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Abstract. In this paper, a computational algorithm for solving sign-indefinite general multiparameter algebraic Riccati equation

(SIGMARE) that arises in the H∞ filtering problem is investigated. After establishing the asymptotic structure of the solution

of the SIGMARE, in order to solve the SIGMARE, Newton’s method and two fixed point algorithms are combined. As a result,

the new iterative algorithm achieves the quadratic convergence property and succeeds in reducing the computing workspace

dramatically. As another important feature, the convergence criteria for small parameters εi is derived for the first time.

Moreover, it is shown that the uniqueness and positive semidefiniteness of the convergence solutions are guaranteed in the

neighborhood of the initial conditions.
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1 Introduction

Filtering problems for the multiparameter singularly perturbed system (MSPS) have been investigated ex-
tensively (see e.g., [3, 11, 12] and reference therein). The multimodeling problems arise in the large scale
dynamic systems. For example, the multimodel situation in practice is illustrated by the passenger car model
[3]. In order to obtain the optimal solution to the multimodeling problems, the multiparameter algebraic
Riccati equation (MARE) needs to be solved. Various reliable approaches to the theory of the algebraic
Riccati equation (ARE) have been well documented in many literatures (see e.g., [4, 5]). One of the ap-
proaches is the invariant subspace approach that is based on the Hamiltonian matrix [4]. However, there is
no guarantee of symmetry for the computed solution if the ARE is ill-conditioned [4]. It should be noted
that it is very difficult to solve the MARE due to high dimension and numerical stiffness [3]. Furthermore,
if the ARE has the sign-indefinite quadratic term, it is hard to choose the initial condition of the Klinman
algorithm [5].

A popular approach to deal with the MSPS is the two-time-scale design method (see e.g., [1, 2]). However,
when the parameters εi are not small enough, it is known from [3] that an O(||µ||) (where ||µ|| denotes the norm
of the vector µ := [ε1 · · · εN ]) accuracy is very often not sufficient. More recently, in [11, 12], the recursive
algorithms for solving the MARE have been developed. However, there exists the drawback that the recursive
algorithm converges only to the approximation solution [12] since the convergence of the recursive algorithm
depend on the zero-order solutions. Later, although the application of Newton’s method for solving the
general multiparameter algebraic Riccati equation (GMARE) has been tackled [14], the considered GMARE
needs to have sign-definite quadratic form. Thus, the proposed algorithm is restricted for the practical use.
On the other hand, the exact slow-fast decomposition method for solving the MARE has been proposed
in [3]. However, these results are restricted to the MSPS such that the Hamiltonian matrices for the fast
subsystems have no eigenvalues in common (see e.g., Assumption 5, [3]). Moreover, the particular MSPS
that has two fast subsystems has only been discussed. It is very important to extend to the general MSPS
that has N fast subsystems for use of the practical systems.

In this paper, a computational algorithm for solving the sign-indefinite general multiparameter algebraic
Riccati equation (SIGMARE) related to the H∞ filtering problem is developed. It may be noted that the
general multiparameter singularly perturbed systems (GMSPS) are considered, as compared to the existing
results [3, 11, 12, 13]. Although the Pareto optimal strategy for the GMSPS has been investigated in [14], it
should be noted that the ARE has the sign-definite quadratic form. Moreover, it should also be noted that
there are no results for the convergence criteria for the small parameter εi related to the Newton’s method
in all existing results.
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After showing the uniqueness and boundedness of the solution to such SIGMARE, the asymptotic struc-
ture is established. The main contribution of this paper is to propose a new algorithm that combines
the Newton’s method with two fixed point algorithms. As a result, the new iterative algorithm achieves the
quadratic convergence property and succeeds in reducing the computing workspace dramatically. As another
important feature, the convergence criteria for small parameters εi is derived for the first time. Furthermore,
it is not assumed here that the Hamiltonian matrices Tii, i = 1, ... , N for the fast subsystems have no
eigenvalues in common. Thus, our new results are applicable to more realistic GMSPS. Finally, in order to
demonstrate the efficiency and the validity of the algorithm, two computational examples are included.
Notation: The notations used in this paper are fairly standard. The superscript T denotes matrix transpose.
detL denotes the determinant of the square matrix L. Ip denotes the p × p identity matrix. block diag
denotes the block diagonal matrix. vecM denotes the column vector of the matrix M [9]. ⊗ denotes
Kronecker product. Upq denotes a permutation matrix in Kronecker matrix sense [9] such that UpqvecM =
vecMT , M ∈ Rp×q.

2 H∞ Filtering Problem

Let us consider the linear time-invariant GMSPS

ẋ0(t) = A00x0(t) +
N∑

k=1

A0kxk(t) +
N∑

k=1

D0kwk(t), (1a)

εiẋi(t) = Ai0x0(t) + Aiixi(t) + Diiwi(t), i = 1, ... , N, (1b)

with

yi(t) = Ci0x0(t) + Ciixi(t) + vi(t), i = 1, ... , N, (2)

where xi(t) ∈ Rni , i = 0, 1, ... N are state vectors, yi(t) ∈ Rpi , i = 1, ... , N are system measurements,
wi(t) ∈ Rqi , i = 1, ... , N and vi(t) ∈ Rri , i = 1, ... , N are system and measurement disturbances,
respectively. All the matrices are constant matrices of appropriate dimensions. It may be noted that the
system (1b) is called the fast subsystems with small perturbation parameters εi.

εi, εj , i, j = 1, ... , N are the small positive singular perturbation parameters with the same order of
magnitude [1, 2] such that

0 < kij ≤ αij ≡ εj

εi
≤ k̄ij < ∞. (3)

That is, it is assumed that the ratio of εi and εj is bounded by some positive constants.
In this paper, an H∞ filter to estimate system states xi(t) is designed. The states to be estimated are

given by a linear combination

zi(t) = Gi0x0(t) + Giixi(t), i = 1, ... , N, (4)

where zi(t) ∈ Rsi , i = 1, ... , N .
The estimation problem is to obtain an estimate ẑi(t) of zi(t) using the measurements yi(t) [6]. The

measure of the infinite horizon estimation problem is defined as a disturbance attenuation function

J =
∫ ∞

0

||z(t) − ẑ(t)||2Rdt ·

{∫ ∞

0

(||w(t)||2W−1 + ||v(t)||2)dt

}−1

, (5)

where z(t) =
[

zT
1 (t) · · · zT

N (t)
]T , ẑ(t) =

[
ẑT
1 (t) · · · ẑT

N (t)
]T , w(t) =

[
wT

1 (t) · · · wT
N (t)

]T and

v(t) =
[

vT
1 (t) · · · vT

N (t)
]T , and where R ≥ 0 and W > 0 are weighting matrices to be chosen by designer.

The H∞ filter is to ensure that the energy gain from the disturbances to the estimation errors z(t)− ẑ(t) is
less than a prespecified attenuation level γ2. That is,

sup
w, v

J < γ2. (6)
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The H∞ filter of (1) and (2) is given as follows [6]

ξ̇0(t) = A00ξ0(t) +
N∑

k=1

A0kξk(t) +
N∑

k=1

F0kηk(t), (7a)

εiξ̇i(t) = Ai0ξ0(t) + Aiiξi(t) +
N∑

k=1

Fikηk(t), (7b)

ηi(t) = yi(t) − Ci0ξ0(t) − Ciiξi(t), i = 1, ... , N, (7c)

where the filter gain F is obtained from

F = XeC
T = Φ−1

e XCT = Φ−1
e


F01 · · · F0N

F11 · · · F1N

...
. . .

...
FN1 · · · FNN

 , (8)

and Xe satisfies the SIGMARE

AeXe + XeA
T
e − XeSXe + Ue = 0, (9)

with

Φe :=
[

In0 0
0 Πe

]
, Πe := block diag

(
ε1In1 · · · εNInN

)
,

Ae :=
[

A00 A0f

Π−1
e Af0 Π−1

e Af

]
, A0f :=

[
A01 · · · A0N

]
,

Af0 :=
[

AT
10 · · · AT

N0

]T
, Af := block diag

(
A11 · · · ANN

)
,

C :=
[

C0 Cf

]
, C0 :=

[
CT

10 · · · CT
N0

]T
, Cf := block diag

(
C11 · · · CNN

)
,

G :=
[

G0 Gf

]
, G0 :=

[
GT

10 · · · GT
N0

]T
, Gf := block diag

(
G11 · · · GNN

)
,

De :=
[

D0

Π−1
e Df

]
, D0 :=

[
D01 · · · D0N

]
, Df := block diag

(
D11 · · · DNN

)
,

W := block diag
(

W1 · · · WN

)
, R := block diag

(
R1 · · · RN

)
,

S := CT C − γ−2GT RG =
[

S00 S0f

ST
0f Sf

]
, S00 :=

N∑
k=1

(CT
k0Ck0 − γ−2GT

k0RkGk0),

S0f :=
[

S01 · · · S0N

]
=

[
CT

10C11 − γ−2GT
10R1G11 · · · CT

N0CNN − γ−2GT
N0RNGNN

]
,

Sf := block diag
(

S11 · · · SNN

)
= block diag

(
CT

11C11 − γ−2GT
11R1G11 · · · CT

NNCNN − γ−2GT
NNRNGNN

)
,

Ue := DeWDT
e =

[
U00 U0fΠ−1

e

Π−1
e UT

0f Π−1
e UfΠ−1

e

]
, U00 :=

N∑
k=1

D0kWkDT
0k,

U0f :=
[

U01 · · · U0N

]
=

[
D01W1D

T
11 · · · D0NWNDT

NN

]
,

Uf := block diag
(

U11 · · · UNN

)
= block diag

(
D11W1D

T
11 · · · DNNWNDT

NN

)
.

It is noteworthy that the H∞ filter does not require knowledge of the system and measurement noise intensity
matrices as compared with the standard Kalman filter [3, 12]. The difficulty encountered with the H∞ filter
for the GMSPS is that the SIGMARE contains a sign-indefinite quadratic term.

A solution Xe of the SIGMARE (9), if it exists, must contain terms of order εi because the matrices Ae

and De contain the term of ε−1
i -order. Taking this fact into consideration, the solution Xe to the SIGMARE

(9) with the following structure has to be found.

Xe :=
[

X00 X0f

XT
0f Π−1

e Xf

]
, X00 = XT

00, Π−1
e Xf = XT

f Π−1
e ,
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X0f :=

 XT
01
...

XT
0N


T

, Xf :=


X11 α21X12 α31X13 · · · αN1X1N

XT
12 X22 α32X23 · · · αN2X2N

...
...

...
. . .

...
XT

1(N−1) XT
2(N−1) XT

3(N−1) · · · αN(N−1)X(N−1)N

XT
1N XT

2N XT
3N · · · XNN

 .

In the following analysis, the basic assumption is needed.

Assumption 1 The Hamiltonian matrices Tii, i = 1, ... , N have not eigenvalues on the imaginary axis,

where Tii :=
[

AT
ii −Sii

−Uii −Aii

]
.

Before solving the SIGMARE (9), the asymptotic structure is investigated. In order to avoid the ill-
conditioned caused by the large parameter ε−1

i which is included in the SIGMARE (9), the following useful
lemma is introduced [14].

Lemma 1 The SIGMARE (9) is equivalent to the following generalized multiparameter algebraic Riccati
equation (GMARE) (10)

F (X) = AXT + XAT − XSXT + U = 0, (10)

where A = ΦeAe, U = ΦeUeΦe and X = ΦeXe.

The GMARE (10) can be partitioned into

F00 = A00X00 + X00A
T
00 + A0fXT

0f + X0fAT
0f

−X00S00X00 − X0fSfXT
0f − X00S0fXT

0f − X0fST
0fX00 + U00 = 0, (11a)

F0f = A0fXT
f + A00X0fΠe + X00A

T
f0 + X0fAT

f

−X00S00X0fΠe − X0fST
0fX0fΠe − X00S0fXT

f − X0fSfXT
f + U0f = 0, (11b)

Ff = AfXT
f + XfAT

f + Af0X0fΠe + ΠeX
T
0fAT

f0

−XfSfXT
f − ΠeX

T
0fS0fXT

f − XfST
0fX0fΠe − ΠeX

T
0fS00X0fΠe + Uf = 0. (11c)

It is assumed that the limit of αij exists as εi and εj tend to zero (see e.g., [1, 2]), that is

ᾱij = lim
εj→0+

εi→0+

αij . (12)

Let X̄00, X̄0f and X̄f be the limiting solutions of the above partitioned ARE (11) as εi → 0+, εj →
0+, i, j = 1, · · · , N , then the following equations are obtained.

AX̄∗
00 + X̄∗

00AT − X̄∗
00SX̄∗

00 + U = 0, (13a)

X̄∗
0i =

[
−X̄∗

00 In0

]
T0iT

−1
ii

[
Ini

X̄∗
ii

]
, (13b)

AiiX̄
∗
ii + X̄∗

iiA
T
ii − X̄∗

iiSiiX̄
∗
ii + Uii = 0, (13c)

where [
AT −S
−U −A

]
:= T00 −

N∑
k=1

T0kT−1
kk Tk0, (14)

T00 :=
[

AT
00 −S00

−U00 −A00

]
, T0i :=

[
AT

i0 −S0i

−U0i −A0i

]
,

Ti0 :=
[

AT
0i −ST

0i

−UT
0i −Ai0

]
, Tii :=

[
AT

ii −Sii

−Uii −Aii

]
.

Now, let us define the admissible design parameters [10].
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γf := max{γf1 , ... , γfN
}, where γfi

:= inf{γ | γ ∈ Λfi
} and Λfi := {γ > 0 | The AREs (13c) AiiX̄ii +

X̄iiA
T
ii − X̄iiSiiX̄ii + Uii = 0 have a positive semidefinite stabilizing solution, respectively.}, i = 1, ... , N .

Using the similar technique used in [15], it is easy to verify that if a parameter γ is selected such that
γf := max{γf1 , ... , γfN

} < γ, then the solution X̄f has the following form

X̄∗
f := block diag

(
X̄∗

11 · · · X̄∗
NN

)
. (15)

Moreover, the following set is defined [10].
γs := inf{γ |γ ∈ Λs}, where Λs := {0 < γ | The ARE (13a) has a positive semidefinite stabilizing solution.}

As a result, for every γ > γ̄ = max{γs, γf}, the AREs (13a) and (13c) have the positive definite
stabilizing solutions. Hence, the limiting behavior of Xe as the parameter ||ε|| :=

√
ε2
1 + · · · + ε2

N → +0 is
described by the following lemma.

Lemma 2 Assume that there exists a positive scalar γ̄ such that for all γ̄ < γ, the AREs (13a) and (13c)
have the positive semidefinite stabilizing solutions. Then there exists a small σ∗ such that for all ||ε|| ∈ (0, σ∗),
for any γ(> γ̄) the GMARE (10) admits a positive semidefinite stabilizing solution Xe = Φ−1

e X which can
be written as

Xe = Φ−1
e

[
X̄∗

00 + O(||µ||) X̄∗
0f + O(||µ||)

Πe{X̄∗
0f + O(||µ||)}T X̄∗

f + O(||µ||)

]
=

[
X̄∗

00 + O(||µ||) X̄∗
0f + O(||µ||)

{X̄∗
0f + O(||µ||)}T Π−1

e {X̄∗
f + O(||µ||)}

]
. (16)

Proof : Since this can be proved by using a technique similar to that used in [15], it is omitted.

3 A Numerical Algorithm for Solving the GMARE

In order to solve the GMARE (10) without the ill-conditioned, the following algorithm that is based on the
Newton’s method is established.

(A − X(n)S)X(n+1)T + X(n+1)(A − X(n)S)T + X(n)SX(n)T + U = 0, X(0) = X̄, n = 0, ... , (17)

with

X̄ =
[

X̄∗
00 X̄∗

0f

ΠeX̄
∗
0f X̄∗

f

]
, X(n) =

[
X

(n)
00 X

(n)
0f

ΠeX
(n)T
0f X

(n)
f

]
. (18)

The following theorem indicates the convergence of the algorithm (17).

Theorem 1 Assume that there exists a positive scalar γ̄ such that for all γ̄ < γ, the AREs (13a) and (13c)
have the positive semidefinite stabilizing solutions. Under Assumption 1, there exists a small σ̄ such that
for all ||µ|| ∈ (0, σ̄), σ̄ ≤ σ∗, the Newton’s method (17) converges to the exact solution of X with the rate
of quadratic convergence, where Xe = Φ−1

e X is the positive semidefinite stabilizing solution. Moreover, the
convergence solution attains a unique solution X∗

e of the SIGMARE (9) in the neighborhood of the initial
condition X(0) = X̄. In other words, the following condition is satisfied.

||X(n) − X|| ≤ O(||µ||2n

)
2nβL

= O(||µ||2
n

), n = 0, 1, ... , (19)

where

L := 2||S||, β := ||[∇F(X̄ )]−1||, η := β||F(X̄ )||, θ := βηL,

∇F(X ) :=
∂F(X )
∂X T

, F(X ) :=

 vecF00

vecF0f

vecFf

 , X :=

 vecX00

vecX0f

vecXf

 , X̄ :=

 vecX̄∗
00

vecX̄∗
0f

vecX̄∗
f

 .

Proof : The proof follows directly by applying Newton-Kantorovich theorem [7] for the GMARE (10). It is
easy to verify that function F (X) is differentiable on a certain convex set D. Using the fact that

∇F (X) :=
∂vecF (X)
∂[vec X]T

= [(A − XS) ⊗ In̄]Un̄n̄ + In̄ ⊗ (A − XS) = (In̄2 + Un̄n̄) · [In̄ ⊗ (A − XS)]
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with n̄ :=
∑N

k=0 nk results in

||∇F (X1) −∇F (X2)|| ≤ L||X1 − X2||,
⇒ ||∇F(X1) −∇F(X2)|| ≤ L||X1 −X2||,

where L = 2||S||. Moreover, the following result holds by using the similar technique in [15].

det∇F(X̄ ) =
2∏

i=0

detJii + O(||µ||),

where

J00 = Γ0 ⊗ In0 + In0 ⊗ Γ0, J11 = Γ4 ⊗ In0 , J22 = Γ4 ⊗ In̂ + In̂ ⊗ Γ4,

Γ0 := A− X̄∗
00S = Γ1 − Γ2Γ−1

4 Γ3,

Γ1 = A00 − X̄∗
00S00 − X̄∗

0fST
0f , Γ2 = A0f − X̄∗

00S0f − X̄∗
0fSf ,

Γ3 = Af0 − X̄∗
f ST

0f , Γ4 = Af − X̄∗
f Sf , n̂ :=

N∑
k=1

nk.

It is shown that there exists a small σ̄ such that for sufficiently small parameter ||µ|| ∈ (0, σ̄), σ̄ ≤ σ∗,
∇F(X̄ ) is nonsingular because Γ4 and Γ0 = A − X̄∗

00S are stable under Assumption 1 and the definition
γs (see e.g., Theorem 1 [1]). Therefore, there exists β such that ||[∇F(X̄ )]−1|| ≡ β. On the other hand, it
can be verified that ||F(X̄ )|| = O(||µ||) because AX̄T + X̄AT − X̄SX̄T + U = O(||µ||). Hence, there exists
η such that η = ||[∇F(X̄ )]−1|| · ||F(X̄ )|| = O(||µ||). Thus, for sufficiently small εi, there exists θ such that
θ ≡ βLη < 2−1 because η = O(||µ||). Using Newton-Kantorovich theorem, the strict error estimate is given
by (19). Therefore, the proof is completed.

It should be noted that no proof exists of whether the proposed algorithm fails to converge for large
parameter εi. In this paper, the convergence criteria for εi is established for the first time. Such a condition
is derived from the Newton-Kantorovich theorem [7].

Corollary 1 If the following inequality holds for any small parameter εi = ε̃i, i = 1, ... , N , algorithm (17)
guarantees quadratic convergence.

θ(ε̃1, ... , ε̃N ) := 2β̃η̃ · ||S|| < 2−1, (20)

where

β̃ := β(ε̃1, ... , ε̃N ), η̃ = η(ε̃1, ... , ε̃N ),
β(ε1, ... , εN ) := ||[∇F(X , ε1, ... , εN )]−1||,
η(ε1, ... , εN ) := β(ε1, ... , εN ) · ||F(X , ε1, ... , εN )||,

F(X , ε1, ... , εN ) :=

 vecF00

vecF0f

vecFf

 .

Proof : Since it is clear that this proof can be derived by applying the Newton-Kantorovich theorem, it has
been omitted.

4 Reduction Algorithm based on Fixed Point Algorithm

One needs to solve the generalized multiparameter algebraic Lyapunov equation (GMALE) (17) with the

dimension n̄ :=
N∑

k=0

nk larger than the dimension ni, i = 0, ... , N compared with the exact decomposition

technique [3]. Thus, in order to reduce the dimension of the workspace, a new algorithm for solving the
GMALE (17) which is based on two fixed point algorithms is established. Let us consider the following
GMALE (21), in a general form.

ΛY T + Y ΛT + T = 0, (21)
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where Y is the solution of the GMALE (21). Moreover, Y , Λ and T have the following forms, respectively.

ε := ||µ|| =
√

ε2
1 + · · · + ε2

N ,

Y :=
[

Y00 Y0f

ΠeY
T
0f Yf

]
, Y00 = Y T

00, Π−1
e Yf = Y T

f Π−1
e , Y0f :=

 Y T
01
...

Y T
0N


T

,

Λ :=
[

Λ00 Λ0f

Λf0 Λf

]
, Λ0f :=

[
Λ01 · · · Λ0N

]
, Λf0 :=

[
ΛT

10 · · · ΛT
N0

]T
,

Λf :=


Λ11 εΛ12 · · · εΛ1N

εΛ21 Λ22 · · · εΛ2N

...
...

. . .
...

εΛN1 εΛN2 · · · ΛNN

 ,

T :=
[

T00 T0f

TT
0f Tf

]
, T00 = TT

00, T0f :=
[

T01 · · · T0N

]
, Tf :=


T11 εT12 · · · εT1N

εTT
12 T22 · · · εT2N

...
...

. . .
...

εTT
1N εTT

2N · · · TNN

 .

It should be noted that for the GMALE (17),

X(n+1) ⇒ Y, A − X(n)S ⇒ Λ, X(n)T SX(n) + U ⇒ T,

where ⇒ stands for the replacement.
Moreover, taking the asymptotic structure (15) into account, since

Xf := X̄∗
f + O(||µ||) = block diag

(
X̄∗

11 · · · X̄∗
NN

)∗ + O(||µ||),

without loss of generality, it can be supposed that Yf has the following form.

X
(n+1)
f ⇒ Yf :=


Y11 α21εY12 α31εY13 · · · αN1εY1N

εY T
12 Y22 α32εY23 · · · αN2εY2N

...
...

...
. . .

...
εY T

1(N−1) εY T
2(N−1) εY T

3(N−1) · · · αN(N−1)εY(N−1)N

εY T
1N εY T

2N εY T
3N · · · YNN

 . (22)

The following condition for the GMALE (21) is assumed.

Assumption 2 Λii, i = 1, ... , N and Λ0 := Λ00 −
N∑

k=1

Λ0kΛ−1
kk Λk0 are stable.

The GMALE (21) can be changed as follows by partitioning.

Λ00Y00 + Y00ΛT
00 + Λ0fY T

0f + Y0fΛT
0f + T00 = 0, (23a)

Λ00Y0fΠe + Λ0fY T
f + Y00ΛT

f0 + Y0fΛT
f + T0f , (23b)

ΛfY T
f + YfΛT

f + Λf0Y0fΠe + ΠeY
T
0fΛT

f0 + Tf = 0. (23c)

The following algorithm (24) for solving the GMALE (23) is given.

ΛfY
(l+1)T
f + Y

(l+1)
f ΛT

f + Λf0Y
(l)
0f Πe + ΠeY

(l)T
0f ΛT

f0 + Tf = 0, l = 0, 1, ... , (24a)

Λ0Y
(l+1)
00 + Y

(l+1)
00 ΛT

0 − Λ0fΛ−1
f (Λ00Y

(l)
0f Πe + T0f )T − (Λ00Y

(l)
0f Πe + T0f )Λ−T

f ΛT
0f

+Λ0fΛ−1
f (Λf0Y

(l)
0f Πe + ΠeY

(l)T
0f ΛT

f0 + Tf )Λ−T
f ΛT

0f + T00 = 0, l = 0, 1, ... , (24b)

Y
(l+1)
0f = −(Λ0fY

(l+1)T
f + Y

(l+1)
00 ΛT

f0 + Λ00Y
(l)
0f Πe + T0f )Λ−T

f , l = 0, 1, ... , (24c)
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where

Y
(0)
0f = Ȳ0f , Ȳ0f = −(Λ0f Ȳ T

f + Ȳ00ΛT
f0 + T0f )Λ̄−T

f ,

Ȳf := block diag
(

Ȳ11 · · · ȲNN

)
,

Λjj Ȳjj + ȲjjΛT
jj + Tjj = 0, j = 1, ... , N,

Λ̄0Ȳ00 + Ȳ00Λ̄T
0 − Λ0f Λ̄−1

f TT
0f − T0f Λ̄−T

f ΛT
0f + Λ0f Λ̄−1

f T̄f Λ̄−T
f ΛT

0f + T00 = 0,

Λ0 = Λ00 − Λ0fΛ−1
f Λf0, Λ̄0 = Λ00 − Λ0f Λ̄−1

f Λf0,

Λ̄f := block diag
(

Λ11 · · · ΛNN

)
, T̄f := block diag

(
T11 · · · TNN

)
.

The following theorem indicates the convergence of the algorithm (24).

Theorem 2 Under Assumption 2, the fixed point algorithm (24) converges to the exact solutions Y00, Yf0

and Yf with the rate of convergence of O(||µ||l+1), that is

||Y (l)
f − Yf || = O(||µ||l+1), l = 0, 1, ... , (25a)

||Y (l)
00 − Y00|| = O(||µ||l+1), l = 0, 1, ... , (25b)

||Y (l)
0f − Y0f || = O(||µ||l+1), l = 0, 1, ... . (25c)

Proof : The proof of Theorem 2 can be done by using the mathematical induction. It is easy to verify that
the first order approximations Y00, Y0f and Yf corresponding to the small parameter εi are Ȳ00, Ȳ0f and Ȳf ,
respectively. It follows from these equations that

||Y (0)
f − Yf || = ||Ȳf − Yf || = O(||µ||), (26a)

||Y (0)
00 − Y00|| = ||Ȳ00 − Y00|| = O(||µ||), (26b)

||Y (0)
0f − Y0f || = ||Ȳ0f − Y0f || = O(||µ||). (26c)

When l = h, h ≥ 1, it is assumed that

||Y (h)
f − Yf || = O(||µ||h+1), (27a)

||Y (h)
00 − Y00|| = O(||µ||h+1), (27b)

||Y (h)
0f − Y0f || = O(||µ||h+1). (27c)

Subtracting the partitioned algebraic matrix equation (23) from (24) and setting k = h, the following
equations hold under the above assumptions (27).

Λf (Y (h+1)
f − Yf )T + (Y (h+1)

f − Yf )ΛT
f = O(||µ||h+2), (28a)

Λ0(Y
(h+1)
00 − Y00) + (Y (h+1)

00 − Y00)ΛT
0 = O(||µ||h+2), (28b)

Y
(h+1)
0f − Y0f = −[Λ0f (Y (h+1)

f − Yf )T + (Y (h+1)
00 − Y00)ΛT

f0 + O(||µ||h+2)]Λ−T
f . (28c)

After the cancellation takes place, since Λ0 and Λ̄f = block diag
(

Λ11 · · · ΛNN

)
are stable from

Assumption 2, the following relations hold using the result of [8].

||Y (h)
f − Yf || = O(||µ||h+2), (29a)

||Y (h)
00 − Y00|| = O(||µ||h+2), (29b)

||Y (h)
0f − Y0f || = O(||µ||h+2). (29c)

Consequently, the error equations (25) hold for all k ∈ N. This completes the proof of Theorem 2.

When the ALE (24a) is solved, very large computational dimension n̂ :=
N∑

k=1

nk is needed. Thus, the

reduction of the dimension of the computing workspace must be needed. Therefore, the new algorithm for
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solving the ALE (24a) which is based on the other fixed point algorithm is established. Let us consider the
following ALE (30), in a general form.

ΨeZ
T
e + ZeΨT

e + Ve = 0, (30)

where Ze is the solution of the ALE (30). Moreover, Ze, Ψe and Ve have the following forms, respectively.

Ze :=


Z11 α21εZ12 α31εZ13 · · · αN1εZ1N

εZT
12 Z22 α32εZ23 · · · αN2εZ2N

...
...

...
. . .

...
εZT

1(N−1) εZT
2(N−1) εZT

3(N−1) · · · αN(N−1)εZ(N−1)N

εZT
1N εZT

2N εZT
3N · · · ZNN

 ,

Ψe :=


Ψ11 εΨ12 · · · εΨ1N

εΨ21 Ψ22 · · · εΨ2N

...
...

. . .
...

εΨN1 εΨN2 · · · ΨNN

 , Ve :=


V11 εV12 · · · εV1N

εV T
12 V22 · · · εV2N

...
...

. . .
...

εV T
1N εV T

2N · · · VNN

 .

It should be noted that for the ALE (24a),

Y
(l+1)
f ⇒ Ze, Λf ⇒ Ψe, Λf0Y

(l)
0f Πe + ΠeY

(l)T
0f ΛT

f0 + Tf ⇒ Ve

where ⇒ stands for the replacement. Furthermore, the ALE (30) is a part of the ALE (21). Namely, the
ALE (30) stands for the ALE (24a).

Without loss of generality, the following condition for the ALE (30) is also assumed.

Assumption 3 Ψii, i = 1, ... , N are stable.

The following algorithms (31) for solving the ALE (30) are newly given.

Ψ11Z
(m+1)
11 + Z

(m+1)
11 ΨT

11 + ε2
N∑

k=2

αk1(Ψ1kZ
(m)T
1k + Z

(m)
1k ΨT

1k) + V11 = 0, (31a)

...

ΨiiZ
(m+1)
ii + Z

(m+1)
ii ΨT

ii + ε2
i−1∑
k=1

(ΨikZ
(m)
ki + Z

(m)T
ki ΨT

ik)

+ε2
N∑

k=i+1

αki(ΨikZ
(m)T
ik + Z

(m)
ik ΨT

ik) + Vii = 0, i = 2, ... , N − 1, (31b)

...

ΨNNZ
(m+1)
NN + Z

(m+1)
NN ΨT

NN + ε2
N−1∑
k=1

(ΨNkZ
(m)
kN + Z

(m)T
kN ΨT

Nk) + VNN = 0, (31c)

Ψ11Z
(m+1)
12 + α21Z

(m+1)
12 ΨT

22 + Z
(m+1)
11 ΨT

21 + Ψ12Z
(m+1)
22

+ε
N∑

k=3

(αk2Ψ1kZ
(m)T
2k + αk1Z

(m)
1k ΨT

2k) + V12 = 0, (31d)

...
Ψ(N−1)(N−1)Z

(m+1)
(N−1)N + αN(N−1)Z

(m+1)
(N−1)NΨT

NN + Z
(m+1)
(N−1)(N−1)Ψ

T
N(N−1) + Ψ(N−1)NZ

(m+1)
NN

+ε
N−2∑
k=1

(Ψ(N−1)kZ
(m)
kN + Z

(m)T
k(N−1)Ψ

T
Nk) + V(N−1)N = 0, (31e)

m = 0, 1, · · · ,
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Table 1. Convergence solution Xe :=
[

X00 X0f

XT
0f Π−1

e Xf

]
.

X00 =


1.5086 −4.3532e − 01 −1.7459e − 02 4.5398e − 02 5.2563e − 01

−4.3532e − 01 1.5161 4.6813e − 02 −1.5798e − 02 −5.1866e − 01
−1.7459e − 02 4.6813e − 02 7.8337e − 03 7.7249e − 04 1.7988e − 03

4.5398e − 02 −1.5798e − 02 7.7249e − 04 7.7619e − 03 −1.5713e − 03
5.2563e − 01 −5.1866e − 01 1.7988e − 03 −1.5713e − 03 2.4501



X0f =


−1.3497e − 02 4.3835e − 02 −1.9364e − 01 −1.5877e − 01
−2.8435e − 01 −2.6978e − 01 −1.1308e − 01 −6.5749e − 02

8.8320e − 03 −1.8211e − 02 −6.7232e − 03 −6.3278e − 03
−2.9107e − 03 −2.8025e − 03 1.1808e − 02 −1.4738e − 02

3.8083e − 02 −2.7966e − 02 −9.4401e − 03 5.0702e − 02



Π−1
e Xf =


1.4174 1.4870 4.8844e − 02 3.5509e − 02
1.4870 4.8399 3.9452e − 02 3.1745e − 02

4.8844e − 02 3.9452e − 02 2.7847 2.9315
3.5509e − 02 3.1745e − 02 2.9315 9.5689



where

Z
(0)
ii = Z̄ii, Z

(0)
ij = Z̄ij , i < j,

ΨiiZ̄ii + Z̄iiΨT
ii + Vii = 0, ΨiiZ̄ij + αjiZ̄ijΨT

jj + Z̄iiΨT
ji + ΨijZ̄jj + Vij = 0.

The following theorem indicates the convergence of the fixed point algorithm (31).

Theorem 3 Under Assumption 3, the fixed point algorithm (31) converges to the exact solution Zij with
the rate of

||Z(m)
ii − Zii|| = O(εm+2), m = 1, ... , (32a)

||Z(m)
ij − Zij || = O(εm+1), i < j, m = 1, ... . (32b)

Proof : Since the proof of Theorem 3 can be also done by using mathematical induction and the fixed point
theorem, it is omitted.

An algorithm which solves the SIGMARE (9) with the small positive parameters εi is given below.

Step 1. Solve the AREs (13) that are given as the initial conditions of the Newton’s method (17).

Step 2. In order to carry out the Newton’s method (17), apply the new proposed algorithm (24).

Step 3. In order to reduce the dimension of the workspace for solving the ALE (24a), apply the new proposed
algorithm (31).

Step 4. Solve the solutions Y
(l+1)
f and Y

(l+1)
00 of the ALE (24a) and (24b), respectively and compute Y

(l+1)
f0

using the relation of (24c). As a result, the sequence of solution of the Newton’s method (17) is obtained.

Step 5. If the new combined algorithm converges, go to Step 6. Otherwise, increment n → n + 1 and go to
Step 2.

Step 6. Calculate the solution Xe of the SIGMARE (9) by using (16).

5 Computational Example

In order to demonstrate the efficiency of the proposed algorithm, the computational examples are given.



11

5.1 Example 1

The system matrices of the GMSPS (1) are given as follows.

A00 =


0 0 4.5 0 1
0 0 0 4.5 −1
0 0 −0.05 0 −0.1
0 0 0 −0.05 0.1
0 0 32.7 −32.7 0

 , A01 =


0 0
0 0

0.1 0
0 0
0 0

 , A02 =


0 0
0 0
0 0

0.1 0
0 0

 ,

A10 =
[

0 0 0 0 0
0 0 −0.4 0 0

]
, A20 =

[
0 0 0 0 0
0 0 0 −0.4 0

]
, A11 = A22 =

[
−0.05 0.05

0 −0.1

]
,

A12 = A21 = O2×2, D01 = D02 = O5×1, D11 = D22 =
[

0
0.1

]
,

C = G =


1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1

 , W = I9, R = 20.

Table 2. Error per iterations.
n ||F (X(n))||
0 7.7301e − 03
1 1.1110e − 03
2 6.6036e − 07
3 5.9791e − 13

Table 3. Error ||F (X)||.
ε1 = ε2 Proposed algorithm MATLAB

1.0e − 02 7.7810e − 13 7.2625e − 13
1.0e − 03 2.2080e − 13 6.0496e − 12
1.0e − 04 1.8019e − 14 2.0564e − 10
1.0e − 05 2.1075e − 14 2.2429e − 08

It should be noted that the technique proposed in [3] to the MSPS can not be applied because the Hamiltonian
matrices Tii, i = 1, 2 have eigenvalues in common. The small parameters are chosen as ε1 = 0.01, ε2 = 0.005.
For every boundary value γ > γ̄ = max{γs, γf} = 4.4722, the ARE (13a) and the AREs (13c) have the
positive definite stabilizing solution, where γf1 = 3.6515, γf2 = 3.6515 and γs = 4.4722.

When γ = 5, a solution of the SIGMARE (9) is given in Table 1. It can be verified that the algorithm
(17) converges to the exact solution with accuracy of ||F (X(n))|| < 10−12 after three iterations. In order to
verify the exactitude of the solution, the remainder per iteration is computed by substituting X(n) into the
GMARE (10). In Table 2, the results of the error ||F (X(n))|| per iterations are given. It can be seen that
the initial guess (18) for the algorithm (17) is quite good and the proposed algorithm (17) has quadratic
convergence.

In order to compare the solution Xe that is computed by using the function are of MATLAB with the
solution that is obtained through the algorithm (17), the remainder of the errors are given in Table 3. From
Table 3, it is shown that the resulting algorithm of this paper is very useful for the small parameters εi.
Moreover, it appears that the proposed algorithm is superior than the function are of MATLAB that is
based on the Schur method [4].

From the viewpoint of this example, it should be noted that when the fixed-point algorithm is applied,
even if the number of fast subsystems is greater than two, the computing workspace required for the filter
gain is the same as the dimension of the fast subsystems. In other words, even if the GMSPS (1) are
composed of N two-dimensional fast subsystems, the required workspace is two for the algorithm (31).

5.2 Example 2

Consider the system (1) with

Φe :=
[

1 0
0 Πe

]
, Πe := block diag

(
ε1 ε2 ε3

)
,

Ae :=
[

A00 A0f

Π−1
e Af0 Π−1

e Af

]
, A0f :=

[
A01 A02 A03

]
=

[
1 1 1

]
,

Af0 :=
[

AT
10 AT

20 AT
30

]T =
[

1 2 3
]T

,

Af := block diag
(

A11 A22 A33

)
= block diag

(
−1 −1 −1

)
,

De :=
[

D0

Π−1
e Df

]
, D0 :=

[
D01 D02 D03

]
=

[
1 1 1

]
,
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Table 4. Error per iterations.
n ||F (X(n))||
0 9.7210e − 02
1 1.2914e − 03
2 5.6044e − 07
3 5.6265e − 11
4 3.5975e − 15

Table 5. Convergence solution.

Xe =


1.4520 2.1707 3.2454 4.3079
2.1707 4.3214e + 02 2.7135 3.6477
3.2454 2.7135 2.2011e + 02 6.7781
4.3079 3.6477 6.7781 1.5314e + 02


Table 6. Convergence criteria.

ε1=ε2=ε3=1.0e − 02 ε1=ε2=ε3=1.0e − 03 ε1=ε2=ε3=1.0e − 04 ε1=ε2=ε3=1.0e − 05

θ 3.2184e − 01 3.3568e − 02 3.3711e − 03 3.3726e − 04

Table 7. Solutions and errors.

XMAT =


1.4214 2.1542 3.2305 4.3060

2.1551e − 07 4.3037e − 01 3.0881e − 06 1.2496e − 05
6.4630e − 07 −3.2858e − 05 4.3050e − 01 6.0356e − 05
1.2914e − 06 2.7288e − 08 8.8993e − 06 4.3050e − 01



XNEW =


1.4225 2.1566 3.2319 4.3072

2.1566e − 07 4.3050e − 01 2.7156e − 07 3.6647e − 07
6.4639e − 07 5.4312e − 07 4.3050e − 01 1.3678e − 06
1.2922e − 06 1.0994e − 06 2.0517e − 06 4.3050e − 01


||F (XMAT)|| ||F (XNEW)||
1.1312e − 02 3.7343e − 15

Df := block diag
(

D11 D22 D33

)
= block diag

(
−1 −1 −1

)
,

C = G =

 0 1 0 0
0 0 1 0
0 0 0 1

 , W = I4, R = 1, γ = 2.

In order to evaluate the convergence criteria, the values of θ of (20) should be calculated. First, the
partitioned equation of the GMARE (10) can be obtained as follows.

F (X) = AXT + XAT − XSXT + U =


F1 F2 F3 F4

F2 F5 F6 F7

F3 F6 F8 F9

F4 F7 F9 F10

 , X =


p1 p2 p3 p4

p2 p5 α21p6 α31p7

p3 p6 p8 α32p9

p4 p7 p9 p10

 ,

where Fi := Fi(X , ε1, ε2 , ε3), i = 1, ... , 10, Γ := 1 − γ−2,

F1(X , ε1, ε2 , ε3) = −(p2
2 + p2

3 + p2
4)Γ + 2(p1 + p2 + p3 + p4) + 3,

F2(X , ε1, ε2 , ε3) = −(p2p5 + α21p3p6 + α31p4p7)Γ + p1 + (ε1 − 1)p2 + p5 + α21p6 + α31p7 + 1,

F3(X , ε1, ε2 , ε3) = −(p2p6 + p3p8 + α32p4p9)Γ + 2p1 + (ε2 − 1)p3 + p6 + p8 + α32p9 + 1,

F4(X , ε1, ε2 , ε3) = −(p2p7 + p3p9 + p4p10)Γ + 3p1 + (ε3 − 1)p4 + p7 + p9 + p10 + 1,

F5(X , ε1, ε2 , ε3) = −[p2
5 + (α21p6)2 + (α31p7)2]Γ + 2(ε1p2 − p5) + 1,

F6(X , ε1, ε2 , ε3) = −(p5p6 + α21p6p8 + α31α32p7p9)Γ + 2ε1p2 + ε2p3 − α21p6 − p6,

F7(X , ε1, ε2 , ε3) = −(p5p7 + α21p6p9 + α31p7p10)Γ + 3ε1p2 + ε3p4 − α31p7 − p7,

F8(X , ε1, ε2 , ε3) = −[p2
6 + p2

8 + (α32p9)2]Γ + 4ε2p3 − 2p8 + 1,
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F9(X , ε1, ε2 , ε3) = −(p6p7 + p8p9 + α32p9p10)Γ + 3ε2p3 + 2ε3p4 − p9α32 − p9,

F10(X , ε1, ε2 , ε3) = −(p2
7 + p2

9 + p2
10)Γ + 6ε3p4 − 2p10 + 1.

Therefore, the related equations (20) are given below.

β(ε1, ε2 , ε3) := ||[∇F(X , ε1, ε2 , ε3)]−1||,
η(ε1, ε2 , ε3) := β(ε1, ε2 , ε3) · ||F(X , ε1, ε2 , ε3)||,

∇F(X , ε1, ε2 , ε3) :=
∂F(X , ε1, ε2 , ε3)

∂X T
,

F(X , ε1, ε2 , ε3) :=
[

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

]T
,

X T :=
[

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

]
,

∇F(X , ε1, ε2 , ε3)

:=



2 Ξ12 Ξ13 Ξ14 0 0 0 0 0 0
1 Ξ22 Ξ23 Ξ24 Ξ25 Ξ26 Ξ27 0 0 0
2 −p6Γ Ξ33 Ξ34 0 Ξ36 0 Ξ38 Ξ39 0
3 −p7Γ Ξ43 Ξ44 0 0 Ξ47 0 Ξ49 Ξ410

0 2ε1 0 0 Ξ55 Ξ56 Ξ57 0 0 0
0 2ε1 ε2 0 Ξ65 Ξ66 Ξ67 Ξ68 Ξ69 0
0 3ε1 0 ε3 Ξ75 Ξ76 Ξ77 0 Ξ79 Ξ710

0 0 4ε2 0 0 Ξ86 0 Ξ87 Ξ89 0
0 0 3ε2 2ε3 0 Ξ96 Ξ97 −p9Γ Ξ99 Ξ910

0 0 0 6ε3 0 0 Ξ107 0 Ξ109 Ξ1010


,

Ξ12 = −2p2Γ + 2, Ξ13 = −2p3Γ + 2, Ξ14 = −2p4Γ + 2, Ξ22 = −p5Γ + ε1 − 1,

Ξ23 = −α21p6Γ, Ξ24 = −α31p7Γ, Ξ25 = −p2Γ + 1, Ξ26 = (−p3Γ + 1)α21, Ξ27 = (−p4Γ + 1)α31,

Ξ33 = −p8Γ + ε2 − 1, Ξ34 = −α32p9Γ, Ξ36 = −p2Γ + 1, Ξ38 = −p3Γ + 1, Ξ39 = (−p4Γ + 1)α32,

Ξ43 = −p9Γ, Ξ44 = −p10Γ + ε3 − 1, Ξ47 = −p2Γ + 1, Ξ49 = −p3Γ + 1, Ξ410 = −p4Γ + 1,

Ξ55 = −2p5Γ − 2, Ξ56 = −2α2
21p6Γ, Ξ57 = −2α2

31p7Γ, Ξ65 = −p6Γ,

Ξ66 = −p5Γ − α21p8Γ − 1 − α21, Ξ67 = −α31α32p9Γ, Ξ68 = −α21p6Γ,

Ξ69 = −α31α32p7Γ, Ξ75 = −p7Γ, Ξ76 = −α21p9Γ, Ξ77 = −p5Γ − α31p10Γ − 1 − α31,

Ξ79 = −α21p6Γ, Ξ710 = −α31p7Γ, Ξ86 = −2p6Γ, Ξ87 = −2p8Γ − 2, Ξ89 = −2α2
32p9Γ,

Ξ96 = −p7α21Γ, Ξ97 = −p6α31Γ, Ξ99 = −p8Γ − α32p10Γ − 1 − α32,

Ξ910 = −α32p9Γ, Ξ107 = −2α21p7Γ, Ξ109 = −2p9Γ, Ξ1010 = −2p10Γ − 2.

Using the above results, the value of the convergence criteria (20) of the Newton’s method is

θ := θ(0.001, 0.002, 0.003) = 6.9774e − 02 < 2−1

for ε1 = 0.001, ε2 = 0.002, ε3 = 0.003. Hence, since the inequality (20) holds, the asymptotic structure of
the solutions with uniqueness, positive semidefiniteness and quadratic convergence is attained. In fact, it
can also be verified that the algorithm (17) converges to the exact solution with quadratic convergence after
four iterations. The remainder per iteration is given in Table 4. Moreover, a solution of the SIGMARE (9)
is given in Table 5. On the other hand, Table 6 shows the values of θ for various values of εi. It is verified
for the first time that for various εi, since the convergence criteria is satisfied, the quadratic convergence is
guaranteed for sufficiently small εi.

It should be noted that convergence criteria (20) is a conservative condition. Hence, even if such a
condition is not satisfied, a required solution that attains quadratic convergence might exist.

Finally, in order to compare the solution XMAT that is computed by using the function are of MATLAB
with the solution XNEW that is obtained through the algorithm (17), the remainder of the errors and these
solutions are given in Table 7 under the conditions that the sufficiently small perturbation parameters are
chosen as ε1 = 1.0e − 07, ε2 = 2.0e − 7, and ε3 = 3.0e − 07. From Table 7, it can also be verified that
as compared with the previous example, the resulting algorithm of this paper is very reliable for the small
parameters εi. Moreover, the computational dimension that carries out the Newton’s iterations is scalar.
Thus, taking into account the fact that the Schur method [4] needs eight dimensions, it appears that the
proposed algorithm is very attractive.
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6 Conclusion

In this paper, a new iterative algorithm for solving the SIGMARE that has sign-indefinite quadratic form has
been proposed. The proposed algorithm consist of the Newton’s method and two fixed point algorithms. As a
result, it has been proven that the solution of the SIGMARE converges to a positive semi-definite stabilizing
solution with the rate of convergence of O(||µ||2n

). Moreover, the reduction of the computational work space
can be attained even if the GMSPS has many fast subsystems as compared with the existing results [11, 12].
As another important features, the assumption that the Hamiltonian matrices for the fast subsystems have
no eigenvalues in common is not needed. This advantage admits the using of the proposed algorithm to the
GMSPS. Moreover, the convergence criteria of the Newton’s method for the GMSPS has been derived for
the first time. Finally, the numerical examples have shown excellent results that the proposed algorithm has
succeeded in reducing the computational workspace and the quadratic convergence has been attained under
the condition that the convergence criteria was satisfied.
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