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1. Introduction

In spite of some recent development of the asymptotic theory for

nonstationary time series, stationarity property is still one of useful re-

quirements for the statistical analysis of time series. On the other

hand, invertibility property, which guarantees the derivation of an

autoregressive representation with infinite or finite order, is also conve-

nient for modeling and forecasting in time series. It is widely ac-

cepted that many time series are not stationary but can be transformed

into stationary series by differencing. As for a univariate time series,

the differenced series is also invertible if an appropriate degree of dif-

ferencing is applied to the original series. However, when the data

transformation by differencing is used for a multiple time series, inver-

tibility of the transformed series is not necessarily assured even if the

original series is not overdifferenced.

The concept of cointegration, which has been studied by Engle and

Granger (1987), Engle and Yoo (1987), Stock and Watson (1988) and

others, defines multiple time series such that: (i) each component is
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nonstationary; but (ii) there exists at least one linear combination of the

components that is stationary. At the same time, it formulates that

the differenced series are not invertible when they are considered as

multiple systems. In conintegrated multiple time series, it is impossi-

ble to derive a vector autoregressive (VAR) representation validly by

differencing. As shown by Engle and Granger (1987), one of useful

representations we should derive is not a VAR but an error correction

model (ECM), in which all variables are stationary. However, the

ECM is considerably inconvenient for spectral analysis and

multi-period forecasting. We may face some situations which need to

derive a stationary VAR representation by applying other transforma-

tions than differencing to the original series.

The purpose of this paper is to examine what transformation should

be applied to the original data of cointegrated multiple time series in

order to achieve stationarity and invertibility. For this, we first extend

the concept of differencing. Based on the extended concept, we pro-

vide a class of transformations and show that any transformation of

this class yields a stationary VAR representations. Next, we consider

how such transformations are estimated in practice. It is explained

that some transformations can be easily constructed from the estimates

of the cointegrating vectors. As another useful method, the estimation

of the first order serial correlation matrix of the original series is con-

sidered. It is shown that its estimator converges in probability to a

matrix which forms one of such transformations. It is also emphasized

that for large samples the transformation based on this estimator leads

to a stationary VAR representation whether the multiple time series is

cointegrated or not.

In Section 2, using Engle and Granger's (1987) difinitions and nota-

tions, the concept of cointegration and its related time seires represen-
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tations are presented. The class of transformations to achieve sta-

tionarity and invertibility is formaulated in Section 3. Some of such

transformations are concretely presented. Section 4 deals with the

methods to estimate these transformations. In Section 5, the results

established in this paper are summarized. Proofs of the theorems and

lemma presented in Section 3 and 4 are given in the Appendix.

2. Characterization of Cointegrated Multiple

Time Series

Let yt denote an Nx1 multiple time series that is cointegrated with

cointegrating rank r (provided 0<r<N). For the sake of simplicity,

suppose that each component of yt is stationary after differencing

once. Then, following Engle and Granger's (1987) definitions and nota-

tions, yt is expressed as

(2.1) a-B)yt=C{B)eh

where B is the backward shift operator.CU) =Ey=0C/A' with C(0) =IN

(the NxN identity matrix) and the unobservable time series et are i. i.

d. with mean zero and positive definite covariance matrix Q.. Further,

in (2.1), all zeroes of det[CU)] lie on or outside the unit circle, I.j=i\Q

<oo and rank C{l)-k, where k=N-r. That the rank of C(l) is k

implies that the differenced series yt~yt-\ is not invertible.

In order to facilitate the derivation of another representation of yt, it

is assumed throughout the paper that ys-es=0 for s<0, which can be

interpreted as the conventional initial condition. Also, assume that the

components of et have finite fourth moments:

E\sifijfihfist\ ^M<co, i, j, h, s=l,..., N.
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where en is the i-th component of st. This assumption is required to

establish the consistency properties of estimates presented in Section

4. Then, (2.1) is also written as

(2.2) y,=Ca) iie,+C*(B)eh

where C* (A) = ( -1) r,--0E*="+iC*A'.

Engle and Granger (1987) proved that the following representation is

derived from (2.1)

(2.3) A (B)yt=d(B) et,

where A(X) and d(k) are defined as

Adj[C(A)]= (l-A)'-1Aa)

det[CU)]=(l-A)^(A).

Then, it is shown that there exist Nxr matrices, A, T of rank r such

that A'C(1)=O, C(l)r=0 and A(l)=TA'. The row vectors of A'

are exactly r linearly independent cointegrating vectors. In this paper,

we assume that rf(A)^0 for |A|<1, which implies that zeroes of

det[C(A)] lying on the unit circle are restricted to one. This seems to

be natural assumption in the framework of cointegrated multiple time

series.

Defining A*(A) as an NxN matrix satisfying AU)=A*U) (1-A)

+.A (1)A, (2.3) is straightforwardly rewritten as an ECM:
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(2.4) A* (B) a-B)yt+TA'yt-1=d(B)8i

It should be noted that yt-yt-\, A'yt-\ and et are stationary series.

(2.4) is different from VAR representations because of the existence of

the term TA'yt-\.

3. Transformations for Achieving Stationarity

and Invertibility

Let R denote an NxN matrix such that R^O. For yt generated by

(2.1), the transformation expressed as yt-Ryt-i may be interpreted as

an extension of the concept of differencing. In this paper, we restrict

our analysis to such transformations.ll The following theorem for-

mulates a class of transformations which leads to a stationary and in-

vertible series from yt.

THEOREM 1: Suppose that for yt generated by (2.1), the assumptions

given in Section 2 are satisfied. Then, a necessary and sufficient condi-

tion for yt-Ryt-i to be stationary and invertible is that R satisfy the

following conditions (i) and (ii):

( i) There exists an Nxr matrix F such that R=In-FA'.

(ii) R is expressed as the sum ofNxN matrices R\ and i?2 such that

R1=P(A)D, &et(IN-R2X) *0 for |A| <1 and R2Ri=0, where P(A)=IN

-A{A'A)-XA' and D is an NxN matrix.

Proofs of the theorems and lemma in this paper are given in the Ap-

pendix.

We shall call the class of R which satisfy the conditions (i) and (ii) of

the above theorem T hereafter. Also, note that the condition (ii) im-
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plies that (IN-RA) - UN-R2k) (IN-RiX).

This theorem is not so practical. Now, we shall formulate R of T

more concretely and derive some time series representations for the

transformed series yt-Ryt-i. First, as some candidates of R, consider

a class of matrices which are expressed as

(3.1) G1=P(A) +P(A)DQ(A) ,

where P(A) is given in the above theorem, Q{A)=A{A'A)"1A' and

D is an NxN matrix. Letting Ri=Gi and R2=0, it can be easily

checked that Theorem l's (i) and (ii) are satisfied. Let %t=yt-G\yt-\

and Hi^In-Gl Noting that (l-k)IN= (IN-Hik) JN-Gik) and 4(1)

yt-A(l)xt, it follows from (2.4) that the stationary series Xt possesses

(3.2) [A* (B) (In-HxB) +A a)E]xt=d(B)et.

since all zeroes of d{X) are assumed to lie outside the unit circle, (3.2)

leads to a VAR representation for xt. Similarly, noting that Q(A)C(1)

=0 and IN-GiA= (1-k)In-Un+P(A)D1Q(A), from (2.2), we derive

the multivariate Wold representation for %{.

(3.3) xt=W(l) + UN-GiB)C*{B)^£t

Next, we construct R such that i?2^0. Suppose that there exists an

NxN matrix G2 satisfying

(3.4) G2=LA', det(IN-G2k) *0 for |A| <1,

where L is an Nxr matrix.21 For G\ and G2 given in (3.1) and (3.4)
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respectively, let G=G\+G2 and zt=yt-Gyt-i- It is obvious that G is

included in T. Then, noting that zt=x,-G&t-i, (3.2) leads to a VAR

representation for zt:

(3.5) [_A* (B) (In-HxB) +A (1)5] (/jv-GzB) -ht=d(B)et

Similarly, from (3.3)

(3.6) zt= aN-G2BKCa) + (IN-G1B) C* (Bnet

(3.6) is the multivariate Wold representation for zt. We note that

A*{Q)=A(Q)=IN in (3.2) and (3.5) and that C(1)+C*(0)=IN in (3.3)

and (3.6).

4. Some Estimation Methods

Let us consider how R of T formulated in the former section can be

estimated in practice. (3.1) and (3.4) suggest that Gi and G may be

estimated based on the estimates of A. For example, letting D=0 in

(3.1), Gi(-P(A)) is calculated from A only. However, the rows of A'

are the conintegrating vectors, and it is impossible to determine them

uniquely unless some normalizations are imposed.

Engle and Granger (1987) and Stock (1987) discussed some normaliza-

tions and estimation methods for A. The approach proposed in this

paper is different from them. Before starting the estimation, we shall

choose one of A. For this, put C(l)' ={c.\ c.n), where c.) is the

/-th row vector of C(l), which is given in (2.1) or (2.2). Since rank

C(l)=k, there must exist c,-i( s=l,..., k and an rXk matrix M such

that rank [c.,-,,..., c.^-kand [c.;-,..., c.;V]' =M[_c.h c4]', where {ih

..., 4, h, -jr) is a permutation of {1, 2,..., N). Put
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S1=(eh ej)', S2=(eh,..., eit)> and S=[S1 i S'2y,

where e) is the ;-th row vector of In- Also, for yt generated by (2.1),

define

yu-Siyt (i=l,2) , i//t=yit-My2t and <pt=y2t-y2t- -y2t-i?]

Obviously, y/t is stationary, and the row vectors of \_Ir i -M] are the

cointegrating vectors. On the other hand, y2t is not cointegrated and q>t

is a ^-dimensional stationary and invertible series. Now, one of A' is

given as \_Ir i -M]S.

Consider

(4.1) P(M)=S'W\iCiIk-CM]S, with an kXr matrix C.

Noting that SS' =IN, it is easily checked that P(M)P(M) =P(M) and

Ur \ -M]SP(M)=Q. Therefore, PiM) can be considered as P(A).

Since P(A) is Gi as D=IN or 0, it is obvious that P(M) satisfies the

conditions of Theorem 1.

If we let C=0 in (4.1), we derive

(4.2) yt-P(M)yt-i=S> (v<-(pM«><),

where gives an implication of the series transformed by R of T.4]

M can be consistently estimated by regressing yu on y2t, provided

that S is known. It is already shown by the results established in

Engle and Granger (1987) or Stock (1987).5' Given C arbitrarily, PiM)

can be estimated using such estimates of M.

The testing method for cointegrated systems Stock and Watson

(1988) proposed is constructed based on the estimates of the first order

serial correlation matrix of yt. As another useful method to estimate R
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of T, we also focus our attention on it. On the basis of a sampley\,...,

yT for yt generated in (2.1), it is usually given as

(4.3) J?=(l^i-i)(l^^-i -1

which may be considered as the ordinary least squares (OLS) estimator

derived by regressing yt on yt-\. Now, we are interested in whether

the probability limit of R satisfies the conditions of Theorem 1 or not.

Before investigating the asymptotic perfrmance of R, consider the

following matrix R:

(4.4) R=Ri+R2, with i?i and R2 such that

R î^-^-^Uri -ms,
where R1W=EtwtW't'i, R\{l)=Eiyt+w't~] and R2a)=EL<pt+1y/'J.

Since Ri is P{M) as C=R2(l)Ri(0)-1, Ri must satisfy the condition (ii)

of Theorem 1. Also, it follows immediately that R2Ri=0. In the

following lemma, it is shown that R2 can be considered as G2 given in

(3.4).

LEMMA: For R2 given in (4.4), det(7iv-i?2/0 ^0 for \X\ <1.

From the above results, we can see that R is included in T. As for

such R and R, we establish the following theorem.

THEOREM 2: Suppose that for yt generated by (2.1), the assumptions

given in Section 2 are satisfied. Also, suppose that R and R are given in

(4.3) and (4.4) respectively. Then, R-R=OP(T-1'2).
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In the above theorem, that R converges in probability to R at the

rate T1/2 is established. It implies that for the cointegrated multiple

time series yt, the transformation based on R yields a stationary VAR

representation in large samples. When yt is not cointegrated (rank

C(l) =k), yt may be considered as y%t- Then, from the results establish-

ed in Phillips and Durlauf (1986) and others, it is shown that R con-

verges in probability to In- This implies that yt-Ryt-i tends to a sta-

tionary and invertible series as T->°owhether yt is cointegrated or not.

5. Summary

The transformation of nonstationary time series into a stationary and

invertible series is still useful in many aspects. As such a transforma-

tion, differencing is usually used. However, in cointegrated multiple

time seris, any stationary and invertible series never be brought by dif-

ferencing. In this paper, a class of transformations which lead to a sta-

tionary VAR representation is formulated. These transformations are

motivated by an extension of differencing.

Some of the transformations can be constructed based on the

cointegrating vectors. It suggests a method to estimate the matrix

which forms such a transformation. It is pointed out that this method

is dependent on the identifiability and estimation methods of the

cointegrating vectors. One of the methods to estimate the

cointegrating vectors is outlined in this paper.

As another method recommeded, the estimation of the first order

serial correlation matrix of the original series is proposed. The

estimator R is usually derived by fitting a first-order VAR and applying

the OLS for the original data. For cointegrated series, it is shown that

R converges in probability to a matrix to transform the original series
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into a stationary and invertible series at the rate T1/2. It is already

established in other papers that R converges in probability to IN at the

rate T when this time series is not cointegrated. These results implies

that the transformation based on R leads to a stationary VAR represen-

tation in large samples regardless of the existence of cointegration. In

this respect, the transformation basedon R is strongly jutified.

Appendix

PROOF OF THEOREM 1: To prove that (i) is necessary and suffi-

cient for the stationarity of yrRyt-i, consider

(A.I) (IN-RB)y,= (l -B)yt+B(IN-R)yt

Noting that the first term in the right side of (A.I) is stationary, it is

obvious that yt-Ryt-i is stationary if and only if (i) holds.

On the other hand, in view of (2.3), yt-Ryt-i is invertible if and only

if the power series expansion of A(A) (In-RX)~l is absolutely sum-

mable for |A| <1. Noting that AW=A*W{l-X)+XTA'=A*U)(IN

-RX)+X{TA' -A*(X) (IN-R)}, from (i)

(A.2) AW (IN-RX)~l=A*W +X(TA' -A*(k)FA' ) UN-RX)-1

Since A*(A) is absolutely summable for |A | <1, the invertibility of yt-

Ryt-i is equivalent to the absolute summability of the power series ex-

pansions of TA' {IN-RX)~l and FA' Un-RX)-1 on |A| <1. Noting

that rank T=r, their absolute summability is achieved if and only if

(A.3) £i\A'R'\ «o

Now, we shall prove that (ii) is necessary and sufficient for (A.3).
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Since the sufficiency can be directly checked, it is sufficient to show

the necessity. For this, suppose that (ii) does not hold. Then, defin-

ing R2=R-Ri for any NxN matrix Ri such that Ri-P(A)D, we have

(A.4) AR2*0, R2*0

Also, for at least one X such that |A|<1,

either (a) det(/Af-i?2A)=O
(A.5)

or (b) R2Ri*Q

must hold. Since A' UN-RiX)~l=A' (IN-RM=A', we derive

(A.6) A' (In-RD -^A' { (In-RX) UW-tfiA) -1}-1

=A' {IN-R2{IN-RiX) 'lX} -1

£2 _,-.,V'./
=A>[In+ZR}2[In+£RWJV]å 

It is obvious that A' E.S R\ does not converge when (a) holds. On the

other hand, under (b), it can be also shown that R\{IN-\-'LiZ\R\)n does

not converge to zero matrix as n^<x>. In view of (A.6), these results

imply that (A.3) does not hold. Q. E. D.

PROOF OF LEMMA: First, note that &et(IN-R2k) =det(IN-SR2

S'A) =det{7r-i?i(l)i?i(0)-1A}. If det{/r-l?i(l).Ri(0)-1A}=0 for one

A such that |A| <1, there must exist fi^0eRr satisfying

(A.7) B' {R1(0) -Ri(l)X}=01 ,
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which implies that p(l)X=l, where p(l)=P'R^DP/fi1Ri(O)0. This

contradicts the stationarity of /?' y/t. Q. E. D.

PROOF OF THEOREM 2: Put

Yi=iya,..., yi,T-i)', Y'V=(y& -, yirY, 1=1, 2,

«F=(^i,..., v/n)', ^(+)=(v/2 Wt)' and $-(^2 <Pr)'-

Using these notations, R can be expressed as

(A.8) R=S' i^Syty'^S')(i,$yi-tW-iS')"'s

-̂r.^t'.'^M:.1.

t=2

M-Y'V' P2YiQ~1M

L Y{V'P2YiQ-1
M-Y[V'P2YiQ
W-Y^V'PzYiQ

where P2=-IT-i- Y2{Y2 Y2)^Y2, Q= Y'1P2Y1, lk= YiX)l Y2(Y'2Y2)~\

and W=Y(V' Y2(Y'2Y2)-K

By the standard asymptotic theory for stationary series satisfying the

appropriate assumptions (see, for example, Hannan (1970, p. 228), it is

shown that

(A.9) Wi¥/T-Ri(0) =Op(T~l>2), ^(+)"P/r-i?i(l) ^OpiT^2),

and <S>"¥,T-R2(l) =Op(T-1'2).

On the other hand, the asymptotic results for the nonstationary multi-

ple time series y2t, which is not cointegrated, are established in Phillips

and Durlauf (1986), Stock (1987), and Stock and Watson (1988):

(A.10) Y^Y^OpiT2), ¥<+>' Y2=OP(T), ¥' Y2=OP(T),
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*' Yz=OP(T).

Therefore, noting that Y(V=Y(\]M +¥(+\ Yl=Y2M' +"V, and F'f

-Y2+O, which follow directly from the definitions of y/t, <pt, and M,

from (A.9) and (A.10) , we have

(A.ll) Y{iuftnT-ltfi(l)+MR2a)}=Op(T-v2),

rVP2Yl/T-R2a) =Op(T-^), Q,T-Ri(0) =Op(T-V2),

M-M=OP{T-1), and W-Ik=Op{T^).

Thus the desired result is established. Q. E. D.
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                   Notes

1 ) The covariance matrix of the error process is invariant under such a

  transformation. In other words, the series derived by such a transforma-
  tion has the same covariance matrix of the error process as that of the
  original series, i. e., Gl.
2) We can give some examples of G2. For example, let L=XA(A'A)'1 for a
  real number I such that O<A<1. Then, that det(IN-LA'X)=(l-lX)r

  can be easily checked.
3) Note that S=IN and yt=(y{t, y'iti' when {iu..., «4}={1,..., k}. From a
  practical viewpoint, our analysis may be restricted to such a case.
4 ) In connection with this transformation, Campbell and Shiller (1988) showed
  that (i//t, <p't )' possesses a stationary VAR representation. It can be
  related with this transformation as

=#(%"*). with H=[%- -M-
"ik

However, the transformed series (y/'t, <p',)' is not derived by any R of T,
and the covarinace matrix of the error process is not Cl but HQH'.

This result is also used in Theorem 2 below.




