,with nij = max {0, ks - r). Note that the

cointegrating rank r is not only the rank of /} but also that ofj3, i. e. rankfi =

r. Forthecaseinwhich0 <r3<r,notethatXi= 0,i= 1,...rv*andXt>0,i =

r»» +1,..., r« + V3= r. Therefore, for this case, we can partition$»,$ and 5i

as ,

£.= [£«, -, jB-,3], fa= [0.&3], ai = [Si,-}, a,.8], (8)

with, rank,fat3 = r3, where (}*;*» is k** x r«, ^..,3 is fc« x r3,^3,3 is if3 x r3,5i,«
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iski x r-and5i,3iski x r3. rank$3,3 = r3requiresr3 <fe.

Some careful consideration for n« need be done. Since rankp = rank [} =

r, all the column vectors are linearly independent ofj8, the first r« column

vectors offt for the case in which 0 < r3 < r are also linearly independent. In

other words, the k x r»« matrix [/}•E•E«, 0]' constructed by those column

vectors is the column-full rank. This requires that rank /?«,«« = r-, therefore

r- <k-. The thing noted in this case is that for any k- x 1 vector b which is

linearly independent from all the column vectors in /}*•E,•E•E>b' yt (**) is not

stationary, since all the cointegrating relations are expressed as

P m-W-MvA-R - \\
L ^»,3 fed Lyt(3)

It is obvious that the case in which r3 = 0 corresponds to the case in which

fe = 0. Under this case, let us define yt = yt (**) and j? = j8«,». This case

confines the cointegrating relations to one spanned by J3«,»» yt (**). From

the above notices, we can assert that rv. is the cointegrating rank of the

subsystem [yt (**)} and therefore r- < k- - 1. Hereafter, let us define /3«,3,

^3,3 and ai,3 for the case in which r% = r (in other words, r««= 0) as P**$ = /}.*,

^3,3 =ft and ai? = &i.

It is easy to check that

ai J5'3= aiLL'p3= ai^3= S^/Jw,

which in turn says that aL j3'3 = 0 is equivalent to 6i,3 = 0 unless r3 = 0,

recalling that rankfi'w = rz > fe. Now define A and B as

A'= [n,(i,3),...,n^.1(i,3), aw] ifn>o,

A'=[ni(l,3) IV(1,3) i/r3=0,

5'= [n1 (i,),.., n^(i,**), &1],

*, (**) = [AyU (**),..., Ay^i (**), i/m (**)j3-]',
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3,(3) = [A2/m (3),..., A^,, (3), 2/m (3)&,3] ',

using rij (1, 3), IT,- (1,**), 2/i-j (**) and yt.j (3) given already. Then (5) is

rewritten as

A*(1) =.B'*«C*) ++A'£,(3)+e,(1)i Vt> \. (9 )

Under (9) the formulation for the null of Granger noncausality is naturally

expressed as

H0:A =0. (10)

Notice that the hopothesis A = 0 is 'linear' unlike F = 0. It should be also

noticed that in the case in which r% = 0, we do not need to care

cointegration or more concretely the error correction terms to

formulate/test Granger noncausality. Thus we see that to check whether r3

=0 holds or not before testing Granger causlity is particularly important.

3 Some statistics and fundamental asymptotic results

This section discusses some statistics and related asymptotic properties

needed for both the pretest and Granger causality proposed in this paper.

First, suppose that the symbols -*pand -**denote convergence in

probability and convergence in distribution respectively as the sample size

T goes to oo. Also, let/} drenote the Johansen's (1988) type of ML

estimator4' of the cointegrating matrix. That is, suppose that [yh..., yT] is

given as the observations of yt with the sample size T. Using the notations

on observable matrices expressed as

4 ) The ECM in this paper (2) is slightly different from that ofJohansen (1988) and

therefore/? is also so. However, the difference can be negligible and we can

consider that our estimator is essentially the same as that in Johansen (1988).
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Ar=

A ｫ/; ti

A w f

K i =

V v

2/r-i

, W i =

Ay;... Ayi

L Ay'T.i... Ayr-p+i -l

mw=iT.p- w.i(W-
.Xw.01w:h sn = r.imwr.iit, s0l = (AV)'mw y.u

    Sm = (&r)'Mw(AY), SIO =S"oi,

Pis defined as ak x rmatrix minimizing

    det [ft' (Sn - SwSobSoi}~) /}} subject to p'Snp = Ir,

with respect to any k x r matrix )3. Let us denote eigenvalues of

Sii^SioSooSoiSii^as hJ = 1, -i ta, and the eigenvector associated with Xj as

Sn2p). Then it can be shown that P= [p\,..., fa]. Also, put

    P'= [P'», PS]

with p~ ofr x k- and Pi oir x fe. In ourpretest, notpitselfbutits linear

transfoemation is used in order to infer the structure of p. From the

eigenvectors and eigenvalues of Pi Pz, we can find an r x r orthogonal

matrix L and real numbers Xt, i = l,..., rsuch that

   L'P'3 pjL =diag{l.h..., h],           (ll)

with the supposition of0 < Xi < •E•E•E < ^-. Write

    P=pL, p~=p~L, ~Pi=p3L.

Also, forthe case in whichr > r3 > 0, let

with p~ otr x k-and piotr x fe. Furthermore, define ^3 = ^3^ifr= r3.

We shall first state some asymptotic properties on Sy, i,j = 0, 1, with
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respect to P, 7and 5.

Let us turn to some fundamental asymptotic properties. First, we give a

fundamental esult on /} and 7.

Lemma1

For0 > i\, 12, h Sp, define

Zu {i\, is) = b'ij5y,-i, + b'2 At/,.*,,

zu (13) = b'3{Sy,-i, + b\Y Ay,.h

wherebh,h= 1,2,3,4,arefixedvectorsofr * 1,A; x 1,r x 1ands x 1

respectivelysuch that b\ * 0 or62 * 0and b* * 0. Then

Ezu (ii, ii) z2t (ii)IT= Op (1).
p+i

Wecan see that this lemma is a direct application of well-known results

established in such a paper as Phillips (1987) etc. By this, the proof of this

lemma is omitted. Next, we shall present a series of lemmas needed to

establish some asymptotic justification of our pretest and Granger

causality test. The following lemma states some asymptotic properties on

Sij, i>j = 0, 1, with respect toj}, yand 5 given above.

Lemma2

(i) Soo~~*P£00.

(ii) Soo-SoiSiiSio-pA.

(ill) /J'Sio-pj3'Iio.

(m) P'Snp -*Pp'l,ufi

(iv) y'Sny/T^ dBi = fl Us (t) Us(t)'dt.

where Ey are k x k matrices given in Johansen (1988) such that rank Zoo

=k, rank ft'£10 = r and rank(3'Su ft = r and Us (t) is a s-dimensional

motion with a covariance matrixQi = 7'y1 5' A 5 1'7'y, with a stimess

matrix x offull rank.

Essentially, this lemma is the same as Lemma 3 of Johansen (1988)

except (ii), and only (ii) of this lemma will be proved in the Appendix.
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Recalling that P =p L and )3 = f3 L, the asymptotic results of ^ presented in

Lemmas5 and 8 ofJohansen (1988), a part of which is refered to Lemma 5

(i) in Toda and Phillips (1988), can be easily rewritten as those of ji. That

is,

Lemma3 Letting

x=0'pyp-p, y=(Y'Y)-YA

wehave:

(i) J5=j5x+yy.

(if) x= OP(X), x-i=OP(X).

(iii) Tyarl-> d p?B2®

where Bi is given in Lemma 2,

O =(J3'ZioS6o2oiP)-1P'2nP, B2 = /o1 U. (£) d Vr(t),

Us (0 is given in Lemma 2, Vr (t) is an r-dimensional Brownian motion

with a covariance matrix £i2 =P" £io£c» A £6o Soi j8 and Us(t) and Vr(()

are independent.

Using the notations /jj, ft and 73 which come from the partitioning of ji, ji

and y, the lower r%relations in Lemma 3 (i) is written as

P3 = p3x+ y3y. . (12)

For the case in which r > r3 > 0, partition x and y into submatrices as

t amXii]. y= ly-~,v*],
x2i ar22j

withOTn ofr- x r»,x^ofr- x r3,0:21 ofr3 x r»,X22ofr3 Xr3,y.»ofs x n.

and y.3 ofs x r3. Also, recallingthat

p3 = [k", k3],

with ^iofr x fc.and ft'ofr x fc3j underthe caseinwhichr> r3 > 0, by
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the form of J33, (12) can be rewritten as

/?3,» = #3,3#21 + 73 V--, (13)

/?3,3 = $3,3^22 + Y32/-3, (14)

where y = [y'.., y'3]'with y.. offc« x s and y3 offc3 x s. Notice that

partitioning y into y~ and y3 is very closely done to that of p into p~ and fi3.

Our next lemma presents other asymptotic results for this case.

Lemma4

Suppose that r > r3 > 0. Then:

(i) xu=Op(l), xl\ =Op(l), i=1,2, :r2i=0,(1),

wiife Xij introduced with respect to (12).

(m) r~^3- =M3y3Ty.~ + 0P(T1),

where M3=Iia - $3,3(^3,3jS)"1 ^'3,3, witfe fo, r3 andfc* given already.

What Lemma 4 (ii) indicates is that fa converges in probability to a k3 x

r matrix which has the same structure as^3 with respect to zero

restrictions. Hereafter, let A ® D and vec A denote the Kronecker product

of matricesA and D and the mi tni x 1 vector formed by the column

vectors of an mi x m.2matrix.A = [01, a2,..., amj as

vecA = [a{, ai,..., a'm2y,

respectively. Now, we conclude this section by stating an important result

on two independent Brownian motions:

Lemma5

Let Ci and C2 be matrices of mi x s and m2 x rsuch that rank C\ = mi

and rank Ci =m.2,where ni\ and rti2 are integers such that mi >s and m.2̂

r, with r and s given already. Also, define the mi m2 x 1 vector b as

b = ((C2 Q2 Cftá" <S> (CiBi1 CO 1 vec CiB^B2C'2,
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where Bi is given in Lemma 2 and C22 and B2 are given in Lemma 3.

Then, b is distributed as mi m2-dimensional multivariate normal with

meanzero and the covariance matrix Im, mai.e. N (0, 7m, m2).

Noting that the conditional distribution of vec B2 given {Us (t)) is JV (0, Im, m2),

this lemma can be proved by the same arguments as those used to prove

Lemma5.1 of Park and Phillips (1988), as suggested in page 1984 of Toda

and Phillips (1993). It should be also noted that the distribution of vec Bz is

named as mixed normal.

4 The pretest procedure

As a quite natural thing, the formulation (10) in section 2 is not available

as the null hypothesis to test Granger causality unless the number of

elements ofA is given a priori. It is impossible unless the rank of /?3 or fa (i.

e. ri) is known. However, this may be improbable since it is unnatural to

suppose that rs is known. Thus, we need a valid estimaor of r3 or

equivalently r- (recall that r = r- + r3 and r is supposed to be known.) in

order to proceed to some test for Granger causality based on (10). In this

section we shall discuss a method5' to infer the value of n or r» as a pretest

which precedes a Granger causality test.

In order to construct the pretest statistic, several estimtes on y given in

(4) and a particular form of 7 are dispensable, though the construction is

mainly based on /fc introduced in the previous section. Let N = p (/}' /J) 1/?'.

Based on the eigenvectors and eigenvalues of N, we can find a k x k

orthogonal matrix L and Xi, i = 1,..., k such that

N=Ldiag [Xi,...,X\], h= lfori = 1,...,r,

li=0 fori=r+l,...,k. (15)

5 ) One method is the well-known Johansen's (1988) likelihood ratio test. In this

paper, wewill propose another one as an information criterion like AIC or BIC
rather than a hypothesis test
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LettingL= [L (1), L (2)]withmatrices L (1)ofk x rand L (2)ofk x r

and recalling that It = 0 for £ = r + 1,..., k, it is easily checked that

Ldiag{lx A*)=L(1)L'(1).

Define 7 = Z (2).

Now, consider the form of 7 we can get under several situations. For r3

and r» defined in section 2, putS3 = fa - r3and s~ =fc~- r~.Recalling

A;-1=k»-1+k3>r=r**+r3, 0<r3<k3,

we seethats« + S3 = k - r= s. Also, recall thatunderthe case in which 0 <

r3 < r, eitherr3<fe- 1 andr- <fc»orr3<k3andr«<fc«- 1 mustholdsince

/}««isrw x A;», /J^isra x £3andranfc /}'= r- + r3 = runderthiscase, as

explained already in section 2. It implies that for the case in which rz = fe,

r« < fc«.- 1, therefore s» > 1 and that forthe case in which rz < kz, s%> 1. If

r- <k*>,it is easy to find a fc» x s» matrix y«» such that

Y»«^«»=0, ranfty-~=s~.

Similarly, ifr^ < fe, we can find afe x r3 matrix73,3 such that

yishz=°> rankY3,3=53.

Forthe caseinwhich0 < r« < k-and0 < r3 <k3, definethek x smatrixy

as

L i"? Y3.3J

with y..,3 and y3,3 given above and
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7«,3 =-#3,3(/^fo)-1 J3-.3 7««.

Also, for the case in which 0 < r3 = ks (therefore S3 = 0 and 0 < r- < k-),

defines« = s andtheA; x s«matrixyas

with y**,«and y»3 given above. Furthermore, for the case in which 0 < r»» =

A:- (therefores- = 0 and0 < T3 <fe), defineS3 =sandthek x S3matrixyas

? = [0, Y3,3]',

with Y3,3 given above. Recalling that y given in (4) can be freely defined as

long as it satisfies the conditions defined by (4), y defined above can be

regarded as one particular form of y. Therefore, without being generality

we can suppose hereafter that y appeared in the above lemmas is one

which has the formy. Then, note that

Y=?=|
IJ

Y~i =rv-.
Y3

and

Y~ = [Y-.». 0], Ya = [Y-,3, Ywl-

Let us turn to the construction of a pretest statistic. Extend the definition

ofx-22 introduced with respect to (14) for the case in which 0 < r$ < rto the

case in which r$ = r by putting X22=x, where x is introduced in Lemma 3

(i). Then, with positive integers n\ and 712 such that rii + nz = r, wepartition

/J3, x and Xz>regardless of the value of r3 as follows:

& = [&(l), ft(2)]> (16)

where ft(1) isk3 x «i and ft(2)isk3 * rc2,
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L*(2, l) tf(2,Z)J

wherex(1, 1)isn\ x ti\,x(1,2)isn\ x ri2,x(2,1)is«2 x «ianda;(2,2)

isW2 x W2,and

X22= 1X22(ll X22 (2)], (18)

where #22(1) is r3 x (r^-ni) and £22(2) is r3 x n2. Also, lettingAT= ft(2)

(/j-j(2)ft (2))"1 ft (2) for ni and ri2 chosen such that fa > n%is satisfied, by

the eigenvectors and eigenvalues ofAP3, we find a fa x fa orthogonal matrix

L3and Vj, i = 1,..., fe, suchthat

N3 =Z3 rfiflj (Vi,..., Vk3] La = U(1) Ml), (19)

where L3 = [Z3(1), is(2)] with U(1) ofk3 x n2 andZ3(2) offc3 x n2, where

rJ2 = fa-%. Note that ~vh i = 1,..., A3are chosen suchthatbvi = 1 fori = 1,

...,n2and v*=0fori=n2+ 1,...,fa.

Now, define 73,3 = L3 (2). The pretest statistics proposed are constructed

based on the asymptotic behaviors of Tft and Ty'3,3 ft (1) for several ni.

Those are stated by the following lemma:

Lemma6

(i) Tftar1 -dY35i'S2* ifn = 0,

where y3 is griven with respect to (13) and (14) and x, Bi, B2 and <S>

are defined in Lemmas 2 and 3,

(n) w'1T 7-3,3ft(1)xi -*dS3,B?B2 ®Siif1 <r3 =n2 >Wi,

where mi =mm(r, fa), w = (yasfe) 1, Yw?3,3 with 73,3 defined above

and the matrices S3 ofs3 x s and S« o/r« x r ore defined as

S3 = [0,73,373,3], S« = [/r-, 0].

PuttingFi = 0>'Q2 *,F2 = 73Bi f3, Gi =S-FiS» and G2 =S3B\S3withBi,
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O and £22 given in Lemmas 2 and 3 and S3 and S~ given in Lemma 6, Lemma

6 suggests that the limiting distributions in this lemma can be transformed

into N (0, Ininl') if several statistics which converge to Fi and Gi, i = 1, 2, are

provided and combined with Tp3xl and w'1T y3i3 /$!(1) x\\. For the A; x s

matrix y = L (2) defined in the early part of this section as an estimator of

y,let

?= [?«, ft]',

with y» offe» x s and y3 ofk3 x s. Introducing the statistics defined as

F, =6'fi2*, F2=F2=?3(Y'SnY)J?3,

Gl =S-F,S», G2 = Y3,3 -F2Y3,3,

where 6 = (/TSioSrf)So^1 ^' Sn j8,Q2 = /T5W Si (Soo - S01S\ Sl0) S& Sol p,

S- is given in Lemma 6 and Sy, i,j = 0, 1, and/? are given in section 3, we

have:

Lemma7

(i) {x<g>/*)(Fl ® F1)(a:'® /*,) - Fi1 (g>F21 i/r<fc~.

(ii)(am ® w) (Gi1® G21) (xh ® W)-dGi1 ® G2' «/l <r3=n2>mx- 1,

where x, xn and w are the same as those in Lemma 6.

Now, define

C (l) = THr F\l J3'3 F2l J33, (20)

C(n2+ 1)=T2trG\lPi(1)Y3.3G21 Y3.3^(1), "2=1 mi-1, (21)

under the case in which r> k~, recallingmi = min [r, k3).

The pretest procedure proposed is composed by several hypothesis tests

which are numbered from m,\+ 1 to mi conveniently, with m^ =max[k3 - s,

0J. Forj = m4+ 1,..., mi, the null and alternative hypotheses in thej-th test

are stated as follows:
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Ho:r3=j-1,equivalently,r»=r-j+ 1,ors3=k3-j+1, (22)

Hi:r3>j-1,equivalently,r-<r-j+1,ors3=k3-j+1. (23)

Also, the C (j) defined by (20) and (21) in which n2 is replaced byj + l,j

=m4+ 1,..., mi, are the test statistics numbered correspondingly. Recall m2

=max{0, r-k3) and m3=max[k3 -r, 0} and noting that

r3=k3-s3<k3-s, a.=fc--s»=k-k3-s+s3

=r-r3<r-k3, S3=k3-r3<k3-r,

it is obvious that the theoretical values of r3, r- and S3 are subject to the

restrictions such that

mi<r3<mi, m5>r»>m2, m%>s3>m3,

with m5 = min (ft«, r) and mt = min {s, fcaj. However, through the

procedure, the hypothesized values of r3, rw and S3 are confined to those

such that

Jtii<r3<mi-1, m5>r->m,2+1, mt>S3>m3+1.

Weshould pay attention to that this procedure is not necessarily started

from the 1st test for which the null hypothesis is formulated as r3 = 0. The

values of fe«(or k3) and r (or s) must be considred carefully as some useful

information to shorten the procedure before executing the pretests. Letting

h = r-k»,byr-fc. =fe-s =r3-s»weseetheinformationr3 =h +s»>h

without entering any pretest. As a result, the case in which r > k** (or

equivalently k3 > s) drives us to the start of the procedure by the (h + 1) th

test (such that h > 1) for which the null hypothesis is r3 = h. However, ifr <

k- (or equivalently k3 <,s), we start the 1st test to decide whether r3 is zero

ornot.
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The pretest procedure is carried out as follows. If the null hypothesis in

thej th test is accepted, our procedure is terminated at this stage and then

thedecisionismadeasr3=j-1, rw= r- j+ 1 andS3 =k3-j+ 1,provided

that./ = m.4+ 1,..., mi. For the case of rejection of the null hypothesis in the

j th test, we proceed to the (j + 1) th test based on the decision that n Sj,

r- <r- jands3 <k3 -j, providedthatj = m4+ 1,..., mi - 1.Theprocedure

is continued up to the mith test as long as the null hypothesis is rejected.

The mith test always terminates the procedure. In other words, the

maximumnumber of tests executed must be mi. The rejection in the mith

test leads to the decisionthat r3 = mi, r.. =nii andS3 =m3since r3 < mi, r-

> m,2 and S3 > WI3.

The results in Lemma 6 and Lemma 7 (ii) are used to justify our pretests

under the null hypotheses. For the alternative hypotheses, we need other

results as presented in the following two lemmas.

Lemma8

Let rii and nz be positive intergers such that ni + ri2 = r. For the case in

which 1 <ri2 < T3 (<mi), let

£22 (1) = xv (l) - xzi (Z) {a^ (2)/J3,3 h^22 (2)} 1x'22 (2r)P3,3'p3,3X22 m,

•Efii=^(1) £3,3 fc£22(1)

with X22(1) and #22(2) defined by (18). Notice that %i and #22(1) are (r3 -

n2) x (r3-n2).Also, recalling thatk3-n2 = s3 + (r3-n2), k3 >r3, ni = r-n2

=r«+(r3-n£) and r>r3 {orr-> 0), definethe matrices 5ofk3 x (fe -n£)

and YofQcz - ni) x ni as follows:

' 8 =^3,3*22(1) ifr3=k3,

=[in, fo*22(1)] ifr3 < k3,

fo o1
Lo f.J

ifr3 < mi (= min [r, k3]),
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=[0, fn] ifr3=k3<r,

-[
f ll

ifr3 = r<k3,

=¥ifr3=r=k3.

Then,for 03 (1) defined by (16) and y3,3 defined with respect to (19), we

have

%3p3(l)=w V+ Op(T>),

with

w=(5'8)15' %3],

of(ks-n2) x (A;3-n2), and

w=Op(1), wl=0P(1), rn=0P(1), f,\=OP(1).

Lemma9

Forpositive integers n\ and ni such that n\ + % = »",define the ni x r

matrix S- and (k3 - n£) x s matrixS3 as

S» = [/.i,0],

. 0 Y3,3 Y3,3 l
S a =\ - ifn<k3,

\_ -x'22

=-a&(l)/3-,37H« ifr3 = k3.

Also, let

G\=S**F\S**y G2=S3B\ S3,

where Fi is already defined as Fi = <&'1^2 <&, with <5 and Q2 given in

Lemma2. TTiew, for the same case as in Lemma 7,

Gi1® 62'= (ar'Q, 1) ® w1) (Gi1® G21) {arM(l, 1)® wM} + Op(Tl),



-71 -
where Gi, together with Fit are introduced in the text, x (1, 1) is given in

(17) and w is defined in Lemma 8.

Notethatni-r-= ra-n^ =fa-ni-s%ands- 1 >fa-niforthecasein

which n2 > TO4=max{fa - s, 0). Now, through the above lemmas, we attain

to a theorem for justifying the pretest procedure proposed:

Theorem 1

C if),3 = mt + 1,..., nil, which are defined by (20) and (21), are

asymptotically distributed as chi-square with (fa -j + 1) (r -j + 1)

degreees offreedom under the null hypothesis (21), i. e.

C(J) -dX(fa-i+i)(r-;+i) ifn =j- 1,

and are expressed as C (J) = T2 C (J) with random variaqbles C (J) such

that C (J) = Op (1) and C"1 (j) = OP (1) under the alternative hypothesis

(22),i.e.

T-2C (j) = Op(1), {T-2 C<J)Yl = OP(1) ifn>j.

This theorem states that the pretests to determine the value of r3 are

asymptotically valid as %2 criteria are used. The results for the alternative

hypotheses assert that the pretests are consistent with the advantage that

those divergences are remarkably faster as compared with the rate of T in

the usual consistent tests. It should be also noted that this theorem holds

without imposing such a condition as that in Theorem 3 of Toda and

Phillips (1993).

5 The Granger causality test

Suppose that the value of r3 is known or is correctly infered through the

pretests in the previous section. Conveniently, let us introduce the

following matrices constructed by the notations in section 2:
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Xi=

Arl=

Ay'P(**)... Ay2(**)

•E-Ay'T-i(**) •E•Eå Ay'r-pA (**)J

,X2=

kyp(3) - A2/2(3)

LA2/r,(3) - Ayf.P+,(3)J

A y;+i (l) 1   Ep-1 Cl)

Y,. =

X= [Xi, K./3-], Z= [X2, Y3 (53,s] ifn>0, Z=X2 ifn=0.

Using those matrix notations, (9) is written as

AY^XB+ZA + E!, å  (24)

with B and A defined with respect to (9). For the construction of a statistic

to test the null hypothesis formulated by (10), define X and Z as

1= [Xi,y-W Z=[X2,Ysj53,3] ifn>0, Z=X2 ifn=0,

with P- and fa defined in section 3. Note that both X and Z are available as

some observation. Also, notice that Z isjust Z as r3 = 0. Based on X and Z,

weshall construct the following statistic:

A = (Z'MxZ)lZ' MiAYi, (25)

where Mi = IT-p- X (X' X)1X'. Letting Au = E {e( (1) £i(l)}, we need an

estimator for An. Note that

A n = [hi,0]A
L0

recalling A = E (e( e^}. Inview ofLemma 2 (ii),
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Aii = [7*,, O] (Soo - SOi S-A Sio) [':]

is provided as such an estimator. Now, our test statistic is constructed as

C = T tr Ai\i' (Z'MxZI T)A. (26)

With respect to (24), A may be interpreted as the OLS estimator for A if /3»

and p3,3 are dealt with as /j~ and J33,3 respectively. Also, we can say that C is

the usual Wald statistic to test (10) if J3« and ^3,3 are replaced with /}•E* and

J33.3 respectively. The next theorem states some asymptotic validity of the

test based on C.

Theorem 2

C defined by (26) is asymptotically distributed as chi-square with ki {fa

(p-1) + r3J degrees offreedom when the null hypothesis (10) holds, i. e.

with m =fe (p-1) + rz. Also, if(10) does not hold, there exists a random

variable C such that

C=TC, C=OP(1), C1=Op(1).

This theorem also concludes, like Theorem 1, that the Granger causality

test based on C is aymptotically valid in the sense that the use of chi2

critical values is ensured with the consistency of the test. We note again

that such a condition as that in Theorem 3 of Toda and Phillips (1993) is

not required for the results stated in this theorem.

6 Some remarks and implications

As discussed in sections 4 and 5, our Granger causality test strongly

depends upon the formulation (10) for the null hypothesis of Granger
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noncausality and such statitical inferences as the pretests in section 4 to

make (10) be available. The purpose of this section is to state some

remarks and implications on the methods proposed from the practical

viewpoint, comparing with one proposed in Toda and Phillips (1993) and

featuring different special cases.

The results in Toda and Phillips (1993) are derived based on the

formulation (6) for the null hypothesis. What should be noted is that (6)

may contain some 'nonlinear' relations cci $ = 0. Also, note that (6) may

possess some redundancy according to the rank of ori /J-j. The difficulty /

complexity in their testing method comes from those. This is the reason

why Toda and Phillips (1993) imposed several conditions, such as rank ai

=ki or rank /& = fcj, to avoid such redundancy and derive clear results. Our

method, which uses (10) after executing the pretests in section 4 instead of

the direct use of (6), is proposed to overcome such a limitation. Any

condition, such as in Toda and Phillips (1993), is not imposed in Theorem 2

of ours.

In the pretest procedure in section 4, consider the situation to make the

statistic for the 1st test construct and its asymptotic property hold. As seen

in (20) and Lemma 7 (i), r > fe« is supposed to ensure the inverse matrices

ofFt and F2. However, the supposition never be restrictive since the 1st test

is not needed unless r < k-. The procedure starts from the 2nd test if r = fc~.

The cases in which r = k**+ 1 and r = k*>+ 2 set the starting points to the

3rd test and 4th test respectively. The case in which r = 1 confines the

possible value of r3 to either 0 or 1. Then only the 1st test is required to

attain to a conclusion. Generally, if A; is not so large, the procedure often

becomes simple and requires a few tests to attain to a conclusion since r is

notalsosolarge. Thecase inwhichki =ki = 1,kt = 2andr= 3may

possibly need only the 3rd test after starting from the 2nd test since h = r -

kf =1. Also, we can sometimes find the value of r^ without executing any
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pretest. For example, let us take up the case in which ki = fa = 1, fa = 0 and

r= 2.Asseenalready,thefacth=r-k-=r-ki = 1givesusn>h= 1. On

the other time, recall that fa = 1 > n. Those information drives us to the

conclusion r3 = 1without entering the pretest procedure.

Now, let us turn to the issue of testing for Granger causality. Ifp = 1 and

weattained to the conclusion r$ = 0 after executing the pretests, further

test to decide to decide whether Granger causality from yt (1) to yt (3)

exists or not is not required since Granger noncausality is implies by rz = 0

as p = 1. In other words, the pretest for r% = 0 is interpreted as a test for

Granger causality under this case. On the other hand, if we make the

decision that [yt (**)) is not cointegrated, i. e. r- =0 (or equivalently r$ = r),

the relation cci = 0 must be tested for the null hypothesis of Granger

noncausality.

The condition imposed by Theorem 3 in Toda and Phillips (1993), i. e.

either rank a.\ =ki or rank fe = fa, requires either fci < r or fa =T3since ai is

ki x r and p3-is fa x r^ with the fact rank /}3 = rz. Under the situation such

that either k\ = 1 or fa = 1, it may be easy for this condition to be satisfied.

However, even if it is so, this condition rules out many situations. The case

in which k- = ki = r3 = r = 1 and fa = 2, together with the suppostion of

Granger noncausality, implies that

rank«i =rank Si=0<fci= 1, rank /J3=rank J3= 1 <fa=2,

since n = r implies that &i = 0 is contained in the formulation (10) for

Granger noncausality, as stated already. Then it is obvious that the

condition in Toda and Phillips (1993) is not satisfied. Also, ifk- = ki = 2, fa

=r =1and rz =0, the condition is not satisfied because of

rankch=ranka<r=l<ki=2,p3=fiz=0.

These two cases explicitly illustrates that Toda and Phillips' (1993)
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condition is not practical.

Finally, recalling the matrix polynomial A (X) defined with respect to the

VAR representation as the data-generating process, i.e.

A (X) =Ik-iAjXi,

weembody the special cases in which the conclusion in Toda and Phillips

(1993) is not satisfied under the null hypothesis of Granger noncausality by

showing the following two examples ofA (X).

Example 1:p= 1,k~=fci =r3=r= 1,k3=2and

A(X) =

l-X 0 0

-21 1-0.5X X

L -2X 0.5X 1 J

Then, it is obvious that det^l (A.) = (1 - A,)2 (1 + 0.5A.). Also, since

A ( l ) = 0 0 0- 2 0 .5 1L - 2 0 .5 1

w e c a n le t

fi = [0 , 1 , 1 ] ', P ' = [2 , - 0 .5 , - 1 ],

w h ic h in tu r n m a k e u s d e in e

To l -IT To -2 l"1
5 = ,7'=

L1 O Oj l_l 2 0J

Furthermore, byA (X) = (1 - X) I3 +A (1) X, U (1) = 73. Therefore,

r-3 2ima)T-L0 J.
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Thus, all the requirements in the present paper are satisfied. On the other

hand, a, = 0and /T = [-0.5, -1].

Example2:p = 1,k»=&i=2,fa=r= 1,r3=0and

1 - 0.5*.

A(X) = 0.5A. 1-0.5A. Oa

-

X -2X l-XJ

Therefore, we can let

ft= [1, 1,-2]', £'= [-0.5,-1,0],

[ l -l oT fo o l]6=Ll 2 1J'Y'=L-2 10J-

Itis also easyto seethatdetA (X) = (1 -Xf (1 + 0.5A.) andA (X) = (1 - X)I3

+A (1) X. Thus, we derive all the requirements imposed. On the other hand,

6i = [1, 1]'and J3'=0.

7 Conclusion

In this paper, we have discussed how a valid test for Granger causality in

cointegrated systems can be constructed, and proposed a conclusive

procedure summarizedas follows:

At the first stage, several pretests to make a decision on the rank of a

submatrix of the cointegrating matrix (or the cointegrating rank of a

subsystem) are executed. Next, based on the rank value determined by

those pretests, a test for the null hypothesis of the absense of Granger

causality is constructed. All these tests proposed are asymptotically

distributed x2 under the null hypotheses and consistent as indicated by the

results under the alternative hypotheses.

The basic idea of the testing procedure proposed is formalize the null

hypothesis of Granger noncausality without any redundancy and



A TESTING METHODFOR GRANGER CAUSALITY IN COINTEGRATED
-78- TIMESERIESSYSTEMS

nonlinearity with respect to parametrization of the cointegrating matrix. As

a result, all the asymptotic results hold even if such a oondition as those in

Toda and Phillips (1993) is not imposed. In all the tests proposed, the

cointegrating matrix need to be estimated. We adopt not the ML estimator

provided by Johansen (1988) but its orthogonal transformation. The pretest

procedure proposed may bge seemingly observed as complicated one.

However, it is rather simple practically as seen in section 6 and requires

only a few number of tests as long as the dimension of the subsystem is not

so large. Even no test is required under some cases. For the test for the null

hypothesis of Granger noncausality, we can consider it to be a Wald test,

provided that the replacement of the cointegrating matrix with its estimate

is tolerated.

As mentioned in many literatures (see Phillips and Toda (1993, p. 1369),

e. g.), the existence of constant terms in the VAR's drives us into the

consideration of some deterministic trends. Intentionally, we have avoided

to include a constant term in our VAR based on the reason below:

(i) The concept of cointegration defined by Engle and Granger (1987)

does not cope with such deterministic trends sufficiently; therefore, the

ECM's may have different implication and require another interpretation as

threr exist deterministic trends.

(ii) If we start our method for the cointegrated system from a

multivariate moving average representation with drift based on the Wold

decomposion and such a specification as that in Engle and Yoo (1987), any

constant term does not appear in the VAR derived from it under the

suitable initial condition.

As empahsized already, the validity of our testing procedure for Granger

causality is described as %2 criteria asymptotically and unconditionally.

Both the procedure and its validity may be robust under several extension

of the model such as the inclusion of a constant term. However, apart from
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technical derivations, the implications of those extensions must be

carefully considered.
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App endix

ProofofLemma 2 (ii): DefiningBt = [P , yT m] and by Lemma 1 and other

parts of Lemma 2, we have

Soo-SqiSnSio -Soo-SoiBt(BtSnBt)' Bt Sio

=sO0-s0lp<j'SuPyp'sm + oP (.T-1i

that is,

Soo-SoiS,,Sio =Sm-Soi P{P'SnPyP~'Sw + Op (7"1), (27)
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and

Sol p(fi'SnPyp'S1o -*PI.oo- ZolP0' ZllPylP"Zl<>. (28)

Combining these results, the conclusion follows.

ProofofLemma 4: (i) It is obvious from Lemma3 (ii) thatXu = Op (1), i =

1, 2. Since y = Op (IT1) by Lemma 3 (iii), (13) and (14) are collected into

P'3 k = fan, X22]'Pis Ps,3 [X21, xv\ + Op (71 1). (29)

Recalling that

J53 jk = diag [Kh...,h]

and

x'21 Pis $3,3X22 = Op (T ll (30)

in view of (29). Since Lemma3 (ii) ensures that

rank P3,3 [x2i, ar22] = rank fox =rank p3 = r3

with probability one, the definition li < X2 < - < Xr,together with (29) and

(30), yields

(xk P3,3P3,3 X22)-1 = Op (1), (31)

which in turn implies xi\ = Op (1). In view of (30), the assertion #21 =Op(T'r)

follows immediately from this result. Also, x\\ = Op (1) is derived by Lemma

3 (ii). Thus, we complete the proof for (i).

(ii) Inserting the relations (13) and (14) into p'3,3 J3s,~ = 0 and using that

2/.» = OP(r') anda;2i = O))(r1),

xkP'3,3Ps,3 Xn +xk Pis73 y.~ + Op(r2) = 0, (32)

which gives
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X21 = - (^3,3^3,3)-' /?3,3Y3 V-~ + °P (T*)> ^

noting that x'iz = Op(1) by (i). Inserting (33) into (13), we have the desired

result for (ii).

Proof of Lemma 6: (i) The desired result follows immediately from

Lemma3 (iii) and (12) as J33 = 0.

(ii) The supposition

ft(l) = ft,.., ft(2) = ft,3 (34)

and the definition of 73,3 gives

73,3 M3 = 73,3, (35)

?3,3 = #3,3V + Y3,3W, (36)

where v = (fi'fi) 1 #3,3?3,3 and recall w = (ymYs.s)"1YwYw- Since y.3 = Op (T l)

by Lemma 3 (iii), from (14), (34), (36) and the definition ofY3,3, we have

73,3ft(2) (ft(2)^ (2)) 1 = %3 £3,3 GS3.3 fay x-i + OP (71 1)

=vx'& + OP(T-i),

which implies that v = Op (71 1) since x'h. = Op (1) by Lemma 4 (i) and 73,3 ft

(2) = 0 by the definition. Also, it follows that w = Op (1) and ur1 = Op (1)

since 73,3 73,3 = /S3. Therefore, by Lemma 4 (ii), (34) and (35),

w' 1T 73,3ft(1) = 73,373Tyx-1xSU + Op (T1). (37)

Recalling that 73 = [7-3, 73^] with 7»,3 defined in (16),

73,3 73 = 5). (38)

Noting that

xS'~x\\ =S~ + Op(Tl)
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by Lemma 4 (i), (37) and (28), together with Lemma 3 (iii), lead to the

conclusion.

Proof of Lemma7: (i) Letting

W(X)=0'pyp'y, W(2)=(y'y)Y?

by the same argument as used for 73,3 in the proof of Lemma6,

Y=y R'(2) + OP (r1),

therefore,

Ya = 73 ^(2) + 0, (7-),

and

W(2)= OP(1), W«(2) =0,(l).

Using the results in Lemma 2, together with the results for /} and the above

results, we have

x'Fx-l -+r,Fh F2 -*dF2. (39)

Since fe < s by supposition, the existences of F£and F21 are ensured. Hence,

(39) completes the proof of (i). Notice that (39) hilds even ifr > fc*.

(ii) Since xS» x[\ = Si> + Op (T1) as noted in the proofofLemma 6,

ziiGix'u =x'uS~x'x"1Fi X'1x5«'x'A

^S^x-'FiX'SU + Op iT1),

that is,

x'uGixn =S-x'1 Fix-1S- + Op (T1). (40)

On the other hand, the structure ofygives



G2 = 73,3 F2 Y3,3.

Also, by the result for 73,3 in the proof of Lemma 6 (ii),

G2 = w'Y3,3 F2y3,3w + Op (T 1). (42)

(39), together with (40), (41) and (42), leads to

x'n Gx'n -pGh w"1G2wl-dG2. (43)

The desired result for (ii) follows immediately from (43).

ProofofLemma 8: Define the fe * n\ matrixR as

iJ = [0, ^,3^22 (1)] ifn < r,

=/?3,30:22 (1) ifn = r.

By supposition, (12) is expressed as

p3(1) =R + OP (T1), p3 (2) =&,3^22(2) + Op (r1), (44)

since y = Op(T"1) by Lemma 3 (iii). Also, letting

V = {X22 (2)^3,3 /?3,3 X22 (2))1 X^2(2) ^3,3%3

and noting

^ (2)^3,3 ^3,3*22 (l) = 0

in view of (44), the same argument as used in the proof of Lemma6 yields

Y3.3 = 8W + ^3,3 *22(2) V, (45)

withw = Op(1),vrl = Op(1) andv = Op (T1). Since it is easy to check that

fn =X22(1)Ph0w^22(1)= Op(1), 5-R=%

the first relation in (44), together with (45), the desired result for the
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lemma.

ProofofLemma 9: First, note thatx (1, 1) = Op (1) andxx (1, 1) = Op (1)

by either Lemma 3 (ii) or Lemma 4 (i). It is also obvious that

XSU xl(1,1)=S~ +Op(T1).

Recalling that

y«3=-b(1) [b'(1)b(1)}' x's(1)P-3Y~-

-b (2) (&'(2) 6 (2)I1 xh (2) ^-,3y-,-,

where 6 (1) = /?3,3 *22 (1), b (2) =/?w^22 (1), and5' (1) b (2) = 0, for5defined

in Lemma 8 and 73 in either (16) or (17), we have

5'y3=S3.

Noting these results and using the same argument as used in the proof of

Lemma7 (ii) and (45) instead of (36), this lemma can be easily shown.

ProofofTheorem 1: Forthe case in which 1 < r3 = riz < mi - 1, let

lm = (GI1/2 (8) G?2) vec w' 1 T 73.3ft (1) xi\.

Then we have

C(n2 + 1) = {vec T%,3 p3 (1))' (G;1 &&) {vec T 73,3 ft(1))

=5;2(GlG ® G^) (aru ® w) (G;1 ®Gi') (arii ® «O

(Gla ® G,ia) 6I1I.

Letting

6 = (Giia (g) Gi1/2) weS3Si152 O S-

and applying Lemma 5 to br3, we see that b is ditributed as AT (0, /S3r-)- Also,

Lemma6 (ii) and Lemma 7 (ii) assert
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bm~*db,

(GP ® Gf)(xn ® wXGi1 ®G2!)(rii <8> WOCGP ® Gf)-», Jfcrta>

which implies

C(ra2+ 1) -*d b' b.

It is obvious that the distribution of b' b is %?, r~ On the other hand, for the

caseinwhich 1 <n2 < r$<mi, define

C(n2 + 1) = [vec?3,s ft(l)l'(Gi1 ®^') {vec f3,3 ft(1)}.

ThenC (n2 + 1) = Op (1)and Cl (n2+ 1) = OP (1) areensuredbyLemmas8

and 9. Thus, we derive the desired result for eitherj > 2 as ks < s orj > fe -

s+2asfe>s.

The remaining case, i. e. the result forj = 1 as fcj < s, is also established in

a similar manner, using Lemma 6 (i) under the null hypothesis and the

result rank ft > 1 with probability one, which is obvious by Lemma 2 and

(12), as well as Lemma7 (i) under the alternative hypothesis.

Proof of Theorem 2: First, define the Qc~p - k*.+ r) x (A;-p - fc. + r)

matrixA and (fc#> - fa + rf) x (kzp - k^ + r3) matrixDz as

D ,=\

L 0 x
r /wi j>-n

J h=\ \ifn>0,
L U #22_>

Then, in view of Lemma 1, Lemma 3 or 4, together with (14), yields

Z'X/T =D1Z'XD1/T+ OP(Tll

Z'ZIT =D'iZ'ZDilT+Op{Tl),
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      Z'XIT =D~2Z'XDiIT+Op(T1),
      X'XIT =D'lX'XDiIT+OP{Tl\
      Z'XIT =D'2Z'XDy/T+ Op(r1),
    Z' AYJT =D'ZZ'AFi/T+OpCr1),
    Z'AFi/T =D[X'AF,/T+Op(T1),

with

    Di=Op(1), Dsl=Op(1), i=1,2,

which in turn leads to

   I =Di (Z'MxZIT)"1 (Z'Mx AYyIT) + Op (711),     (46)

where Af^ = IT.P - X (X'X) 1 X'. Substituting the right-hand side of (24) for

A Ki in (47),

    vec Iá" (A -DiA) = (It,®Di} (Z'MatZ/ 71)1)

   wee Z'JJ^ Ei / T1* + Op (TM).             (47)

On the other hand, because of Lemma 2 (i), (iii) and (iv), we can find a

(k**p - k~ + r) x (k**p -k- + r) positive definite matrix hzsuch that

    Z'MxZ/ T ->p Az.                 (48)

Also, by Lemma 2 (ii),

    An -P Aa.                     (49)

Combining (46) with (49), we obtain

    Km {Z'MxZI TY D'i\Z'MxZI T^

   DUZ'MxZ/ Ty Aia ^P Ik.I,.k.+r.          (50)

Noting



-87-
C = (vec TMAy [At <g> (Z'Mxz)}(vec T1/2A)

and using (47), under the null hypothesis (10), we have

C= n'(Alf A-hAl? ® ±z) r) + Op (Tá"\ (51)

where

T| = (Alf ®Aif) weZ' Ma-Ei/7á",

£z= Af(Z' MatZ/T)1 D'i1(Z'MxZIT)Dl(Z' MxZI T)1 Af.

Since both Z and X are constructed by stationary series which possess

some valid Wold representations using Ut, by the assumptions on £,,, (48)

and (49), the Iiapounov's central limit theorem (see Loeve (1977, p. 287), e.

g.) is applicable to r\, that is,

T| -dN(0, h, (k-p-k-+r)). (52)

Note that Lemma 1 of Toda and Phillips (1993) can also derive (52). Thus,

through the equations from (49) to (52), we establish that the asymptotic

distribution ofCis xl under (10), where n =fci(k**p - k~+ f).

Note that the results from (46) to (50) still hold under the alternative

hypothesis. Define

C =(vecD2Ay {kh 0 D2 1 (Z'MxZ/ T) Di] (yecD2A).

If(10) does not hold,

D2A =A+ OP(71"2), A * 0 (53)

must be satisfied by (47). (53) immediately gives the desired result for the

alternative hyp othesis.




