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Abstract. In this paper, a computational algorithm for solving sign-indefinite general multiparameter algebraic Riccati equation
(SIGMARE) that arises in the Ho filtering problem is investigated. After establishing the asymptotic structure of the solution
of the SIGMARE, in order to solve the SIGMARE, Newton’s method and two fixed point algorithms are combined. As a result,
the new iterative algorithm achieves the quadratic convergence property and succeeds in reducing the computing workspace
dramatically. As another important feature, the convergence criteria for small parameters g; is derived for the first time.
Moreover, it is shown that the uniqueness and positive semidefiniteness of the convergence solutions are guaranteed in the
neighborhood of the initial conditions.
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1 Introduction

Filtering problems for the multiparameter singularly perturbed system (MSPS) have been investigated ex-
tensively (see e.g., [3, 11, 12] and reference therein). The multimodeling problems arise in the large scale
dynamic systems. For example, the multimodel situation in practice is illustrated by the passenger car model
[3]. In order to obtain the optimal solution to the multimodeling problems, the multiparameter algebraic
Riccati equation (MARE) needs to be solved. Various reliable approaches to the theory of the algebraic
Riccati equation (ARE) have been well documented in many literatures (see e.g., [4, 5]). One of the ap-
proaches is the invariant subspace approach that is based on the Hamiltonian matrix [4]. However, there is
no guarantee of symmetry for the computed solution if the ARE is ill-conditioned [4]. It should be noted
that it is very difficult to solve the MARE due to high dimension and numerical stiffness [3]. Furthermore,
if the ARE has the sign-indefinite quadratic term, it is hard to choose the initial condition of the Klinman
algorithm [5].

A popular approach to deal with the MSPS is the two-time-scale design method (see e.g., [1, 2]). However,
when the parameters ¢; are not small enough, it is known from [3] that an O(||u|) (where |u| denotes the norm
of the vector p:=[e; --- en]) accuracy is very often not sufficient. More recently, in [11, 12], the recursive
algorithms for solving the MARE have been developed. However, there exists the drawback that the recursive
algorithm converges only to the approximation solution [12] since the convergence of the recursive algorithm
depend on the zero-order solutions. Later, although the application of Newton’s method for solving the
general multiparameter algebraic Riccati equation (GMARE) has been tackled [14], the considered GMARE
needs to have sign-definite quadratic form. Thus, the proposed algorithm is restricted for the practical use.
On the other hand, the exact slow-fast decomposition method for solving the MARE has been proposed
in [3]. However, these results are restricted to the MSPS such that the Hamiltonian matrices for the fast
subsystems have no eigenvalues in common (see e.g., Assumption 5, [3]). Moreover, the particular MSPS
that has two fast subsystems has only been discussed. It is very important to extend to the general MSPS
that has N fast subsystems for use of the practical systems.

In this paper, a computational algorithm for solving the sign-indefinite general multiparameter algebraic
Riccati equation (SIGMARE) related to the H, filtering problem is developed. It may be noted that the
general multiparameter singularly perturbed systems (GMSPS) are considered, as compared to the existing
results [3, 11, 12, 13]. Although the Pareto optimal strategy for the GMSPS has been investigated in [14], it
should be noted that the ARE has the sign-definite quadratic form. Moreover, it should also be noted that
there are no results for the convergence criteria for the small parameter ¢; related to the Newton’s method
in all existing results.



After showing the uniqueness and boundedness of the solution to such SIGMARE, the asymptotic struc-
ture is established. The main contribution of this paper is to propose a new algorithm that combines
the Newton’s method with two fixed point algorithms. As a result, the new iterative algorithm achieves the
quadratic convergence property and succeeds in reducing the computing workspace dramatically. As another
important feature, the convergence criteria for small parameters ¢; is derived for the first time. Furthermore,
it is not assumed here that the Hamiltonian matrices T;;, ¢ = 1, ... , N for the fast subsystems have no
eigenvalues in common. Thus, our new results are applicable to more realistic GMSPS. Finally, in order to
demonstrate the efficiency and the validity of the algorithm, two computational examples are included.
Notation: The notations used in this paper are fairly standard. The superscript T denotes matrix transpose.
detL denotes the determinant of the square matrix L. I, denotes the p X p identity matrix. block diag
denotes the block diagonal matrix. vecM denotes the column vector of the matrix M [9]. ® denotes

Kronecker product. U,, denotes a permutation matrix in Kronecker matrix sense [9] such that U,,vecM =
veeMT, M € RPX4,

2 H, Filtering Problem

Let us consider the linear time-invariant GMSPS

N N
do(t) = Acozo(t) + > Aokzi(t) + Y Dorwy(t), (1a)
exi(t) = Ajpzo(t) + Zj&;i(t) + Diiwf(:t;, i=1, ..,N, (1b)
with
yi(t) = Ciozo(t) + Cyuzi(t) +v;(¥), i =1, ... , N, (2)
where z;(t) € R™, ¢ =0, 1, ... N are state vectors, y;(t) € RPi, i =1, ... , N are system measurements,
wi(t) € R%, ¢ =1, .. ,N and v;(¢t) € R", ¢ = 1, ... ,N are system and measurement disturbances,

respectively. All the matrices are constant matrices of appropriate dimensions. It may be noted that the
system (1b) is called the fast subsystems with small perturbation parameters ¢;.

€, €5, 1, 7 = 1, ... , N are the small positive singular perturbation parameters with the same order of
magnitude [1, 2] such that

O<Eij§aijz§gkij<oo. (3)

?

That is, it is assumed that the ratio of €; and ¢; is bounded by some positive constants.
In this paper, an H, filter to estimate system states x;(t) is designed. The states to be estimated are
given by a linear combination

where z;(t) e R%, i =1, ... ,N.
The estimation problem is to obtain an estimate 2;(¢) of z;(¢) using the measurements y;(¢) [6]. The
measure of the infinite horizon estimation problem is defined as a disturbance attenuation function

J=/O IZ(t)—é(t)II?:wlt'{/0 (Ilw(t)||3v1+|v(t)||2)dt} : (5)

where 2(t) = [ 2F(t) - 25@) 17, 200 =[ 7@ - 25@) ", wt) = [ wl@®) - %) ] and
v(t) = [ ol (t) - k() }T, and where R > 0 and W > 0 are weighting matrices to be chosen by designer.

The H filter is to ensure that the energy gain from the disturbances to the estimation errors z(t) — 2(¢) is
less than a prespecified attenuation level 42. That is,

sup J < 2. (6)

w, v



The H filter of (1) and (2) is given as follows [6]

N N
fo(t) = Ann&ol(t) +ZA0kfk(t> +ZF0knk<t>, (7a)
Ezgz (t) = AiOé.O( + Aufz + Z sznk} (7b)
ni(t) = vi(t) — Ciobo(t) — ufz() =1, .., N, (7c)
where the filter gain F' is obtained from
For -+ Fon
o - Fin
F=X.Cr=o7'xCT =o;! s (8)
Fyi -+ Fyn
and X, satisfies the SIGMARE
AeXe+ X AT — X, SX, +U, =0, (9)
with
. I”(J O . 1 k 3
o, = o L | I, ;= block diag ( e1l,, -+ enlny ),
Ao A
Ac:= { Modg Tot4, |»Aor=[ Ao - Aoy ],
Apoi=[ A%, - A%, 1", A;:=block diag ( A11 -~ Ann ),
C=[Co C;],Co=[CL - C% 1", C;:=block diag ( C11 --- Cnn ),
G=[Gy Gy, Go=[GL - G% ]", G :=block diag ( G11 --- Gnn ),
D .
D, = [ H;l(bf } Do:=[ Do1 -+ Doy ], Dy :=block diag( D11 -~ Dyn ),
W :=block diag ( Wy --- Wy ), R:=blockdiag( R1 --- Ry ),
Soo S, al
S:=C"C—y?G"RG = { S(‘jT; ;J{ } , So0 =Y _(ChoCro — v *GioRiGro),
k=1
Sop =] So1 -+ Sov | =] CloCi1 —72G{yR1G11 -+ CkoCOnn — 71 2GRoRNGNN |,
Sf := block diag( 511 SNN )
= block diag ( C{,C11 — v ?G{{R1G11 -+ CRNCnN —7 2GLNRNGNN ),

N
, Uoo :=Y_ Do Wi Dgy,

U.— D.WDT — [ Uoo UosIIct ]

'y, 17Ut

k=1
Uyg=[Un -+ U |=[ DuWiDf; -+ DonWnD%y ],
Uy :=block diag ( U1 -+ Unny ) = block diag ( D1uWiDT} -+ DyyWnD%y ).

It is noteworthy that the H,, filter does not require knowledge of the system and measurement noise intensity
matrices as compared with the standard Kalman filter [3, 12]. The difficulty encountered with the H, filter
for the GMSPS is that the SIGMARE contains a sign-indefinite quadratic term.

A solution X, of the SIGMARE (9), if it exists, must contain terms of order ¢; because the matrices A,
and D, contain the term of ¢ Lorder. Taking this fact into consideration, the solution X, to the SIGMARE
(9) with the following structure has to be found.

Xoo  Xoy

— _v7T -1 _ vTr—-1
X, = [Xon -, ] Xoo = Xy, T X = XTI Y,



. X1 a1 X2 a1 X1z - an1X1n
X4 X3, Xoo azaXa3 - an2Xan
Xof = : ; Xp o= : : :
X(%FN X;F(z:\ﬁq) XQT(J%—l) X?T(J;’:l) o aN(N-D)X(N-1)N
Xin Xon Xgy o XNN

In the following analysis, the basic assumption is needed.

Assumption 1 The Hamiltonian matrices Ty;, © = 1, ... , N have not eigenvalues on the imaginary axis,
AL g
where Ty; := © o
" [ Ui —Aii

Before solving the SIGMARE (9), the asymptotic structure is investigated. In order to avoid the ill-
conditioned caused by the large parameter 5;1 which is included in the SIGMARE (9), the following useful
lemma is introduced [14].

Lemma 1 The SIGMARE (9) is equivalent to the following generalized multiparameter algebraic Riccati
equation (GMARE) (10)

F(X)=AXT + XAT - XSXT +U =0, (10)
where A = ®,A,, U =®.U, P, and X = &.X,.
The GMARE (10) can be partitioned into

Foo = AgoXoo + XooAgy + Aoy Xor + Xop Al

—Xo00S00Xo0 — Xor S5 Xgr — XooSor X0y — XosSrXoo + Ugo =0, (11a)
Fog = Aos X} + AooXogIle + XooAfy + Xos AT

—Xo00S00 X0 Ie — Xog S0 Xofle — XooSor X} — XogSs X} + Uoy =0, (11b)
Fp=A;X] 4+ X;A7 + Ao Xoslle + 1. X3, ATy

—XySpX| —TeXg;S0r X} — XpS0pXoglle — e X So0Xofle + Uy = 0. (11c)

It is assumed that the limit of a;; exists as €; and ¢; tend to zero (see e.g., [1, 2]), that is

@ij: lim Qg (12)
Ej—>0+
87;—)0+

Let Xoo, X()f and )_(f be the limiting solutions of the above partitioned ARE (11) as ¢; — 01, ¢; —

0%, 4, j =1, ---, N, then the following equations are obtained.
AX{)‘O + XgoAT - XSOSXSO + Z/{ = 07 (133.)
Vv V¥ — In
Xoi= X% Ino | ToiTy;" [ T } , (13b)
where
N
AT -8 _
[ “u - } =Too = 3_ ToxTi Tho, (14)
k=1
Al =S, AL Sy,
Too := 00 0o To; := i0 vt
00 [ —Ugpy —Aw |”7” —Uoi —Aoi |’

_ [ A& =S5 _ [ AL S
Tio'_[UoI; —Aio » Tia = Uy —Aiu |’

Now, let us define the admissible design parameters [10].



v = max{Ys, ... ,Vfn}, Where 75, = inf{y | v € Ay} and Ay, := {y > 0 | The AREs (13c) A;;X; +
XiiAg; — XiSii Xii + Ui; = 0 have a positive semidefinite stabilizing solution, respectively.}, i =1, ... , N.

Using the similar technique used in [15], it is easy to verify that if a parameter v is selected such that
vs == max{vs, ..., Yty } <7, then the solution X; has the following form

X7 :=block diag ( Xj; -+ Xiy ). (15)

Moreover, the following set is defined [10].

vs :=inf{y |y € As}, where A; := {0 <+ | The ARE (13a) has a positive semidefinite stabilizing solution.}
As a result, for every v > 4 = max{~v,, 75}, the AREs (13a) and (13c) have the positive definite

stabilizing solutions. Hence, the limiting behavior of X, as the parameter |¢| := \/e5 4+ - -+ 3 — +0 is

described by the following lemma.

Lemma 2 Assume that there exists a positive scalar 5 such that for all ¥ <, the ARFEs (13a) and (13c)
have the positive semidefinite stabilizing solutions. Then there exists a small o* such that for all || € (0, o*),
for any v(> 7) the GMARE (10) admits a positive semidefinite stabilizing solution X, = ®;1X which can
be written as

:[ Xgo +O(ul) Xgp +0(lpl)
{Xp +0(e}” TZHXF+0(luh} |-

Proof : Since this can be proved by using a technique similar to that used in [15], it is omitted. W

v o[ Kao+OUu) X+ O(lul) |

MAX5, + O(lul)}T X7+ 0(|ul) (16)

3 A Numerical Algorithm for Solving the GMARE

In order to solve the GMARE (10) without the ill-conditioned, the following algorithm that is based on the
Newton’s method is established.

(A—XxWexnFDT L x4 _ xmG)T L x(gx™T L 7=0, XO =X n=o0, .., (17)
with
¢ { X5 Xoy } (n) X Xy
= vk vk ) X "= n n . (18)
n.X;, X; HeXéf)T ng )

The following theorem indicates the convergence of the algorithm (17).

Theorem 1 Assume that there exists a positive scalar 5 such that for all ¥ < v, the AREs (13a) and (13¢)
have the positive semidefinite stabilizing solutions. Under Assumption 1, there exists a small & such that
for all |u| € (0, 3), ¢ < o*, the Newton’s method (17) converges to the exact solution of X with the rate
of quadratic convergence, where X, = ®-1X is the positive semidefinite stabilizing solution. Moreover, the
convergence solution attains a unique solution X* of the SIGMARE (9) in the neighborhood of the initial
condition X(©) = X. In other words, the following condition is satisfied.

" o(lul*
pee - x < 1)~ o

2”)7 n= O’ 17 M (19)

where

L:=2|S|, B:=[[VFX)] ], n:=BIF(X)], 0:=pBnL,

OF(X) vecFyo vecXoo B Vec):( 600
VFX) := ST F(X):= | veckyy |, X:=| vecXoy |, X := | vecX,
vecF vecXy vec X

Proof : The proof follows directly by applying Newton-Kantorovich theorem [7] for the GMARE (10). It is
easy to verify that function F'(X) is differentiable on a certain convex set D. Using the fact that

_ OvecF(X)

VF(X):= Fvee X7~ (A= XS)® I]Unn + In ® (A= XS) = (Inz + Unp) - [In ® (A — X))



- N :
with 7 := )", ny results in

IVF(X:1) — VF(Xs)| < L| X1 — X3,
= |VF(X) — VF(X)| < L]|X, — Xa,

where £ = 2||S|. Moreover, the following result holds by using the similar technique in [15].

2
detVF(X) = [ [ detJi; + O(|ul),
=0

where

Joo=To®@ Iy + 1, @T0, J11 =T34 ® Iy, Joo =T4 @I + I;; @ Ty,
Lo :=A— X3S =T — [0y T,
'y = Ago — X000 — Xo5S0y, T2 = Aoy — X005 — X§5Ss,
N
F3 = AfO — X?Sg}, F4 = Af - X;Sf, n = an.
k=1

It is shown that there exists a small & such that for sufficiently small parameter |u| € (0, &), ¢ < o¥,
VF(X) is nonsingular because I'y and 'y = A — X3S are stable under Assumption 1 and the definition
7s (see e.g., Theorem 1 [1]). Therefore, there exists 3 such that |[VF(X)]~!| = 8. On the other hand, it
can be verified that |F(X)| = O(|u|) because AXT + XAT — XSXT + U = O(|u|). Hence, there exists
n such that n = |[VF(X)]7Y - |F(X)| = O(Ju|). Thus, for sufficiently small e;, there exists 6 such that
0 = BLn < 27! because 7 = O(|u|). Using Newton-Kantorovich theorem, the strict error estimate is given
by (19). Therefore, the proof is completed. B

It should be noted that no proof exists of whether the proposed algorithm fails to converge for large
parameter ;. In this paper, the convergence criteria for ¢; is established for the first time. Such a condition
is derived from the Newton-Kantorovich theorem [7].

Corollary 1 If the following inequality holds for any small parameter e; = &;, i =1, ... | N, algorithm (17)
guarantees quadratic convergence.

0(z1, ... ,En):=207-|S| <271, (20)
where

ﬁ = ﬂ(él, ,e’-:"]\/')7 ﬁ :77({-::17 ,51\/‘),

ﬁ(&l, 7EN) = H[V]:(X, E1y .- 76]\[)]_1”,

n(er, ... ,en):=pPe1, .. ,en) | F(X, e1, .. ,en)ls
VeCFo()

F(X, €1, ... ,en) = | vecFys
vecFy

Proof : Since it is clear that this proof can be derived by applying the Newton-Kantorovich theorem, it has
been omitted. W

4 Reduction Algorithm based on Fixed Point Algorithm

One needs to solve the generalized multiparameter algebraic Lyapunov equation (GMALE) (17) with the
N

dimension n := Z ng larger than the dimension n;, ¢ =0, ... , N compared with the exact decomposition

k=0
technique [3]. Thus, in order to reduce the dimension of the workspace, a new algorithm for solving the

GMALE (17) which is based on two fixed point algorithms is established. Let us consider the following
GMALE (21), in a general form.

AYT + VAT +T =0, (21)



where Y is the solution of the GMALE (21). Moreover, Y, A and T have the following forms, respectively.

e:=|ul = /el +-- + 7,

vh 1"
Yoo Yo - — :
Y= { .Y} YJ{ } » Yoo = Yoo, TI'Yy = Y/ TITY, Yoy o= " 7
Yon
A A T
A= |40 A [ e = (A Aoy L A= [ A 8% )7
A ehig -+ el
€A21 A22 5A2N
Af = . )
eAn1 eAn2 - Ann
Tl% ET12
T T €T12 TQQ
T::[T(%)f TO;LTOOZT(%?TOJ“: [T -+ Ton |, Ty = :

eTly Tl
It should be noted that for the GMALE (17),
XD oy, A-XMe = A, XWTSX™ LU = T,

where = stands for the replacement.
Moreover, taking the asymptotic structure (15) into account, since

Xy = X;+O(|ul) = block diag ( X7, -+ Xiy ) +O(ul),

without loss of generality, it can be supposed that Y has the following form.

Y, ag1€Y12  az1eYiz - ani1eYin
eY) Yoo ag2eYo3 - anoeYon
X}HH) =Yy = : : :
T T T
Yin-1) Yow-1 Y-  aNW-DEY(N-1N
eYiy eYaly eYsly T YN

The following condition for the GMALE (21) is assumed.

N
Assumption 2 A;;, i=1, ... |N and Ag := Ago — ZAOkA]:klAkO are stable.
k=1

The GMALE (21) can be changed as follows by partitioning.

AooYoo + YooAgo + AOfYOI} + YofAEff + Too = 0,
AooYorlle + AonfT + YOOA?O + YOfA? + Toy,
ApY + YiAT + ApoYorlle + I Y ATy + T = 0.

The following algorithm (24) for solving the GMALE (23) is given.

ApY DT L Y FUNT 4 A poYy P e + ILY TAT) + T =0, 1=0, 1, ..,

I+1 I+1 — l l _
AoYoo ™ + Vi TVAT — Aop AT (Moo Yo The + Top)T — (AooYof Tle + Tog) A7 TAL
— l nT _
Ao AT (A poYgf e + T Y TAT) + TH)ATTAL + Too =0, 1=0, 1, ..
Yot = (Mo YT+ YTTAT + Moo T + Top) AT, 1=0, 1, ...,

ETlN
ETQN

Inn

(23a)
(23b)
(23c)

(24a)

(24Db)
(24c¢)



where
VoY = Yor, Yor = —(Aos¥fF + YooA Dy + Tos) AT,
Yy :=block diag ( Y11 -+ Yyn ),
Ay Vi +YiAL + T, =0, j=1, ... N,
AoYoo + YooA§ — Mos A7 Toy — Tog Ay TAGy + Aop Ay T AL TAS; + Too = 0,
Ao = Ago — AOfA]lAfm Ao = Ao — AOf/_\]lAfm
/_\f := block dlag( A11 ANN ), Tf := block dlag( T11 TNN )

The following theorem indicates the convergence of the algorithm (24).

Theorem 2 Under Assumption 2, the fized point algorithm (24) converges to the exzact solutions Yoo, Yyo
and Yy with the rate of convergence of O(|u['*t), that is

l

Y =Ygl = o(ul), =0, 1, ..., (252)
l

[y = Yool = O(Jul™), 1=0, 1, ..., (25b)
l

sy = Yol = O(lul*h), 1=0, 1, .... (25¢)

Proof : The proof of Theorem 2 can be done by using the mathematical induction. It is easy to verify that
the first order approximations Yy, Yo and Y corresponding to the small parameter €; are Yy, Yor and Y,
respectively. It follows from these equations that

. i
[ = Y¢| = V5 = V¢ = O(lul), (26a)
1Yey) = Yool = [Yoo — Yool = O(ul), (26b)
1Ys? — Yosl = [Yor — Yosl = O(lul). (26¢)

When [ = h, h > 1, it is assumed that

h

[y = vy = o(lul™*h), (27a)
h

[Y50” = Yool = O(Jul™*"), (27D)
h

[Yar) = Yorl = O(lul"). (27¢)

Subtracting the partitioned algebraic matrix equation (23) from (24) and setting k = h, the following
equations hold under the above assumptions (27).

h+1 h+1
A (VY =y 4+ (v = Yp)AT = O(Jul ), (282)
Ao(Ygo ™ = Yoo) + (Yo ™ = Yoo) AT = O(lul"?), (28b)
h+1 h+1 h+1 _
Yot = Yog = —[Bop (V") = ¥)T 4 (Vg™ = Yoo) ATy + Ol *+2)]A " (28¢)
After the cancellation takes place, since Ag and Af = block diag( A1 - Ann ) are stable from
Assumption 2, the following relations hold using the result of [8].
h
[V =5l = O(lul" ), (292)
h
[¥56” = Yool = O(lul"*2), (29b)
h
[Yyf! = Yosl = O(lul"*2). (29c)

Consequently, the error equations (25) hold for all ¥ € N. This completes the proof of Theorem 2. B
N

When the ALE (24a) is solved, very large computational dimension 7 := an is needed. Thus, the

k=1
reduction of the dimension of the computing workspace must be needed. Therefore, the new algorithm for



solving the ALE (24a) which is based on the other fixed point algorithm is established. Let us consider the
following ALE (30), in a general form.

vz + 7,97 +V, =0, (30)

where Z, is the solution of the ALE (30). Moreover, Z., ¥, and V. have the following forms, respectively.

[ Zn 16412 (31E413 v anN1EZIN
5Z1T2 Z92 Q3o€l23 - QaN2EdoN
Ze = : : : : :
5Z1T(N71) sZzT(Nfl) EZ:J,T(NA) c o an(N—1)EZ(N—1)N
eZy eZ3n €Zin - ZNN
Uy P --- e¥ypn Vii eVia - eVin
Vs WUy -+ eVsy eVh  Var v eVan
‘Ile = . . . . 5 Ve = . . . .
| e¥n1 e¥ng - Upny eVl eV - Vaw

It should be noted that for the ALE (24a),
Y'Y = Ze, Ap = e, ApoY P + ILY P AL + Ty = Ve

where = stands for the replacement. Furthermore, the ALE (30) is a part of the ALE (21). Namely, the
ALE (30) stands for the ALE (24a).
Without loss of generality, the following condition for the ALE (30) is also assumed.

Assumption 3 ¥;;, i =1, ... , N are stable.

The following algorithms (31) for solving the ALE (30) are newly given.

Uy 20 4z T e Zakl (W, 27 4 2 eT ) 4 vy, =0, (31a)
k=2

U 2+ ZTIE 4 e Z V.2 + 20T

N

+52 Z aki(\IIikZi( T + Z(m)‘l/ ) Vii = 07 i = 2) aN -1, (31b)
k=i+1
N-—1
UnnZNN D+ 2N DR+ D (T2 + 2R TR + Vi =0, (31Lc)
k=1
U ZO + ag 20O, + 20T 4w,z
N
+e > (Vi Zy)T + o Z5 L) + Via = 0, (31d)
k=3

(m+1) (m+1) §T (m+1) T (m+1)
Yv_nyv-1Z(n_yn Tanw-n 4 (NN Y NN T E vy vy Yvv—ny T ¥ v-yn Dy
N—-2
+e Z Zl(czn\; + Z;(CZ\)/:)‘I’JT%) +Vin-yn =0, (31e)

k=1
m=20, 1, -
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Table 1. Convergence solution X, := [ i((gi Hj_(lo §(f } .
1.5086 —4.3532¢ —01 —1.7459¢ — 02  4.5398¢ — 02  5.2563¢ — 01
—4.3532¢ — 01 1.5161  4.6813¢ — 02 —1.5798¢ — 02 —5.1866e — 01
Xoo = | —1.7459¢ —02  4.6813¢ —02  7.8337¢ — 03  7.7249¢ — 04  1.7988¢ — 03
4.5398¢ — 02 —1.5798¢ — 02  7.7249¢ — 04  7.7619¢ — 03 —1.5713¢ — 03
5.2563¢ — 01 —5.1866e —01  1.7988¢ — 03 —1.5713e — 03 2.4501
[ —1.3497¢ — 02 4.3835¢ — 02 —1.9364e — 01 —1.5877¢ — 01
—2.8435¢ — 01 —2.6978¢ — 01 —1.1308¢ — 01 —6.5749¢ — 02
Xof = 8.8320e — 03 —1.8211e —02 —6.7232¢ — 03 —6.3278¢ — 03
—2.9107e — 03 —2.8025¢ — 03  1.1808¢ — 02 —1.4738¢ — (02
3.8083¢ — 02 —2.7966e — 02 —9.440le —03  5.0702e — 02
1.4174 1.4870 4.8844e — 02 3.5509¢ — 02
0-1x, — 1.4870 4.8399 3.9452¢ — 02 3.1745e¢ — 02
e f 4.8844e — 02 3.9452¢ — 02 2.7847 2.9315
3.5509¢ — 02 3.1745¢ — 02 2.9315 9.5689

where

0 ~ 0 = . .
Zi(i) = Zj;, Zi(j) = Z;j, 1 < J,
\I/iiZii + Z”\I/z; + Vi =0, \IfiiZij + Oz]‘iZij\I/jTj + Z“\I/ﬁ + \I/iijj + Vij =0.

The following theorem indicates the convergence of the fixed point algorithm (31).

Theorem 3 Under Assumption 3, the fized point algorithm (31) converges to the exact solution Z;; with
the rate of

125 = Zig] = O(e™+?), m =1, ..., (32a)
120" — Zij| = O™, i< j, m=1, ... (32b)

Proof : Since the proof of Theorem 3 can be also done by using mathematical induction and the fixed point
theorem, it is omitted. W

An algorithm which solves the SIGMARE (9) with the small positive parameters ¢; is given below.
Step 1. Solve the AREs (13) that are given as the initial conditions of the Newton’s method (17).
Step 2. In order to carry out the Newton’s method (17), apply the new proposed algorithm (24).

Step 3. In order to reduce the dimension of the workspace for solving the ALE (24a), apply the new proposed
algorithm (31).

Step 4. Solve the solutions Yf(lH) and YO%H) of the ALE (24a) and (24b), respectively and compute Y((Z)H)
using the relation of (24c). As a result, the sequence of solution of the Newton’s method (17) is obtained.

Step 5. If the new combined algorithm converges, go to Step 6. Otherwise, increment n — n+ 1 and go to
Step 2.

Step 6. Calculate the solution X, of the SIGMARE (9) by using (16).

5 Computational Example

In order to demonstrate the efficiency of the proposed algorithm, the computational examples are given.
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5.1 Example 1
The system matrices of the GMSPS (1) are given as follows.

0 0 4.5 0 1 0 0 0 0
0 0 0 4.5 -1 0 O 0 O
Aw=1]0 0 —005 0 —01],An=]01 0], Ap=] 0 0],
0 0 0 —0.05 0.1 0 0 0.1 0
0 0 327 —-32.7 0 0 0 0 0
0 0 0 0 0 0 0 O 0 0 —0.05 0.05
A0=109 0 —04 0 0}’ A20_[0 0 0 —04 0}’A11_A22_[ 0 0.1]’
0
A1z = Ag1 = Oaxa, Do1 = Doz = Osx1, D11 = Do = [ 01 } )
1 0 0O 001 0 0 O
01 0 0 0 0 1 0 O
C=G=117 000000 10| Wl E=2
01 0 0 0 0 0 0 1
Table 2. Error per iterations. Table 3. Error |F(X)].
n [E(X™)]| €1 =€ | Proposed algorithm MATLAB
0 7.7301e — 03 1.0e — 02 7.7810e — 13 7.2625e — 13
1 1.1110e — 03 1.0e — 03 2.2080e — 13 6.0496e — 12
2 6.6036e — 07 1.0e — 04 1.8019¢ — 14 2.0564e — 10
3 5.9791e — 13 1.0e — 05 2.1075e¢ — 14 2.2429e — 08

It should be noted that the technique proposed in [3] to the MSPS can not be applied because the Hamiltonian
matrices Tj;, ¢ = 1, 2 have eigenvalues in common. The small parameters are chosen as €; = 0.01, g5 = 0.005.
For every boundary value v > 4 = max{v;, 77} = 4.4722, the ARE (13a) and the AREs (13c) have the
positive definite stabilizing solution, where vy, = 3.6515, v, = 3.6515 and v, = 4.4722.

When v = 5, a solution of the SIGMARE (9) is given in Table 1. It can be verified that the algorithm
(17) converges to the exact solution with accuracy of |F(X()| < 107'2 after three iterations. In order to
verify the exactitude of the solution, the remainder per iteration is computed by substituting X (™ into the
GMARE (10). In Table 2, the results of the error |F(X )| per iterations are given. It can be seen that
the initial guess (18) for the algorithm (17) is quite good and the proposed algorithm (17) has quadratic
convergence.

In order to compare the solution X, that is computed by using the function are of MATLAB with the
solution that is obtained through the algorithm (17), the remainder of the errors are given in Table 3. From
Table 3, it is shown that the resulting algorithm of this paper is very useful for the small parameters ¢;.
Moreover, it appears that the proposed algorithm is superior than the function are of MATLAB that is
based on the Schur method [4].

From the viewpoint of this example, it should be noted that when the fixed-point algorithm is applied,
even if the number of fast subsystems is greater than two, the computing workspace required for the filter
gain is the same as the dimension of the fast subsystems. In other words, even if the GMSPS (1) are
composed of N two-dimensional fast subsystems, the required workspace is two for the algorithm (31).

5.2 Example 2

Consider the system (1) with

o, = | L Y | I, = block diag ( )

e =g q1, |» = ock diag ( 61 &3 &3 ),

A — Ao Aoy

I Ape TIA;
T T

AfO::[AlTO Al A3TO] :[1 2 3} ,

A :=block diag( Ay Axg Ass ):block diag( -1 -1 -1 ),

.f Do
De := [ He_lDf

:|aA0f3:[A01 A Ags |=[1 1 1],

}’Doi[Dm Doz Dog |=[1 1 1],
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Table 4. Error per iterations.

n [EX)]

0 9.7210e — 02
1 1.2914e — 03
2 5.6044e — 07
3 5.6265e — 11
4 3.5975e — 15

Table 5. Convergence solution.

1.4520 2.1707 3.2454 4.3079

X — 2.1707 4.3214e + 02 2.7135 3.6477
7| 3.2454 2.7135 2.2011e + 02 6.7781
4.3079 3.6477 6.7781 1.5314e + 02

Table 6. Convergence criteria.
e1=e2=¢€3=1.0e — 03 e1=e2=¢e3=1.0e — 04

e1=e9=¢e3=1.0e — 02 e1=ecg9=¢e3=1.0e — 05

(% 3.2184e — 01 3.3568¢e — 02 3.3711e — 03 3.3726e — 04
Table 7. Solutions and errors.
1.4214 2.1542 3.2305 4.3060
Y MAT _ 2.1551e — 07 4.3037¢ — 01 3.0881le — 06 1.2496e — 05
“ | 6.4630e — 07 —3.2858¢ — 05 4.3050e — 01 6.0356e — 05
1.2914e — 06 2.7288e¢ — 08 8.8993e¢ — 06 4.3050e — 01
1.4225 2.1566 3.2319 4.3072
YNEW _ 2.1566e — 07 4.3050e — 01 2.7156e — 07 3.6647e — 07
T | 6.4639¢ — 07 5.4312e — 07 4.3050e — 01 1.3678¢ — 06
1.2922e — 06 1.0994e — 06 2.0517¢ — 06 4.3050e — 01
[F(XMAD)] [F(XNEW)]
1.1312e — 02 3.7343e — 15
Dy := block diag( D11 Dyy D3z ) = block diag( -1 -1 -1 ) ,
01 00
C=G=|001 0|, W=I, R=1, y=2.
0 0 0 1

In order to evaluate the convergence criteria, the values of 6 of (20) should be calculated. First, the
partitioned equation of the GMARE (10) can be obtained as follows.

Fy, Fy F3 Fy pP1 D2 D3 Da
F(X) = AXT + XAT - XSXT + U = F, Fs Fs Fr X = | P2 oPsocups ampr
F3 Fs Fg Fy P3s DPeé  DPs  (32D9
F, F; Fy Fy P4 Pt Do P1o
where F; := Fy(X, €1, €3 ,€3), 1 = ,10, T =1 — 72
Fi(X, €1, €9 ,e3) = —(p2+p3 +p3)T +2(p1 +p2 +p3 +pa) + 3,
Fy(X, €1, €2 ,€3) = —(paps + a21p3pe + az1pap7)l + p1 + (61 — 1)p2 + ps + a21pe + azipr + 1,
F3(X, €1, €2 ,e3) = —(pape + p3ps + 32papo)T + 2p1 + (€2 — 1)p3 + pe + ps + azapg + 1,
Fy(X, €1, €2 ,e3) = —(pap7 + p3po + pap1o)T + 3p1 + (e3 — 1)ps + p7 + po + p1o + 1,
F5(X, €1, €2 ,e3) = —[p? + (a21p6)® + (cz1p7)?IT + 2(e1p2 — ps) + 1,
Fs(X, 1, g2 ,63) = —(pspe + a21P6Ps + az1a32p7P9) [ + 2€1p2 + €2p3 — 21P6 — P,
Fr(X, €1, €2 ,e3) = —(pspr + a21pspo + az1prp10)l + 3e1p2 + €3ps — az1p7r — pr,
Fy(X, €1, €2 ,e3) = —[pg + p3 + (a30p9)?]T" + deaps — 2ps + 1,
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Fy(X, €1, €2 ,e3) = —(pep7 + pspo + az2pop10)L’ + 3e2p3 + 2e3ps — pocrsa — Py,
Fio(X, €1, €2 ,e3) = —(p? + p§ + p1o)T + 6e3ps — 2p1o + 1.

Therefore, the related equations (20) are given below.
Bler, €2 ,e3) == |[VF(X, &1, e2 753)]_1”’
n(er, e2 ,e3) = Ble1, €2 ,e3) - |F(X, €1, €2 ,€3)],

OF (X, €1, €9 ,¢
V]-'(X, €1, €2 ,63) = ( 6/;71 2 3),

F(X,e1,e0,e3):=|F F, F3 Fy F5 Fg F; Fs Fy Fy
XT:=[p1 p2 p3s ps Ps P Pr Ps Po DPio |,
VF(X, €1, €2 ,€3)

1"

[2 Z5p Z13 E4 0 0 0 0 0 0 ]
1 Ezp Eoz EHag Ezs EZas  Eor 0 0 0
2 —pel' Z33 Z3¢ 0 Ez 0 E3s  Eag 0
3 —pI' 243 24 O 0  Eur 0 Ei1  Eaio
. 0 261 0 0 555 ES6 557 0 0 0
N 0 21 e 0 Ees Ze6 Zer =68 =69 0 ’
0 3 0 e Ers Zre Zr7 0 E79  E710
0 0 462 0 0 586 0 Eg7 Egg 0
0 0 32 283 0 Egs Eg7 —pol' Zgg Zo1o
L 0 0 0 663 0 0 3107 0 5109 31010 ]
B2 = —2pol' +2, By3 = —2p3l' + 2, 514 = —2p4' + 2, Zpo = —psl' + 61 — 1,

Zo3 = —ao1pel’, o = —asiprl, Eos = —pol' + 1, o6 = (—p3l' + 1)1, Zor = (—pal + 1)y,
E33 = —psl' +e2 — 1, Egq = —azepol’, B3 = —pol' + 1, E3g = —p3l'+ 1, Eg9 = (—pal’ + 1)asz,
B4z = —pol', Baa = —prol’ +e3 -1, By = —p2I' + 1, g9 = —p3l' + 1, Eg10 = —pal' + 1,

S5 = —2psI' — 2, E56 = —203,p6l, Es57 = —2a3,p7L, g5 = —pel,

Ze6 = —ps' — ao1psl’ — 1 — a1, Eg7 = —aziazepol’, Egg = —aa1psl,

69 = —ag1a3eprl’, Zrs = —p7l', Er¢ = —amipol’, Zr7 = —psI' — agipiol’ — 1 — asy,
Er9 = —ao1pel, E710 = —aziprl, Esg = —2pel, Egr = —2psl — 2, Egg = —2a3,pol,
o6 = —praa1l’, Eg7 = —peas1l’, Eg9 = —psI’ — azop1ol’ — 1 — asa,

Eg10 = —azepol’, 197 = —2a21p7l’, E109 = —2pol’, Z1010 = —2p10l” — 2.

Using the above results, the value of the convergence criteria (20) of the Newton’s method is
0 := 6(0.001, 0.002, 0.003) = 6.9774e — 02 < 27!

for e;1 = 0.001, 2 = 0.002, 5 = 0.003. Hence, since the inequality (20) holds, the asymptotic structure of
the solutions with uniqueness, positive semidefiniteness and quadratic convergence is attained. In fact, it
can also be verified that the algorithm (17) converges to the exact solution with quadratic convergence after
four iterations. The remainder per iteration is given in Table 4. Moreover, a solution of the SIGMARE (9)
is given in Table 5. On the other hand, Table 6 shows the values of € for various values of ¢;. It is verified
for the first time that for various ;, since the convergence criteria is satisfied, the quadratic convergence is
guaranteed for sufficiently small ¢;.

It should be noted that convergence criteria (20) is a conservative condition. Hence, even if such a
condition is not satisfied, a required solution that attains quadratic convergence might exist.

Finally, in order to compare the solution XMAT that is computed by using the function are of MATLAB
with the solution XNEW that is obtained through the algorithm (17), the remainder of the errors and these
solutions are given in Table 7 under the conditions that the sufficiently small perturbation parameters are
chosen as €1 = 1.0e — 07, g5 = 2.0e — 7, and €3 = 3.0e — 07. From Table 7, it can also be verified that
as compared with the previous example, the resulting algorithm of this paper is very reliable for the small
parameters ¢;. Moreover, the computational dimension that carries out the Newton’s iterations is scalar.
Thus, taking into account the fact that the Schur method [4] needs eight dimensions, it appears that the
proposed algorithm is very attractive.
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6 Conclusion

In this paper, a new iterative algorithm for solving the SIGMARE that has sign-indefinite quadratic form has
been proposed. The proposed algorithm consist of the Newton’s method and two fixed point algorithms. As a
result, it has been proven that the solution of the SIGMARE converges to a positive semi-definite stabilizing
solution with the rate of convergence of O(|u|?"). Moreover, the reduction of the computational work space
can be attained even if the GMSPS has many fast subsystems as compared with the existing results [11, 12].
As another important features, the assumption that the Hamiltonian matrices for the fast subsystems have
no eigenvalues in common is not needed. This advantage admits the using of the proposed algorithm to the
GMSPS. Moreover, the convergence criteria of the Newton’s method for the GMSPS has been derived for
the first time. Finally, the numerical examples have shown excellent results that the proposed algorithm has
succeeded in reducing the computational workspace and the quadratic convergence has been attained under
the condition that the convergence criteria was satisfied.
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