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Abstract
In this paper, we analytically investigate three efficient estimators for cointegrating

regression models: Phillips and Hansen’s (1990) fully modified OLS estimator, Park’s
(1992) canonical cointegrating regression estimator, and Saikkonen’s (1991) dynamic
OLS estimator. We consider the case where the regression errors are moderately serially
correlated and the AR coefficient in the regression errors approaches 1 at a rate slower
than 1/T , where T represents the sample size. We derive the limiting distributions of
the efficient estimators under this system and find that they depend on the approaching
rate of the AR coefficient. If the rate is slow enough, efficiency is established for the
three estimators; however, if the approaching rate is relatively faster, the estimators will
have the same limiting distribution as the OLS estimator. For the intermediate case, the
second-order bias of the OLS estimator is partially eliminated by the efficient methods.
This result expl! ains why, in finite samples, the effect of the efficient methods diminishes
as the serial correlation in the regression errors becomes stronger. We also propose to
modify the existing efficient estimators in order to eliminate the second-order bias,
which possibly remains in the efficient estimators. Using Monte Carlo simulations, we
demonstrate that our modification is effective when the regression errors are moderately
serially correlated and the simultaneous correlation is relatively strong.
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1. Introduction

Since the seminal work of Engle and Granger (1987), cointegrating regressions have become

one of the standard tools for analyzing integrated variables. With regard to the estimation

of cointegrating regression models, it is well known that the ordinary least squares (OLS)

estimator contains the second-order bias, comprising the endogeneity bias and the non-

centrality bias, when the I(1) regressors are endogenous and/or the regression errors are

serially correlated. Thus, several efficient methods for estimating cointegrating regressions

have been proposed in the literature. Phillips and Hansen (1990) proposed a nonparametric

correction for the OLS estimator; their method is known as the fully modified regression

(FMR) method and it was further developed by Phillips (1995) and Kitamura and Phillips

(1997). Park (1992) proposed the canonical cointegrating regression (CCR) method, which

is also based on a nonparametric correction that is similar to the FMR method. However, the

! CCR method eliminates the non-centrality bias in a different manner. On the other hand,

Phillips and Loretan (1991), Saikkonen (1991), and Stock and Watson (1993) considered a

parametric correction by adding leads and lags of the first difference of the I(1) variables

as regressors; this method is known as the dynamic ordinary least squares (DOLS) method.

These three efficient estimators—FMR, CCR, and DOLS —are asymptotically equivalent,

and as proved by Saikkonen (1991), they are efficient.

However, the finite sample behavior of these estimators is fairly different as reported by,

for example, Inder (1993), Montalvo (1995), Cappuccio and Lubian (2001), and Christou

and Pittis (2002) using Monte Carlo simulations. The first two papers recommend the use of

the DOLS type approach to eliminate the second-order bias of the OLS estimator, whereas

the last paper demonstrated that the FMR estimator outperforms the DOLS estimator in

terms of the bias; thus, the answer to the question of which estimator performs best in finite

samples remains inconclusive. It appears that the performance of the three efficient estima-

tors is fairly dependent on the data generating process used in Monte Carlo simulations, as

pointed out by Cappuccio and Lubian (2001). However, these Monte Carlo simulations com-

monly suggest that the efficient estimation methods break down and perform very poorly
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when the cointegrating regression errors are strongly serially correlated. Although the finite

s! ample performance of the FMR and CCR estimators may improve if the prewhitening

method by Andrews and Monahan (1992), which has been further modified by Sul, Phillips,

and Choi (2005), is used to estimate the long-run variance, a large bias still remains in the

estimator as shown in the discussion paper version of this paper.

In this paper, we analytically explain the poor performance of the three efficient esti-

mators with a moderate serial correlation. We introduce the local-to-unity system in which

the AR coefficient approaches 1 at a rate slower than 1/T , where T represents the sample

size. This type of local-to-unity system is considered by Phillips and Magdalinos (2007a,

b) and Giraitis and Phillips (2006). We will demonstrate that the limiting distributions

of the efficient estimators change depending on the approaching speed of the AR coeffi-

cient. Intuitively, the three efficient methods can eliminate the second-order bias of the

OLS estimator if the AR coefficient approaches 1 slowly enough; however, these methods

no longer work well when the approaching speed is very fast. For the intermediate case, the

second-order bias of the OLS estimator is partially eliminated by these efficient methods;

however, a part of the bias still remains. This result explains why the effect of the effici! ent

methods diminishes as the serial correlation in the regression errors becomes stronger. We

will demonstrate that the result depends on a relation between the approaching speed of the

AR coefficient and the diverging rate of the bandwidth parameter used for the estimation

of the long-run variance in the FMR and CCR methods or the diverging rate of the lead-lag

truncation parameter used in the DOLS method. We also propose to modify the FMR and

CCR estimators in order to eliminate the second-order bias when the regression errors are

moderately serially correlated. The estimation of the localizing parameter plays a key role

in our modification.

The remainder of this paper is organized as follows. In Section 2, we briefly review the

FMR, CCR, and DOLS methods. Section 3 investigates the asymptotic properties of the

three efficient estimators as well as the OLS estimator under the local-to-unity system in

which the AR coefficient approaches 1 at a rate slower than 1/T . In section 4, we propose
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the modified FMR and CCR estimators, and in section 5, the finite sample properties of

the estimators are investigated using Monte Carlo simulations. Concluding remarks are

provided in Section 6.

2. Review of the Efficient Estimation Methods

This section reviews the three efficient estimators for cointegration regression models. Let

us consider the following model:

yt = μ+ β′xt + u1,t = θ′zt + u1,t

Δxt = u2,t
(1)

for t = 1, · · · , T , where θ = (μ, β′)′, zt = (1, x′t)′, and yt and xt are observed time series with

1 and n dimensions, respectively. For ut = [u1,t, u
′
2,t]

′, we assume that the functional central

limit theorem (FCLT) can be applied as follows:

1√
T

[Tr]∑
t=1

ut ⇒ B(r) =
[
B1(r)
B2(r)

]
(2)

for 0 ≤ r ≤ 1, where B(·) is a Brownian motion on [0, 1] with a variance-covariance matrix Ω

(B(·) ∼ BM(Ω)) and ⇒ signifies weak convergence of the associated probability measures.

We assume that Ω is positive definite. Note that the long-run variance of ut and its one-sided

version can be expressed as

Ω = Σ + Φ + Φ′ and Λ = Σ + Φ,

where Σ = lim
T→∞

1
T

T∑
t=1

E(utu
′
t) and Φ = lim

T→∞
1
T

T−1∑
j=1

T−j∑
t=1

E(utu
′
t+j).

We partition Ω and Λ conformably with ut as

Ω =
[
ω11 ω12

ω21 Ω22

]
Λ =

[
λ11 λ12

λ21 Λ22

]
=
[
λ1

Λ2

]
. (3)

It is known that the OLS estimator of θ, denoted by θ̂, is consistent but inefficient

in general. The centered OLS estimator with a normalizing matrix DT = diag{√T , TIn}
weakly converges to

DT (θ̂ − θ) ⇒
(∫ 1

0
B2(r)B

′
2(r)dr

)−1(∫ 1

0
B2(r)dB1(r) + [0, λ′21]

′
)

(4)
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where B2(r) = [1,B′
2(r)]

′ and we can observe that this limiting distribution contains the

second-order bias from the correlation between B1(·) and B2(·) and the non-centrality pa-

rameter λ21. As explained in Phillips and Hansen (1990) and Phillips (1995), the former

bias arises from the endogeneity of the I(1) regressor xt while the non-centrality bias comes

from the fact that the regression errors are serially correlated.

In order to eliminate the second-order bias, Phillips and Hansen (1990) propose the FMR

estimator, which is defined as

θ̂FMR =

(
T∑

t=1

ztz
′
t

)−1( T∑
t=1

zty
+
t − T Ĵ+

)
, (5)

where y+
t = yt − ω̂12Ω̂−1

22 u2t and Ĵ+ =
[

0
λ̂21 − Λ̂22Ω̂−1

22 ω̂21

]
,

with ω̂12, Ω̂22, λ̂21, and Λ̂22 being consistent estimators of ω12, Ω22, λ21, and Λ22, respectively.

It can be shown that the correction term for yt is associated with the correction for the

endogeneity bias while Ĵ+ eliminates the non-centrality bias.

In order to define the CCR estimator, we first modify yt and xt such that

y∗t = yt −
(
β̂′Λ̂2Σ̂−1 + [0, ω̂12Ω̂−1

22 ]
)
ût and z∗t = (1, x∗

′
t )′ with x∗t = xt − Λ̂2Σ̂−1ût,

where β̂ is the OLS estimator of β and ût = [û1t,Δx′t]′ consists of the OLS residuals and the

first difference of the I(1) regressors. Then, the CCR estimator proposed by Park (1992) is

defined as

θ̂CCR =

(
T∑

t=1

z∗t z
∗′
t

)−1( T∑
t=1

z∗t y
∗
t

)
. (6)

The CCR method uses the same principle as the FMR method in order to eliminate the

endogeneity bias, while it deals with the non-centrality parameter in a different manner.

Contrary to the non-parametric approaches adopted by the FMR and CCR methods, the

DOLS method is based on parametric regressions. Phillips and Loretan (1991), Saikkonen

(1991), and Stock and Watson (1993) propose to augment the leads and lags of the first
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difference of xt as regressors and to estimate

yt = θ′zt +
K∑

j=−K

π′jΔxt−j + ηt. (7)

The DOLS estimator is defined as the OLS estimator of θ for (7):

θ̂DOLS =

(
T−K∑

t=K+1

z̃tz̃
′
t

)−1( T−K∑
t=K+1

z̃tỹt

)
, (8)

where z̃t and ỹt are regression residuals of zt and yt on wt = (u′2,t+K , ..., u
′
2,t−K)′, respectively.

The regression form (7) is based on the fact that under some regularity conditions, the

regression errors u1,t in (1) can be expressed as

u1,t = vt +
∞∑

j=−∞
π′ju2,t−j = vt + rt, (9)

where rt =
∑∞

j=−∞ π′ju2,t−j and
∑∞

j=−∞ ||πj || <∞ with || · || being the standard Euclidian

norm; further, vt is uncorrelated with u2t−j for all j. For details, refer to Brillinger (1981).

From (9), we observe that

ηt = vt +
∑
|j|>K

π′ju2,t−j . (10)

The uncorrelatedness of vt with all the leads and lags of u2,t is an important property

to prove that the DOLS method successfully eliminates the second-order bias of the OLS

estimator.

As explained in Phillips and Hansen (1990), Saikkonen (1991), and Park (1992), these

three efficient estimators have an identical limiting distribution that is given by

DT (θ̂E − θ) ⇒
(∫ 1

0
B2(r)B

′
2(r)dr

)−1 ∫ 1

0
B2(r)dB1·2(r), (11)

where θ̂E = θ̂FMR, θ̂CCR, and θ̂DOLS and B1·2(·) ∼ BM(ω1·2) is independent of B2(·) with

ω1·2 = ω11 − ω12Ω−1
22 ω21. Then, we observe that the three efficient methods can eliminate

both the endogenous bias and the non-centrality parameter. Moreover, Saikkonen (1991)

showed that this limiting distribution is efficient in a certain class of estimators.
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3. Asymptotic Properties of the Estimators with Moderately Serially

Correlated Errors

3.1. Model and assumptions

This section investigates the asymptotic properties of the three efficient estimators as well

as the OLS estimator when the cointegrating regression errors are moderately serially cor-

related. As explained in Section 1, the finite sample performance of the efficient estimators

gradually becomes poorer as the serial correlation in the regression errors becomes stronger.

In order to explain this finite sample evidence using asymptotic theory, we consider model

(1) with the following structure in the error term:

yt = θ′zt + u̇1,t, u̇1,t = ρu̇1,t−1 + u1,t, Δxt = u2,t, (12)

ut =
∞∑

j=0

Ψjεt−j ,

∞∑
j=1

j2‖Ψj‖ <∞ with Ψ0 = In+1, (13)

where u1,0 is some constant independent of T , ut = [u1,t, u
′
2,t]

′, εt = [ε1,t, ε
′
2,t]

′ ∼ i.i.d.(0,Σε)

with a spectral density function bounded away from 0 and above and with finite δ-th moment

for some δ > 4, and ‖ · ‖ is a matrix norm defined by ‖A‖ = (tr(A′A))1/2 for a given matrix

A. Note that for a given sequence of {Ψj}, the strength of the serial correlation in the error

term can be changed by the AR coefficient ρ.

Following Phillips and Solo (1992), let us decompose ut into

ut = ΨLεt + ũt−1 − ũt, where ΨL =
∞∑

j=0

Ψj , ũt =
∞∑

j=0

Ψ̃jεt−j , Ψ̃j =
∞∑

i=j+1

Ψi. (14)

Note that ũt is stationary with
∑∞

j=1 j‖Ψ̃j‖ <∞. The short- and long-run variance matrices

of ut are defined in a manner similar to that in the previous section:

Σ = E(utu
′
t) =

∞∑
j=0

ΨjΣεΨ′
j, Ω =

∞∑
j=−∞

E[utu
′
t+j] = ΨLΣεΨ′

L,

Φ =
∞∑

j=1

E[utu
′
t+j] =

∞∑
j=1

∞∑
i=0

ΨiΣεΨ′
i+j =

∞∑
i=0

ΨiΣΨ̃′
i, Λ = Σ + Φ.
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We assume that Ω is positive definite. Note that the weak convergence (2) holds under the

above assumption. We can also observe by Theorems 3.8.3 and 8.3.1 of Brillinger (1981)

that the relation (9) holds with
∑∞

j=−∞ j2‖πj‖ <∞.

With regard to the FMR and CCR estimators, we focus on the case where the long-run

variances are estimated by the kernel method as follows:

Ω̂ = Σ̂ + Φ̂ + Φ̂′ and Λ̂ = Σ̂ + Φ̂,

where Σ̂ = Γ̂(0), Φ̂ =
T−1∑
j=1

k

(
j

M

)
Γ̂(j), and Γ̂(j) =

1
T

T−j∑
t=1

ûtû
′
t+j

with ût = [ˆ̇u1,t,Δx′t]′, where ˆ̇u1,t is the regression residual of yt on zt and k(·) is a kernel

function.

Before proceeding with the asymptotic analysis, it is necessary to state two assumptions

concerning the kernel method and the lead-lag truncation parameter.

Assumption 1 (a) The kernel k(·) : R → [−1, 1] is continuous at zero, k(0) = 1,

supr≥0 |k(r)| < ∞, and
∫
[0,∞) k̄(r)dr < ∞, where k̄(r) = sups≥r |k(s)|. (b) The bandwidth

parameter M goes to infinity as T → ∞ and M = o(T 1/2).

Assumption 2 (a) K = o(T 1/2). (b) K
∑

|j|>K ||πj|| → 0.

Assumption 1 is sufficient to consistently estimate the long-run variances. See Jansson

(2002). Assumption 2 is provided by Kejriwal and Perron (2008) and is different from that in

Saikkonen (1991) in which it is assumed that (a’) K = o(T 1/3) and (b’) T 1/2
∑

|j|>K ||πj || →
0. The assumptions (a) and (a’) are associated with the upper bound condition on K;

Kejriwal and Perron (2008) proved that K can increase at a faster rate than that considered

by Saikkonen (1991). The assumptions (b) and (b’) provide the lower bound condition

on K; the matter of importance is that (b’) excludes the case where K is chosen by an

information criterion, while (b) is sufficiently general for K to increase at a logarithmic rate

and then allow an information criterion for the selection of K. Note that Assumption 2 (b)
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is automatically satisfied in our model because K
∑∞

|j|>K ‖πj‖ ≤∑
! |j| > K∞j‖πj‖ → 0 as

K → ∞, which is guaranteed by
∑∞

j=−∞ j2‖πj‖ <∞.

Under Assumptions 1 and 2, it is shown that when ρ is fixed, the centered estimators have

the same limiting distributions as given by (4) and (11). However, the assumption of the

fixed ρ is not necessarily appropriate when the error term is moderately serially correlated.

In the following subsection, we consider a local-to-unity system such that ρ approaches 1 as

T goes to infinity.

3.2. Asymptotic properties with the N local-to-unity system

In this section, we consider the case where the AR coefficient ρ is moderately or relatively

strongly close to 1. Such a case can be modeled by the N local-to-unity system, which is

defined as

ρ = ρN = 1 − c

N
, N → ∞ and

N

T
→ 0. (15)

Note that the N local-to-unity system is different from the conventional local-to-unity sys-

tem with ρ = 1−c/T , which we refer to as the T local-to-unity system. The T local-to-unity

system has often been assumed in the literature in order to investigate the asymptotic local

power of unit root/cointegration tests. For example, see Phillips (1987), Tanaka (1996),

and Saikkonen and Lütkepohl (1999) among others. Note that we usually test for cointegra-

tion before estimating cointegrating regression models and that tests for cointegration do

not necessarily detect the existence of cointegration with probability 1 even asymptotically

when ρ = 1 − c/T . This is because the T local-to-unity system corresponds to the local

alternative for cointegration tests. In this sense, the T local-to-unity system is not attractive

for investigating the cointegrating relation. On the other hand, with the N local-to-unity

system, tests for cointegration detect the cointegrating re! lation with an asymptotic proba-

bility 1 because ρ = ρN approaches 1 at a slower rate than does the T local-to-unity system.

The aim in considering the N local-to-unity system is to investigate the behavior of the es-

timators when the AR coefficient is close to 1 but not too close. This type of local-to-unity

system is also considered by Phillips and Magdalinos (2007a, b) and Giraitis and Phillips
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(2006).

In order to obtain the limiting distributions of the efficient estimators it is necessary to

make the following assumption.

Assumption 3 (a) M/N2 → 0. (b) K/N2 → 0.

This assumption restricts the upper bounds on the bandwidth parameter M and the

lead-lag truncation parameter K; as N gets larger or ρ gets closer to 1, we can choose

larger M and K, although they must satisfy M = o(T 1/2) and K = o(T 1/2), as is the case

in Assumptions 1 and 2. Assumption 3 will not be required in a special case where ut

is an i.i.d. sequence, as investigated by the discussion paper version of this paper. For a

general linear process, we need Assumption 3 in order for the long-run variance estimator

to converge and for the remaining term
∑

|j|>K π′ju2,t−j in (10) to be negligible.

The following theorem provides the asymptotic distributions of the estimators.

Theorem 1 Under Assumptions 1–3 with the N local-to-unity system,

1
N
DT (θ̂ − θ) ⇒ H−1hOLS , (16)

1
N
DT (θ̂FMR − θ) ⇒ H−1hFMR, (17)

1
N
DT (θ̂CCR − θ) ⇒ H−1hFMR, (18)

1
N
DT (θ̂DOLS − θ) ⇒ H−1hDOLS , (19)

where H =
∫ 1
0 B2(r)B

′
2(r)dr and

hOLS =

[
1
cB1(1)
1
c

(∫ 1
0 B2(r)dB1(r) + ω21

) ]
,
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hFMR =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ 1
cB1·2(1)
1
c

∫ 1
0 B2(r)dB1·2(r)

]
, M

N → ∞,⎡
⎢⎣

1
c

(
B1(1) −B′

2(1)Ω−1
22 ω21κ

)[
1
c

(∫ 1
0 B2(r)dB1(r) −

∫ 1
0 B2(r)dB′

2(r)Ω
−1
22 ω21κ

)
+1

c (1 − κ)ω21

]
⎤
⎥⎦ , M

N → dM ,

[
1
cB1(1)
1
c

(∫ 1
0 B2(r)dB1(r) + ω21

) ]
, M

N → 0,

hDOLS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ 1
cB1·2(1)
1
c

∫ 1
0 B2(r)dB1·2(r)

]
, K

N → ∞,⎡
⎢⎢⎣

1
c

{
(1 − e−cdK )B1·2(1) + e−cdKB1(1)

}[
1
c

{
(1 − e−cdK )

∫ 1
0 B2(r)dB1·2(r)

+e−cdK

(∫ 1
0 B2(r)dB1(r) + ω21

)}]
⎤
⎥⎥⎦ , K

N → dK ,

[
1
cB1(1)
1
c

(∫ 1
0 B2(r)dB1(r) + ω21

) ]
, K

N → 0,

with κ = (cdM )
∫∞
0 k(r)e−(cdM )rdr, dM and dK being fixed positive values and B1·2(r) =

B1(r) − ω12Ω−1
22 B2(r).

Remark 1: All the estimators are consistent under the N local-to-unity system; however,

they are not T -consistent but the convergence rate is slower than T .

Remark 2: Since M and K must be slower than T 1/2 from Assumptions 1(b) and 2(a),

we cannot expect an efficiency gain by using the efficient estimation methods for the case

where N grows at a faster rate than T 1/2. The cases where M/N → ∞ or dM and where

K/N → ∞ or dK can be considered only when N = o(T 1/2). In other words, the three

efficient methods possibly work well only in the case where ρ is moderately close to 1.

Remark 3: When M/N or K/N → ∞, the distributions of the centered efficient estimators

normalized by DT can be approximated by

DT (θ̂E − θ) 	d
N

c

(∫ 1

0
B2(r)B

′
2(r)dr

)−1 ∫ 1

0
B2(r)dB1·2(r). (20)

Then, we can see that the distribution under the N local-to-unity system is approximately

N/c times the efficient distribution (11). For example, since c/N = 1 − ρ, the standard
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deviation of (20) when ρ = 0.7, 0.8, and 0.9 is approximately 3.3, 5, and 10 times larger

than that of (11). It is apparent that the standard deviation becomes larger as ρ is closer

to 1.

From Theorem 1, we observe that the three efficient estimators do not have the second-

order bias when N is sufficiently slow as compared with the bandwidth parameter M or the

lead-lag truncation parameter K. This implies that compared with the OLS estimator, the

FMR, CCR, and DOLS estimators are efficient when ρ approaches 1 slowly or ρ is sufficiently

away from 1. On the other hand, when ρ approaches 1 rapidly or when ρ is very close to

1, these three estimators have the same asymptotic distribution as the OLS estimator and

hence suffer from the second-order bias. For the intermediate case where N is of the same

order as M or K, the second-order bias persists in the efficient estimators; the bias is only

partially eliminated by the efficient methods. For example, the endogeneity bias of β̂ is

partially eliminated from the FMR and CCR methods by observing the corresponding term

of hFMR when M/N → dM ,

dB1(r) − dB′
2(r)Ω

−1
22 ω21κ,

while the noncentrality is adjusted by the term (1 − κ)ω21. Note that

0 ≤ κ = cdM

∫ ∞

0
k(r)e−(cdM )rdr ≤ cdM

∫ ∞

0
e−(cdM )rdr = 1 (21)

if k(r) ≥ 0 for positive r, which is satisfied by, for example, the Bartlett and Parzen kernels.

Inequality (21) is also satisfied by the quadratic spectral (QS) kernel. Since κ→ 0 as c→ 0,

we can see that the adjustment for the second-order bias decreases as ρ approaches 1. Since

B1·2(r) = B1(r) − ω12Ω−1
22 B2(r), we can also express hFMR when M/N → dM as

hFMR =

[
1
c {κB1·2(1) + (1 − κ)B1(1)}

1
c

{
κ
∫ 1
0 B2(r)dB1·2(r) + (1 − κ)

(∫ 1
0 B2(r)dB1(r) + ω21

)} ]
;

thereafter the limiting distribution in this case can be observed as the weighted sum of the

efficient and inefficient distributions. This implies that the corresponding distribution is

located between the efficient and inefficient distributions. Similar effects can be observed
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for the limiting distribution of the DOLS estimator when K/N → dK . Thus, Theorem 1

implies that when ρ is relatively further away from 1, the three efficient methods are effective

compared to the OLS estimator. However, as ρ approaches 1, the difference between the

efficient estimators and the OLS estimator reduces, and eventually, when ρ is sufficiently

close to 1, the difference becomes negligible. This is consistent with the finite sample

behavior of the estimators observed in Section 5 and in previous literature. In other words,

the N local-to-unity system can adequately explain the finite sample evidence that the effect

of the efficient methods gradually! diminishes as ρ approaches 1.

We demonstrate the probability density functions (pdf) of the distributions provided

in Theorem 1. Figure 1 illustrates the pdfs4 for ω21 = 0.4 and 0.8, c = 1/2 and 1, and

dK = dM = 1. These are obtained from 100,000 replications from the distribution of the

discrete approximation based on 2,000 steps to the limiting distribution provided in Theorem

1. We can observe that the limiting distribution for a slow N is centered at and symmetric

around the origin, whereas the limiting distribution of the OLS estimator is shifted and

skewed toward the right-hand side. In addition, by observing the limiting distributions

corresponding to the cases where M/N = 1! and K/N = 1, we observe that the efficient

methods partially eliminate the second-order bias. Overall, the second-order bias of the

OLS estimator increases for a larger ω21 and a smaller c.

4. Modification of the Efficient Methods

As shown in the previous section, we need to carefully choose the bandwidth parameter

and the lead-lag truncation parameter in order for the FMR, CCR, and DOLS methods to

work appropriately. Theorem 1 suggests that both M and K should be as large as possible.

This implies that a bandwidth selected by an existing data dependent rule is not necessarily

appropriate when the serial correlation in the error term is moderately strong; we need

to seek the selection rule for a bandwidth and a truncation parameter. In this case, the

4These densities are drawn for the range of 1% to 99% points by the kernel method with a Gaussian
kernel. The smoothing parameter, h, is decided by equation (3.31) in Silverman (1986): h = 0.9AT−1/5

where A = min(standard deviation, interquartile range/1.34).
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difficulty lies in the fact that although M and K should be as large as possible, they must

also be strictly slower than N2 based on Assumption 3. As a result, even if we prespecify

the growing rate of N , it appears practically difficult to decide the theoretical optimal rate

of the bandwidth parameter and the lead-lag truncation parameter.

Instead, we focus on the case where M/N → dM with N = o(T 1/2) and consider mod-

ifying the FMR and CCR estimators5 such that the remaining second-order bias can be

eliminated. From Theorem 1 and Lemma A.3(c) and (d), we can observe that the partial

adjustment of the FMR and CCR estimators emerges from the asymptotic behavior of the

long-run variance estimator:

1
N
ω̂21,

1
N
λ̂21

p−→ dM

∫ ∞

0
k(r)e−cdM rdrω21 =

κ

c
ω21.

See also (42) in the Appendix. Hence, if κ can be consistently estimated by, say, κ̂, the

long-run variance estimator should be modified such that

ω̃21 =
1
κ̂
ω̂21, λ̃21 =

1
κ̂
λ̂21 and

1
N
ω̃21,

1
N
λ̃21

p−→ 1
c
ω21.

Therefore, if ω̂21 and λ̂21 are replaced by ω̃21 and λ̃21, respectively, it can be shown in

exactly the same way as the Appendix that the FMR and CCR estimators have the same

efficient limiting distribution as in the case where M/N → ∞, even if M/N → dM . Hence,

we need to find the consistent estimator of κ. In this case, note that κ is determined only

by the localizing parameter c for given k(·) and dM because κ depends on c, k(·), and dM .

Subsequently, we can consistently estimate κ once we obtain the consistent estimator of c.

Let us suppose that a researcher has specified k(·) and dM from the outset. Since Lemma

A.3(a) shows that
1
N
σ̂11 =

1
NT

T∑
t=1

ˆ̇u
2
1,t

p−→ ω11

2c
(22)

where ˆ̇u1,t is the regression residual of yt on zt, as previously mentioned, we need to consis-

tently estimate ω11, the long-run variance of u1,t. From the definition of u̇1,t, we can observe

5Since such a modification can be applied only for the FMR and CCR estimators, we do not consider the
DOLS estimator in this section.
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that

Δu̇1,t = u1,t − c

N
u̇1,t−1.

Intuitively, the long-run variance ω11 can be estimated by the kernel method using Δu̇1,t,

noting that the first term on the right-hand side dominates the second term, which is

Op(1/N1/2) from Lemma A.1(d). Then, the estimator of ω11 is given by

ω̂Δ11 =
T−1∑

j=−T+1

k

(
j

Mc

)
1
T

∑
1≤t,t+j≤T

Δˆ̇u1,tΔˆ̇u1,t+j . (23)

From (22) and (23), we consider the following estimators of the localizing parameter c and

κ:

ĉ =
N

2
ω̂Δ11

σ̂11
and κ̂ = ĉdM

∫ ∞

0
k(r)e−ĉdMrdr. (24)

Theorem 2 Suppose that Assumption 1 holds and that M and N grow at a known rate

slower than T 1/2 such that M/N → dM where dM is known. If Mc/N → 0,

(i) ĉ
p−→ c and κ̂

p−→ κ,

(ii) if the FMR and CCR estimators are constructed as in Section 3 with ω̂21 and λ̂21 replaced

by ω̃21 and λ̃21, respectively, they have the same efficient limiting distribution as that stated

in Theorem 1 for the case where M/N → ∞.

As is shown in Theorem 2, we can still construct the efficient estimators by modifying

the FMR and CCR estimators even if the bandwidth parameter M grows at the same rate

as N . However, to construct the estimator, we need to prespecify M , N , dM and Mc. One

of the possible selection rules is to (i) choose the bandwidth parameter M by an existing

data dependent rule, (ii) set N = M and then dM = 1, and (iii) set Mc slower than N , such

as Mc = N2/3. This selection rule is sufficient to obtain the efficient estimators, at least in

the case of the model with the N local-to-unity system is concerned.

However, the N local-to-unity system does not seem appropriate for approximating the

error process when ρ is not close to 1; ρ should be considered as fixed in such a case. Thus,

if we want the modified estimators to accommodate both the N local-to-unity system and

the stationary system with a fixed ρ, we need to carefully choose the above parameters.
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Note that when ρ is fixed, u̇1,t is stationary and Δu̇1,t is an over-differenced series; this

implies that the spectral density of Δu̇1,t at zero frequency equals 0. Therefore, ω̂Δ11 in

(23) converges to 0 in probability. On the other hand, it is easy to observe that σ̂11 converges

to σ11 in probability, which is supposed to be positive. Then, from the definition of ĉ in

(24), the asymptotic behavior of ĉ depends on the divergence rate of N and the convergence

rate of ω̂Δ11 to 0. The following corollary provides the conditions under which the modified

estimators remains efficient even when ρ is fixed.

Corollary 1 Suppose that the assumptions in Theorem 2 hold. Further, assume that

McN
2/T → ∞. Then, if ρ is fixed,

(i) ĉ
p−→ ∞ and κ̂

p−→ 1,

(ii) the modified FMR and CCR estimators have the same efficient limiting distribution as

the original estimators.

Note that the condition in Corollary 1 becomes

McN
2

T
=
Mc

N

N3

T
= o(1) × N3

T
→ ∞,

which implies that N must go to infinity at a faster rate than T 1/3. This condition is satisfied

by, for example, M = N = T 0.4 and Mc = N2/3. Note that the bandwidth parameter

selected by an existing data dependent rule does not necessarily satisfy this condition. We

will investigate the finite sample performance of the estimators in the next section.

5. Finite Sample Evidence

This section investigates the finite sample performance of the original and modified efficient

estimates as well as the OLS estimate using Monte Carlo simulations. In the simulations,

we focus on the effect of the serial correlation in the cointegrating regression errors and

thereby, we consider the following simple data generating process:

yt = μ+ βxt + u1t, xt = xt−1 + u2t,
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where xt is a scalar unit root process. The error term ut = [u1t, u2t]′ is generated from

u1t = ρu1t−1 + ε1t and u2t = ε2t,

where εt =
[
ε1t

ε2t

]
∼ i.i.d.N(0,Σ) with Σ =

[
σ11 σ21

σ21 σ22

]
.

We set ρ = 0.1,0.3,0.5,0.7,0.8, 0.85, 0.9, 0.95 and T = 100 and 300, whereas μ and β are set

as 1 throughout the simulations. The variances σ11 and σ22 are set as 1 and the covariance

σ21 is 0.4 and 0.8. The number of replications is 10,000 and all computations are carried

out by using the GAUSS matrix language.

The long-run variances are estimated by employing the kernel method6. We use either

the Bartlett or the QS kernel with the bandwidth parameter chosen by either Andrews’

(1991, hereafter AN) automatic bandwidth selection method or Newey and West’s (1994,

hereafter NW) method. Thus, there are four versions of the long-run variance estimates for

the FMR and CCR estimates.

With regard to the selection of the lead-lag truncation parameter, we choose K by

either the Akaike information criterion (AIC), Bayesian information criterion (BIC), or the

general-to-specific rule as proposed by Ng and Perron (1995) at the 1% or 5% significance

level. We set the maximum of K to be [12(T/100)1/4 ].

For the modified FMR and CCR estimates, we set dM , M , Mc, and N as explained in

Section 4; dM = 1, N = M , Mc = M2/3, and M is chosen either by the AN method or NW

method, or from T 0.4 (labeled “FX”).

Tables 1a–1d present the bias and the mean squared error (MSE) of the estimates of β.

For the original FMR and CCR estimates, we report only the case where the QS kernel is

used with the AN bandwidth because these estimates with other combinations of a kernel

and a bandwidth perform in as similar manner. For the same reason, in the case of the

modified FMR and CCR estimates (labeled “FMR-BC” and “CCR-BC,” respectively), we
6We also employed Andrews and Monahan’s (1992) prewhitening method with the specification of a first-

order vector autoregression (VAR(1)) for ut. Since the VAR(1) specification is accurate in our simulations,
the prewhitening method works better than the kernel method when ρ is not close to 1. However, when ρ
approaches 1, the MSE of the estimates becomes larger and the estimates using the prewhitening method
performed as poorly as those using the kernel method.
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report only the case with the QS kernel. We first summarize the simulation result for the

OLS and the original efficient estimates as follows:

(i) Both the bias and the MSE become larger for all the estimates as ρ approaches 1.

(ii) All the original three efficient methods eliminate the bias of the OLS estimate more

or less for all the values of ρ considered in the simulations. However, the effect of the

efficient methods when ρ is close to 1 is not pronounced to the same extent as it is

when ρ is relatively small.

(iii) When ρ is close to 1, the MSE of the original efficient estimates is not necessarily

smaller than that of the OLS estimate.

(iv) The performance of the FMR estimate is similar to that of the CCR estimate, although

the bias of the former tends to be slightly smaller than that of the latter, whereas the

MSE of the former seems to be larger than that of the latter.

(v) The performance of the DOLS estimate depends considerably on the selection of the

lead-lag truncation method.

Points (i)–(iii) are related to the case in which ρ is close to 1. We observe that all the three

efficient methods have some drawbacks when the regression errors are moderately serially

correlated. Point (iv) may be expected because both the FMR and CCR methods eliminate

the endogeneity bias in the same manner. Point (v) is a natural result because the lead-lag

truncation parameter K must diverge to infinity as T goes to infinity.

Next, we summarize the finite sample performance of the modified FMR and CCR

estimates:

(i’) The modified estimation method successfully eliminates the bias of the estimates com-

pared with the original three efficient methods when ρ is between 0.5 and 0.9. However,

when ρ is 0.95, the effect of our method is not pronounced to a similar extent as when

ρ is moderately close to 1.
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(ii’) When ρ is small, the bias of the original efficient estimates is smaller than that of the

modified estimates.

(iii’) The MSE of the modified estimates is smaller than that of the original estimates when

ρ is moderately close to 1 and σ21 is 0.8; this relation is reversed in other cases.

(iv’) The bias of the modified FMR estimate is smaller than that of the modified CCR

estimates, whereas the MSE of the former estimate is larger than that of the latter.

(v’) The modified estimates with the bandwidth selected by the AN rule are more biased

than those with the NW bandwidth.

Point (i’) implies that as far as the bias is concerned, our method is effective when ρ is

moderately close to 1, as expected from Theorem 2. Point (ii’) is a natural result because

our method is established under the assumption that ρ is moderately close to 1. However,

in almost all the cases, the modified estimates are less biased than the OLS estimate. With

regard to the MSE, we observe from point (iii’) that our method is effective when ρ is

moderately close to 1 and the endogeneity is relatively strong. For example, in Table 1b,

the MSE of the modified FMR estimate with the fixed M is 0.01871 when ρ is 0.8, whereas

the MSE of the original FMR estimate is 0.02978. However, when σ21 = 0.4, the former

MSE is 0.03243, while the latter is 0.02714, as is observed in Table 1a; then, the MSE of

the original estimate is smaller than that of the modified estimate in the latter case. Point

(v’) is related to the method to select the! bandwidth parameter M ; it appears that the

AN rule selects an extremely long bandwidth parameter in finite samples, as is explained

below; this leads to point (v’).

From the above observation, it can be seen that there is a trade-off between the bias

and the MSE when ρ is moderately close to 1 and the simultaneous correlation is not

strong. In this case, the modified estimates are less biased but have a larger MSE than the

original efficient estimates. However, when the endogeneity is relatively strong, our modified

estimates dominate the original ones in terms of both the bias and the MSE.
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We finally investigate the effect of the length of the bandwidth parameter and the lead-

lag truncation parameter on the finite sample performance of the original FMR and DOLS

estimates. Figure 2 depicts the bias and the MSE of the FMR estimate using the QS kernel

with a fixed bandwidth parameter when ρ = 0.7, 0.8, and 0.9 (labeled “fixed”). The fixed

bandwidth assumes values from 1 to 26 when T = 100 and from 1 to 35 when T = 300.

To draw a comparison between the fixed bandwidth case and the automatic selection rule,

we plot the averaged length of the automatic bandwidth versus the bias (and the MSE) of

the FMR estimate with either the AN rule (labeled “auto (AN)”) or the NW rule (labeled

“auto (NW)”). For example, when T = 100 and σ21 = 0.4 (Figure 2(i-a)), the averaged AN

bandwidth and the bias are (9.1,0.029), (12.7,0.048), and (20.2,0.100) for ρ = 0.7, 0.8, and

0.9, respectively, whereas they are (3.5,0.031), (3.8,0.054), and (4.0,0.112)! for the NW

rule. According to the figure, the bandwidth selected by the NW rule is too short, whereas

that selected by the AN rule is too long. Thus, although our simulation setting is limited,

it seems that we should choose a bandwidth parameter that is longer than the one selected

by the NW rule or shorter than the AN rule, as long as the error term is moderately serially

correlated. One possible choice is to select an average of the AN and NW bandwidths.

Figure 3 illustrates the bias and the MSE of the DOLS estimate with a fixed lead-lag

truncation parameter. As illustrated in Figure 2, we also plot the averaged length of the plug-

in truncation parameter adopted in this paper versus the bias and the MSE. With regard to

K considered in this paper, the bias monotonically decreases as K increases, whereas there

is a point at which the MSE is minimized. In general, when we use BIC, the truncation

parameter is very short and both the bias and MSE tend to be larger than those obtained

by the other plug-in methods. On the other hand, when we use the general-to-specific rule

with the 5% significance level, it selects a long K and the MSE becomes relatively large.

Thereafter, as far as ρ is moderately close to 1, AIC or the general-to-specific rule with the

1% significance level may be recommended for finite samples.

6. Conclusion
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In this paper, we theoretically investigated three efficient estimators for cointegrating regres-

sion models: the FMR, CCR, and DOLS. We showed that under the N local-to-unity system

where the AR coefficient approaches 1, the asymptotic behavior of the efficient estimators

depends on the approaching speed of the AR coefficient; these estimators are efficient in

some cases but the bias remains in others. We then proposed the modified FMR and CCR

estimators that have the efficient limiting distribution. We also investigated the finite sam-

ple properties of the estimators and found that our modified method is effective when the

regression errors are moderately serially correlated and the endogeneity is relatively strong.

Overall, the analytical investigation in this paper can adequately explain the poor finite

sample performance of the three efficient estimators when the regression errors are serially

correlated.
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Appendix

We denote some constant that is independent of both T and the subscript j as C in general.

We also assume that u1,0 = 0 without loss of generality to simplify the proof.

Proof of Theorem 1: By partitioning ΨL = [ψ′
L1,Ψ

′
L2]

′, u̇1,t is expressed using (14) as

u̇1,t =
t∑

l=1

ρt−l (ψL1εl + ũ1,l−1 − ũ1,l)

= ψL1

t∑
l=1

ρt−lεl +
t∑

l=1

(
ρt−l+1ũ1,l−1 − ρt−lũ1,l

)
+

t∑
l=1

(
ρt−l − ρt−l+1

)
ũ1,l−1

= ξ1,t + ξ2,t + ξ3,t, (25)

where ξ1,t = ψL1ε̇t with ε̇t =
∑t

l=1 ρ
t−lεl, ξ2,t =

(
ρtũ1,0 − ũ1,t

)
and ξ3,t = (1 − ρ) ˙̃u1,t−1 with

˙̃u1,t−1 =
∑t

l=1 ρ
t−lũ1,l−1. Note that ε̇t and ˙̃u1,t essentially have the same structure as u̇1,t.

Lemma A.1 For ρ = ρN = 1 − c/N and for any given 1 ≤ t ≤ T ,

(a) V ar(ξ1,t) ≤ CN and ξ1,t = Op(
√
N),

(b) V ar(ξ2,t) ≤ C and ξ2,t = Op(1),

(c) V ar(ξ3,t) ≤ C

N
and ξ3,t = Op

(
1√
N

)
,

(d) V ar(u̇1,t) ≤ CN and u̇1,t = Op(
√
N).

Proof of Lemma A.1: (a) is proved from direct calculation and (b) is obvious because ũ1,t

is stationary. For (c) and (d), we have, after some algebra,

ξ3,t =
c

N

t∑
l=1

∞∑
j=0

ρt−lψ̃1,jεl−j−1 =
c

N

t−1∑
l=0

α1,lεl +
c

N

∞∑
l=1

α2,lε−l, (26)

where α1,l =
∑t−l−1

j=0 ρt−j−l−1ψ̃1,j and α2,l =
∑t

j=1 ρ
t−jψ̃1,j+l−1. Since it can be shown that∑∞

l=0 ‖α1,l‖/N is bounded above by some constant that is independent ofN ,
∑∞

l=0 ‖α1,l‖2/N2

is also bounded above. In exactly the same way, we can also show that
∑∞

l=1 ‖α2,l‖2/N2 ≤ C.

Hence, it is observed that V ar(ξ3,t) ≤ C, which implies ξ3,t = Op(1). (d) is obtained
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by noting that V ar(u̇1,t) ≤ 3 (V ar(ξ1,t) + V ar(ξ2,t) + V ar(ξ3,t)) ≤ CN . Moreover, since∑∞
j=1 j‖Ψ̃j‖ < ∞, we can decompose ũ1,t in the same manner as (14) and then it is shown

that V ar(ξ3,t) ≤ C/N because V ar( ˙̃u1,t−1) ≤ CN is deduced by noting that ˙̃u1,t−1 has the

same structure as u̇1,t.�

Lemma A.2 For ρ = ρN = 1 − c/N ,

(a)
1
NT

T∑
t=1

u̇2
1,t

p−→ ω11

2c
,

(b)
1
T

T−j∑
t=1

u2,tu̇1,t+j
p−→ ρjω21 − E(u2,tũ1,t+j) for a given j ≥ 0,

(c)
1
T

T−j∑
t=1

u2,t+ju̇1,t
p−→ E(ũ2,t+j−1u1,t), for a given j ≥ 1,

(d)
1

N
√
T

T∑
t=1

u̇1,t ⇒ 1
c
B1(1),

(e)
1
NT

T∑
t=1

xtu̇1,t ⇒ 1
c

(∫ 1

0
B2(r)dB1(r) + ω21

)
.

Proof of Lemma A.2: (a) Using expression (25) we have

1
NT

T∑
t=1

u̇2
1,t =

1
NT

T∑
t=1

ξ21,t +
∑

i=j �=1

1
NT

T∑
t=1

ξi,tξj,t.

The second term on the right-hand side is shown to be Op(1/N1/2) using the Cauchy-Schwarz

inequality and Lemma A.1(a)–(c). On the other hand,

T∑
t=1

ξ21,t =
T∑

t=1

t∑
l=1

ρ2(t−l)(ψL1εl)2 + 2
T∑

t=2

t−1∑
l=1

t∑
k=l+1

ρ2t−k−l(ψL1εk)(ψL1εl). (27)

The first term on the right-hand side of (27) can be expressed as

T∑
t=1

t∑
l=1

ρ2(t−l)(ψL1εl)2 =
T∑

t=1

T−t∑
l=0

ρ2l(ψL1εt)2

=
1

1 − ρ2

T∑
t=1

(ψL1εt)2 − 1
1 − ρ2

T∑
t=1

ρ2(T−t+1)(ψL1εt)2. (28)
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Since 1 − ρ2 = 2c/N − c2/N2, the first term of (28) divided by NT converges in proba-

bility to ψL1Σεψ
′
L1/(2c) = ω11/(2c) by the weak law of large numbers (WLLN), whereas

the second term of (28) divided by NT is easily shown to be Op(N/T ). Then, we have

(NT )−1
∑T

t=1

∑t
l=1 ρ

2(t−l)(ψL1εl)2
p−→ ω11

2c .

On the other hand, after some algebra, the second term on the right-hand side of (27)

is shown to equal

T−1∑
l=1

T∑
k=l+1

T−k∑
t=0

ρk−l+2t(ψL1εk)(ψL1εl) =
1

1 − ρ2

T−1∑
l=1

T∑
k=l+1

(ρk−l − ρ2T−k−l+2)(ψL1εk)(ψL1εl).

Note that the right-hand side has mean zero and its variance is shown to be O(N3T ). Hence,

the second term on the right-hand side of (27) divided by NT is Op(N1/2/T 1/2). Then, we

have
1
NT

T∑
t=1

ξ21,t
p−→ ω11

2c
(29)

and hence, (a) is obtained.

(b) Using expression (25),

1
T

T−j∑
t=1

u2,tu̇1,t+j =
1
T

T−j∑
t=1

u2,tξ1,t+j +
1
T

T−j∑
t=1

u2,tξ2,t+j +
1
T

T−j∑
t=1

u2,tξ3,t+j . (30)

The third term on the right-hand side of (30) is Op(1/N1/2) because
∥∥T−1

∑
t u2,tξ3,t+j

∥∥ ≤
T−1

(∑
t ‖u2,t‖2

)1/2
(∑

t ξ
2
3,t+j

)1/2
= Op

(
1/N1/2

)
based on stationarity of u2,t and Lemma

A.1(c).

Using (14), the first term on the right-hand side of (30) becomes

1
T

T−j∑
t=1

u2,tξ1,t+j =
1
T

ΨL2

T−j∑
t=1

εtξ1,t+j +
1
T

T−j∑
t=1

(ũ2,t−1 − ũ2,t)ξ1,t+j . (31)

Since E
(
T−1ΨL2

∑T−j
t=1 εtξ1,t+j

)
= ρjΨL2Σεψ

′
L1 + o(1) = ρjω21 + o(1) while its variance is

O(N/T ), the first term on the right-hand side of (31) converges in probability to ρjω21 for

a given j ≥ 0 by the WLLN. On the other hand, the second term of (31) is expressed as

1
T

T−j∑
t=1

{(ũ2,t−1ξ1,t+j−1 − ũ2,tξ1,t+j) + ũ2,t−1(ξ1,t+j − ξ1,t+j−1)}
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=
1
T

(ũ2,0ξ1,j − ũ2,T−jξ1,T ) +
1
T

T−j∑
t=1

ũ2,t−1ε
′
t+jψ

′
L1 −

c

NT

T−j∑
t=1

ũ2,t−1ξ1,t+j−1, (32)

where we used the relation

ξ1,t − ξ1,t−1 = ψL1εt + (ρ− 1)ψL1

t−1∑
l=1

ρt−l−1εl = ψL1εt − c

N
ξ1,t−1. (33)

Thus, from Lemma A.1(a), we can observe that the first two terms of (32) are Op(N1/2/T )

and Op(1/T 1/2), while the third term is

∥∥∥∥∥ c

NT

T−j∑
t=1

ũ2,t−1ξ1,t+j−1

∥∥∥∥∥ ≤ c

NT

(
T−j∑
t=1

‖ũ2,t−1‖2

)1/2(T−j∑
t=1

ξ21,t+j−1

)1/2

= Op

(
1√
N

)

using (29). Based on these results, we can see that the first term on the right-hand side of

(30) converges in probability to ρjω21.

For the second term on the right-hand side of (30), we have

1
T

T−j∑
t=1

u2,tξ2,t+j =
1
T

T−j∑
t=1

u2,tρ
t+j ũ1,0 − 1

T

T−j∑
t=1

u2,tũ1,t+j
p−→ −E(u2tũ1,t+j)

by the WLLN. We then obtain (b).

Here, note that since ε̇t and ˙̃u1,t have the same structure as u̇1,t, the third terms on

the right-hand side of (30) and (32) can be shown to be Op(1/N), although they were only

proved to be Op(1/N1/2). These relations imply that

1
T

T−j∑
t=1

u2,tu̇1,t+j =
ρj

T
ΨL2

T−j∑
t=1

εtε
′
tψ

′
L1 −

1
T

T−j∑
t=1

u2,tũ1,t+j +Op

(
1
N

)
+Op

(√
N

T

)
, (34)

which will be used in the proof of Lemma A.3(c).

(c) Using (14) and (25),

1
T

T−j∑
t=1

u2,t+j u̇1,t =
1
T

ΨL2

T−j∑
t=1

εt+j(ξ1,t + ξ2,t + ξ3,t) +
1
T

T−j∑
t=1

(ũ2,t+j−1 − ũ2,t+j)u̇1,t. (35)

Using Lemma A.1(a), we obtain E
∥∥∥T−1

∑T−j
t=1 εt+jξ1,t

∥∥∥2 ≤ CT−2
∑T−j

t=1 E(ξ21,t) = O (N/T ),

which implies T−1
∑
εt+jξ1,t = Op(N1/2/T 1/2). We can also observe that T−1

∑T−j
t=1 εt+jξ3,t =

24



Op(1/(NT )1/2) using Lemma A.1 (c) and that T−1
∑T−j

t=1 εt+jξ2,t = Op

(
1/T 1/2

)
. Thus, the

first term on the right-hand side of (35) is Op(N1/2/T 1/2).

On the other hand, the second term on the right-hand side of (35) becomes equal to

1
T

T−j∑
t=1

{ũ2,t+j−1(u̇1,t − u̇1,t−1) + (ũ2,t+j−1u̇1,t−1 − ũ2,t+ju̇1,t)}

=
1
T

T−j∑
t=1

ũ2,t+j−1(u̇1,t − u̇1,t−1) +
1
T

(ũ2,j u̇1,0 − ũ2,T u̇1,T−j)

=
1
T

T−j∑
t=1

ũ2,t+j−1u1,t − c

NT

T−j∑
t=1

ũ2,t+j−1u̇1,t−1 +Op

(√
N

T

)

=
1
T

T−j∑
t=1

ũ2,t+j−1u1,t +Op

(
1√
N

)
+Op

(√
N

T

)
, (36)

where the second equation holds because of the relation u̇1,t − u̇1,t−1 = u1,t − (c/N)u̇1,t−1

and Lemma A.1(d), while the last equality is established by

∥∥∥∥∥ 1
NT

T−j∑
t=1

ũ2,t+j−1u̇1,t−1

∥∥∥∥∥ ≤ 1
NT

(
T−j∑
t=1

‖ũ2,t+j−1‖2
T−j∑
t=1

u̇2
1,t−1

)1/2

= Op

(
1√
N

)
, (37)

which holds from Lemma A.2(a). Then, (c) is obtained by the WLLN.

In this case, note that since ũ2,t is stationary with 1-summable coefficients, we can

similarly show that (NT )−1
∑
ũ2,t+j−1u̇1,t is Op(1/N), although it was shown only to be

Op(1/N1/2) in (37). Then, we have

1
T

T−j∑
t=1

u2,t+ju̇1,t =
1
T

T−j∑
t=1

ũ2,t+j−1u1,t +Op

(
1
N

)
+Op

(√
N

T

)
, (38)

which will be used in the proof of Lemma A.3(d) and Lemma A.4(b).

(d) From the definition of u̇1,t,

1
N
√
T

T∑
t=1

u̇1,t =
1

N
√
T

T∑
t=1

T−t∑
l=0

ρlu1,t =
1

c
√
T

T∑
t=1

u1,t − ρ

c
√
T
u̇1,T .

We can see that the right-hand side weakly converges to (1/c)B1(1) by the FCLT and

Lemma A.1(d).
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(e) Using the identity (1/N)u̇1,t−1 = (1/c)u1,t + (1/c)(u̇1,t−1 − u̇1,t), we have

1
NT

T∑
t=1

xtu̇1,t =
1
cT

T∑
t=1

xtu1,t+1 +
1
cT

T∑
t=1

xt(u̇1,t − u̇1,t+1)

=
1
cT

T∑
t=1

xtu1,t+1 +
1
cT

T∑
t=1

{(xt − xt−1)u̇1,t + (xt−1u̇1,t − xtu̇1,t+1)}

=
1
cT

T∑
t=1

xtu1,t+1 +
1
cT

T∑
t=1

u2,tu̇1,t +
1
cT

(x0u̇1,1 − xT u̇1,T+1)

⇒ 1
c

⎛
⎝∫ 1

0
B2(r)dB1(r) +

∞∑
j=1

E(u2,tu1,t+j)

⎞
⎠+

1
c

(ω21 − E(u2,tũ1,t)) ,

where the last convergence holds by the FCLT, Lemma A.1(d), and Lemma A.2(b). The

result is established by noting that
∞∑

j=1

E(u2,tu1,t+j) − E(u2,tũ1,t) =
∞∑
i=0

Ψ2,jΣε

∞∑
j=1

ψ′
1,i+j −

∞∑
i=0

Ψ2,jΣεψ̃
′
1,j

=
∞∑
i=0

Ψ2,jΣε

∞∑
j=i+1

ψ′
1,j −

∞∑
i=0

Ψ2,jΣε

∞∑
j=i+1

ψ′
1,j = 0.�

Using Lemma A.2 (d) and (e), the FCLT, and the continuous mapping theorem (CMT),

the limiting distribution of the OLS estimator is obtained as given by (16).

Next, we present the following lemma, which is used to derive the limiting distributions

of the FMR and CCR estimators.

Lemma A.3 Let κ = cdM

∫∞
0 k(r)e−cdMrdr. For ρ = ρN = 1 − c/N ,

(a)
1
N
σ̂11 =

1
NT

T∑
t=1

ˆ̇u
2
1,t

p−→ ω11

2c
,

(b) σ̂21 =
1
T

T∑
t=1

u2,t
ˆ̇u1,t

p−→ ω21 − E(u2,tũ1,t),

(c)
1
N
λ̂21

p−→ λ̄21 ≡
⎧⎨
⎩

1
cω21,

M
N → ∞,

κ
cω21,

M
N → dM ,

0, M
N → 0,

(d)
1
N
ω̂21

p−→ λ̄21.
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Proof of Lemma A.3: (a) Since ˆ̇u1,t = u̇1,t − (θ̂− θ)′zt and (1/N)DT (θ̂− θ) = Op(1), we can

see Lemma A.2 (a) that

1
NT

T∑
t=1

ˆ̇u
2
1,t =

1
NT

T∑
t=1

u̇2
1,t +Op

(
N

T

)
p−→ 1

2c
ω11.

(b) Noting that

1
T

T−j∑
t=1

u2,t
ˆ̇u1,t+j =

1
T

T−j∑
t=1

u2,tu̇1,t+j +Op

(
N

T

)
(39)

for any given j, (b) is obtained by Lemma A.2 (b) for j = 0.

(c) From (39) and (34),

1
N
λ̂21 =

1
N

T−1∑
j=0

k

(
j

M

)
1
T

T−j∑
t=1

u2tu̇1,t+j +Op

(
M

T

)

=
1
N

⎛
⎝N∗∑

j=0

+
T−1∑

j=N∗+1

⎞
⎠ k

(
j

M

)
ρj

T
ΨL2

T−j∑
t=1

εtε
′
tψ

′
L1 (40)

+Op

(
1
N

)
+Op

(
M

N2

)
+Op

(
M√
NT

)
+Op

(
M

T

)
,

where N∗ satisfies N∗/N → ∞ and N∗/T → 0. The last equality holds because u2,tũ1,t+j

has a bounded spectral density, and then N−1
∑

j k(j/M)T−1
∑

t u2,tũ1,t+j = Op(1/N).

Note that the last four terms in the last expression converge in probability to 0 from the

condition of M , N , and T . Since T−1
∑T−j

t=1 εtε
′
t is shown to be Op(1) for a given j > N∗

and |k(·)| ≤ 1, the second summation in the first term of (40) becomes∥∥∥∥∥∥
1
N

T−1∑
j=N∗+1

k

(
j

M

)
ρj

T
ΨL2

T−j∑
t=1

εtε
′
tψ

′
L1

∥∥∥∥∥∥ ≤ C

N

T−1∑
j=N∗+1

ρj ×Op(1) =
ρN∗+1 − ρT

N(1 − ρ)
×Op(1),

which converges in probability to 0 because N(1− ρ) = c, ρN∗+1 = (1− c/N)N
∗+1 → 0 and

ρT = (1 − c/N)T → 0 since c > 0, N∗/N → ∞, and T/N → ∞. In the following, we derive

the limit of the first summation in the first term of (40), depending on the rate of N .

When M/N → ∞, we can select N∗ such that N∗/M → 0 while N∗/N → ∞. Since

k(0) = 1, k(·) is continuous at 0, j/M → 0 over 0 ≤ j ≤ N∗, and T−1
∑T−j

t=1 εtε
′
t converges
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in probability to Σε for 0 ≤ j ≤ N∗, we have

1
N

N∗∑
j=0

k

(
j

M

)
ρj

T
ΨL2

T−j∑
t=1

εtε
′
tψ

′
L1 = (ΨL2Σεψ

′
L1 + op(1))

1
N

N∗∑
j=0

(1 + o(1))ρj

p−→ ω21 lim
N→∞

1 − ρN∗+1

N(1 − ρ)
=

1
c
ω21.

Thus, we obtain (c) for M/N → ∞.

When M/N → dM , N∗/M must go to infinity. Thus, we have

1
N

N∗∑
j=0

k

(
j

M

)
ρj

T
ΨL2

T−j∑
t=1

εtε
′
tψ

′
L1 = (ω21 + op(1))

M

N

1
M

N∗∑
j=0

k

(
j

M

)(
1 − M

N

c

M

)j

p−→ dM

∫ ∞

0
k(r)e−cdM rdrω21.

When M/N → 0, we can see that∥∥∥∥∥∥
1
N

N∗∑
j=0

k

(
j

M

)
ρj

T
ΨL2

T−j∑
t=1

εtε
′
tψ

′
L1

∥∥∥∥∥∥ ≤ C
M

N

1
M

N∗∑
j=0

∣∣∣∣k
(
j

M

)∣∣∣∣×Op(1)
p−→ 0.

(d) Since

1
N
ω̂21 =

1
N

T−1∑
j=1

k

(
j

M

)
1
T

T−j∑
t=1

u2,t+j
ˆ̇u1,t +

1
N
λ̂21, (41)

it suffices to show that the first term on the right-hand side of (41) converges in probability

to 0. From (39) and (38), we have

1
N

T−1∑
j=1

k

(
j

M

)
1
T

T−j∑
t=1

u2,t+j
ˆ̇u1,t =

1
N

T−1∑
j=1

k

(
j

M

)
1
T

T−j∑
t=1

u2,t+j u̇1,t +Op

(
M

T

)

= Op

(
1
N

)
+Op

(
M

N2

)
+Op

(
M√
NT

)
+Op

(
M

T

)
.�

We are now in a position to derive the limiting distributions of the FMR and CCR

estimators. Note that N−1DT (θ̂FMR − θ) = H−1
T hFMR,T where HT = D−1

T

∑T
t=1 ztz

′
tD

−1
T

and hFMR = N−1D−1
T

∑T
t=1 ztu̇1,t−D−1

T

∑T
t=1 ztu

′
2,tΩ̂

−1
22 N

−1ω̂21 −N−1Ĵ+. We can see that

H−1
T ⇒ H−1 as in the case of the OLS estimator, whereas from the FCLT, the CMT, and

28



Lemmas A.2 and A.3,

hFMR,T =

⎡
⎣ 1

N
√

T

∑T
t=1 u̇1,t − 1√

T

∑T
t=1 u

′
2,tΩ̂

−1
22

1
N ω̂21

1
NT

∑T
t=1 xtu̇1,t − 1

T

∑T
t=1 xtu

′
2,tΩ̂

−1
22

1
N ω̂21 − 1

N

(
λ̂21 − Λ̂22Ω̂−1

22 ω̂21

)
⎤
⎦

⇒
[

1
cB1(1) −B′

2(1)Ω−1
22 λ̄21(

1
c

∫ 1
0 B2(r)dB1(r) −

∫ 1
0 B2(r)dB′

2(r)Ω
−1
22 λ̄21

)
+
(

1
cω21 − λ̄21

)
]
. (42)

For the CCR estimator, note that

1
N
DT (θ̂CCR − θ) =

[
1 1

T
√

T

∑T
t=1 x

∗′
t

1
T
√

T

∑T
t=1 x

∗
t

1
T 2

∑T
t=1 x

∗
tx

∗′
t

]−1 [ 1
N
√

T

∑T
t=1 u̇

∗
1,t

1
NT

∑T
t=1 x

∗
t u̇

∗
1,t

]
,

where u̇∗1,t = u̇1,t−(β̂−β)′Λ̂2Σ̂−1ût− ω̂12Ω̂−1
22 u2t with β̂ being the OLS estimator of β. From

Lemma A.3, we obtain

Λ̂2Σ̂−1 p−→
[
λ̄21

2c
ω11

,−λ̄21
2c
ω11

{ω12 − E(ũ1,tu
′
2,t)}Σ−1

22 + Λ22Σ−1
22

]
. (43)

Using (43), we can observe that

1
T
√
T

T∑
t=1

x∗t =
1

T
√
T

T∑
t=1

xt − Λ̂2Σ̂−1 1
T
√
T

T∑
t=1

ût ⇒
∫ 1

0
B2(r)dr, (44)

1
T 2

T∑
t=1

x∗tx
∗′
t ⇒

∫ 1

0
B2(r)B′

2(r)dr. (45)

Further, using Lemmas A.2 and A.3 and because (β̂ − β) = Op(N/T ), it is shown that

1
N
√
T

T∑
t=1

u̇∗1,t ⇒
1
c
B1(1) − λ̄12Ω−1

22 B2(1), (46)

1
NT

T∑
t=1

x∗t u̇
∗
1,t ⇒

(
1
c

∫ 1

0
B2(r)dB1(r) −

∫ 1

0
B2(r)dB′

2(r)Ω
−1
22 λ̄21

)
+
(

1
c
ω21 − λ̄21

)
(47)

after some algebra. The limiting distribution is obtained using (44)–(47).

For the DOLS estimator, we need to express the error term u̇1,t by vt and rt. Note that

from Theorems 3.8.3 and 8.3.1 of Brillinger (1981),

u1,t = vt + rt, where rt =
∞∑

j=−∞
π′ju2,t−j with

∞∑
j=−∞

j2‖πj‖ <∞,
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E(u2,svt) = 0 for all s and t, the long-run variance of vt is given by ω1·2 = ω11 −ω12Ω−1
22 ω21.

From Theorem 3.8.4 of Brillinger (1981), vt has an MA(∞) expression with the same summa-

bility condition of the coefficients as rt. Then, we have

u̇1,t =
t∑

l=1

ρt−lu1,l = v̇t + ρK+1ṙt−K−1 +
t∑

l=t−K

ρt−lrl, (48)

where v̇t =
∑t

l=1 ρ
t−lvl and ṙt =

∑t
l=1 ρ

t−lrl. After some algebra, the third term of (48)

can be expressed as

t∑
l=t−K

ρt−lrl =
t∑

l=t−K

ρt−l
∞∑

j=−∞
π′ju2,l−j =

K∑
j=−K

π∗′j u2,t−j + e1,t + e2,t, (49)

where π∗j =
∑K

i=0 ρ
iπj−i, e1,t =

∑∞
j=K+1 π

∗′
j u2,t−j and e2,t =

∑−K−1
j=−∞ π∗′j u2,t−j . From (48)

and (49), u̇1,t is expressed as

u̇1,t =
K∑

j=−K

π∗′j u2,t−j + η̇t where η̇t = v̇t + ρK+1ṙt−K−1 + e1,t + e2,t.

Using this expression, model (12) becomes yt = θ′zt +
∑K

j=−K π∗′j Δxt−j + η̇t. Then, from

the inverse formula of a partitioned matrix, the DOLS estimator can be expressed as

1
N
DT (θ̂DOLS−θ) =

(
D−1

T

T−K∑
t=K+1

ztz
′
tD

−1
T −G1G

−1
2 G′

1

)−1(
1
N
D−1

T

T−K∑
t=K+1

ztη̇t −G1G
−1
2 G3

)

where G1 =
1√
T
D−1

T

T−K∑
t=K+1

ztw
′
t, G2 =

1
T

T−K∑
t=K+1

wtw
′
t, and G3 =

1
N
√
T

T−K∑
t=K+1

wtη̇t.

Lemma A.4 For ρ = ρN = 1 − c/N ,

(a) ‖G1‖2 = Op

(
K

T

)
,

(b) ‖G3‖2 = Op

(
T

N2

)
+Op

(
K

N

)
+Op

(
KN

T

)
,

(c)
1

N
√
T

T−K∑
t=K+1

η̇t ⇒
⎧⎨
⎩

1
cB1·2(1) : K

N → ∞
1
c

{
(1 − e−cdK )B1·2(1) + e−cdKB1(1)

}
: K

N → dK
1
cB1(1) : K

N → 0,
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(d)
1
NT

T−K∑
t=K+1

xtη̇t ⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
c

∫ 1
0 B2(r)dB1·2(r)dr : K

N → ∞
1
c

{
(1 − e−cdK )

∫ 1
0 B2(r)dB1·2(r)

+e−cdK

(∫ 1
0 B2(r)dB1(r) + ω21

)} : K
N → dK

1
c

(∫ 1
0 B2(r)dB1(r) + ω21

)
: K

N → 0.

Proof of Lemma A.4: (a) is shown by

‖G1‖2 =
1
T

⎡
⎣
∥∥∥∥∥ 1√

T

T−K∑
t=K+1

w′
t

∥∥∥∥∥
2

+

∥∥∥∥∥ 1
T

T−K∑
t=K+1

xtw
′
t

∥∥∥∥∥
2
⎤
⎦

=
1
T

⎡
⎣ K∑

j=−K

∥∥∥∥∥ 1√
T

T−K∑
t=K+1

u′2,t−j

∥∥∥∥∥
2

+
K∑

j=−K

∥∥∥∥∥ 1
T

T−K∑
t=K+1

xtu
′
2,t−j

∥∥∥∥∥
2
⎤
⎦ = Op

(
K

T

)
.

(b) Since η̇t = v̇t + ρK+1ṙt−K−1 + e1,t + e2,t,

‖G3‖2 ≤ C

K∑
j=−K

⎡
⎣
∥∥∥∥∥ 1
N
√
T

T−K∑
t=K+1

u2,t−j v̇t

∥∥∥∥∥
2

+

∥∥∥∥∥ ρ
K+1

N
√
T

T−K∑
t=K+1

u2,t−j ṙt−K−1

∥∥∥∥∥
2

∥∥∥∥∥ 1
N
√
T

T−K∑
t=K+1

u2,t−je1,t

∥∥∥∥∥
2

+

∥∥∥∥∥ 1
N
√
T

T−K∑
t=K+1

u2,t−je2,t

∥∥∥∥∥
2
⎤
⎦ . (50)

In the following, we evaluate each term of (50). First, since E(u2,svt) = 0 for all s and t, we

can observe that

E

∥∥∥∥∥ 1
N
√
T

T−K∑
t=K+1

u2,t−j v̇t

∥∥∥∥∥
2

≤ 1
N2T

T−K∑
s=K+1

T−K∑
t=K+1

E(u′2,s−ju2,t−j)E(v̇sv̇t).

Since v̇t has the same structure as u̇1,t, we can observe that V ar(v̇t) = Op(N) in the same

manner as Lemma A.1(d), so that

E(v̇sv̇t) ≤ (V ar(v̇s)V ar(ėt))
1/2 = O(N). (51)

Since the autocovariances of u2,t are absolutely summable, we have

E

∥∥∥∥∥ 1
N
√
T

T−K∑
t=K+1

u2,t−j v̇t

∥∥∥∥∥
2

≤ T

N2T

∞∑
j=−∞

E(u2,tu
′
2,t−j)O(N) = O

(
1
N

)
, (52)
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which implies that
K∑

j=−K

∥∥∥∥∥ 1
N
√
T

T−K∑
t=K+1

u2,t−j v̇t

∥∥∥∥∥
2

= Op

(
K

N

)
. (53)

The second term of (50) can be expressed as

1
T

T−K∑
t=K+1

u2,t−j ṙt−K−1 =
1
T

T−K∑
t=K+1

u2,t−j u̇1,t−K−1 − 1
T

T−K∑
t=K+1

u2,t−j v̇t−K−1,

because ṙt−K−1 = u̇1,t−K−1−v̇t−K−1. The second term on the right-hand side isOp(N1/2/T 1/2)

from (52), while the first term is expressed as (38). Note that

1
T

T−K∑
t=K+1

ũ2,t−ju1,t−K−1 = γ2̃1,j−K−1 +Op

(
1√
T

)
, (54)

where γ2̃1,l = E(ũ2,tu1,t+l) because the variance on the left-hand side is O(1/T ) uniformly

over −K ≤ j ≤ K. From (38) and (54) and using ‖a+ b‖2 ≤ ‖a‖2 + 2‖a‖‖b‖ + ‖b‖2,

K∑
j=−K

∥∥∥∥∥ 1
N
√
T

T−K∑
t=K+1

u2,t−j u̇1,t−K−1

∥∥∥∥∥
2

≤ T

N2

K∑
j=−K

∥∥∥∥∥γ2̃1,j−K−1 +Op

(√
N

T

)
+Op

(
1
N

)∥∥∥∥∥
2

≤ T

N2

K∑
j=−K

∥∥∥γ2̃1,j−K−1

∥∥∥2
+

2T
N2

{
Op

(√
N

T

)
+Op

(
1
N

)} K∑
j=−K

∥∥∥γ2̃1,j−K−1

∥∥∥
+Op

(
K

N

)
+Op

(
KT

N4

)
+Op

(
K
√
T

N2
√
N

)

= Op

(
T

N2

)
+Op

(
K

N

)
,

because {γ2̃1,K−j} is an absolutely summable sequence, where the slower terms are absorbed

into the faster terms like Op(KT/N4) = Op(T/N2). Thus, we have

K∑
j=−K

∥∥∥∥∥ ρ
K+1

N
√
T

T−K∑
t=K+1

u2,t−j ṙt−K−1

∥∥∥∥∥
2

= Op

(
T

N2

)
+Op

(
K

N

)
+Op

(
KN

T

)
. (55)
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For the third term of (50), we first note that T−1
∑
u2,tu2,t+j = E(u2,tu2,t+j)+Op(1/T 1/2) =

Γ22,j +Op(1/T 1/2), say, for the same reason as (54). Then,

∥∥∥∥∥ 1
N
√
T

T−K∑
t=K+1

u2,t−je1,t

∥∥∥∥∥
2

=
T

N2

∥∥∥∥∥
∞∑

l=K+1

π∗′l

1
T

T−K∑
t=K+1

u2,t−lu
′
2,t−j

∥∥∥∥∥
2

=
T

N2

∥∥∥∥∥
∞∑

l=K+1

π∗′l

(
Γ22,l−j +Op

(
1√
T

))∥∥∥∥∥
2

≤ C
T

N2

∞∑
l=K+1

‖π∗l ‖2
∞∑

l=K+1

‖Γ22,l−j‖2 +
∞∑

l=K+1

‖π∗l ‖2Op

(
1
N2

)
.

By noting that
∑K

j=−K

∑∞
l=K+1 ‖Γ22,l−j‖2 ≤∑∞

j=1 j‖Γ22,j‖2 <∞ and

∞∑
l=K+1

‖π∗l ‖ ≤
∞∑

l=K+1

K∑
i=0

ρi‖πl−i‖ ≤
∞∑

l=K+1

l‖πl‖ = o(1), (56)

we can observe that

K∑
j=−K

∥∥∥∥∥ 1
N
√
T

T−K∑
t=K+1

u2,t−je1,t

∥∥∥∥∥
2

= op

(
T

N2

)
+ op

(
K

N2

)
= op

(
T

N2

)
. (57)

Since the fourth term of (50) has the same structure as the third term, we obtain (b)

from (53), (55), and (57).

(c) Note that

1
N
√
T

T−K∑
t=K+1

η̇t =
1

N
√
T

T−K∑
t=K+1

v̇t +
ρK+1

N
√
T

T−K∑
t=K+1

(u̇1,t−K−1 − v̇t−K−1) + op

(
1
N

)
(58)

where the order in the last term is obtained by observing that∥∥∥∥∥ 1
N
√
T

T−K∑
t=K+1

e1,t

∥∥∥∥∥ ≤ 1
N

∞∑
j=K+1

‖π∗j ‖ sup
j

∥∥∥∥∥ 1√
T

T−K∑
t=K+1

u2,t−j

∥∥∥∥∥ = op

(
1
N

)
,

because {π∗j } is an absolutely summable sequence as shown in (56) and N−1T−1/2
∑
e2,t =

op(N−1) is similarly shown. For the first term of (58), it is proved that

1
N
√
T

T−K∑
t=K+1

v̇t ⇒ 1
c
B1·2(1) (59)
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in exactly the same manner as Lemma A.2(d). On the other hand, the convergence of the

second term of (58) depends on the relation between K and N . Since

ρK+1 =
(
1 − c

N

)N ·(K/N) →
⎧⎨
⎩

0 : K
N → ∞

e−cdK : K
N → dK

1 : K
N → 0,

(60)

we obtain the result by Lemma A.2(d), (58), and (59).

(d) As in the proof of (c), we first observe that

1
NT

T−K∑
t=K+1

xtη̇t =
1
NT

T−K∑
t=K+1

xtv̇t +
ρK+1

NT

T−K∑
t=K+1

xt(u̇1,t−K−1 − v̇t−K−1) + op

(
1
N

)
(61)

because ∥∥∥∥∥ 1
NT

T−K∑
t=K+1

xte1,t

∥∥∥∥∥ ≤ 1
N

∞∑
j=K+1

‖π∗j ‖ sup
j

∥∥∥∥∥ 1
T

T−K∑
t=K+1

xtu2,t−j

∥∥∥∥∥ = op

(
1
N

)
,

and N−1T−1
∑
xte2,t = op(1/N) is similarly shown.

Similar to the proof of Lemma A.2 (e), we can observe that

1
NT

T−K∑
t=K+1

xtv̇t ⇒ 1
c

∫ 1

0
B2(r)dB1·2(r) (62)

because u2,s and vt are uncorrelated. We also observe that

1
NT

T−K∑
t=K+1

xtu̇1,t−K−1 =
1
NT

T−K∑
t=K+1

xtu̇1,t − 1
NT

T−K∑
t=K+1

xt(u̇1,t − u̇1,t−K−1).

The second term on the right-hand side is expressed as

1
NT

T−K∑
t=K+1

{(xtu̇1,t − xt−K−1u̇1,t−K−1) − (xt − xt−K−1)u̇1,t−K−1}

=
1
NT

(
T−K∑

t=T−2K

−
K∑

t=0

)
xtu̇1,t − 1

NT

K∑
j=0

T−K∑
t=K+1

u2,t−j u̇1,t−K−1.

The first term of the last expression is Op(K/(NT )1/2) because xt = Op(T 1/2) and u̇1,t =

Op(N1/2) by Lemma A.1(d), while using (38) and (54) we can observe that∥∥∥∥∥∥
1
NT

K∑
j=0

T−K∑
t=K+1

u2,t−j u̇1,t−K−1

∥∥∥∥∥∥ ≤ 1
N

K∑
j=0

∥∥∥∥∥γ2̃1,K−j +Op

(√
N

T

)
+Op

(
1
N

)∥∥∥∥∥
≤ O

(
1
N

)
+Op

(
K√
NT

)
+Op

(
K

N2

)
= op(1).
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Then, we can observe that

1
NT

T−K∑
t=K+1

xtu̇1,t−K−1 =
1
NT

T−K∑
t=K+1

xtu̇1,t + op(1). (63)

we obtain the result from Lemma A.2(e), (60), (62), and(63).�

The limiting distribution of the DOLS estimator can be obtained using Lemma A.4, not-

ing that ‖G1G
−1
2 G′

1‖2 ≤ Op

(
K2/T 2

)
= op(1) and ‖G1G

−1
2 G3‖2 ≤ Op

(
K/N2

)
+Op

(
K2/NT

)
+

Op

(
K2N/T 2

)
= op(1), where we used ‖G−1

2 ‖1 = Op(1) that was proved in Saikkonen

(1991).�

Proof of Theorem 2: (i) Since ˆ̇u1,t = u̇1,t − (θ̂ − θ)′zt, we can observe that

Δˆ̇u1,t = Δu̇1,t − (θ̂ − θ)′Δzt = u1,t − c

N
u̇1,t−1 − (β̂ − β)′u2,t.

Since T−1
∑
u1,tu̇1,t−1 can be shown to be Op(1) in the same manner as Lemma A.2(c), it

is shown from Lemma A.2(a) and (c) and (β̂ − β) = Op(N/T ) that

1
T

∑
1≤t,t+j≤T

Δˆ̇u1,tΔˆ̇u1,t+j =
1
T

∑
1≤t,t+j≤T

u1,tu1,t+j +Op

(
1
N

)
+Op

(
N

T

)
.

This implies that

ω̂Δ11 =
T−1∑

j=−T+1

k

(
j

Mc

)
1
T

∑
1≤t,t+j≤T

u1,tu1,t+j +Op

(
Mc

N

)
+Op

(
McN

T

)
p−→ ω11,

where the last convergence holds because Mc/N → 0 and N/T 1/2 → 0 by assumption. The

consistency of ĉ and κ̂ is obtained using Lemma A.3 (a).

(ii) can be obtained directly in the same manner as the proof of Theorem 1.�

Proof of Corollary 1: (i) Since the spectral density of Δu̇1,t at zero frequency equals 0

under the assumption of a fixed ρ, we can see that ω̂Δ11 = Op(M
1/2
c /T 1/2) from Chapter 9

of Anderson (1971). This proves the first part of (i).

To prove the second part of (i), let us choose r∗ such that r∗ → 0 and cr∗ → ∞ as

c→ ∞ and express κ as

κ = cdM

∫ r∗

0
k(r)e−cdM rdr + cdM

∫ ∞

r∗
k(r)e−cdM rdr.
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Since k(0) = 1 and it is continuous at 0, the first term on the right-hand side becomes

cdM

∫ r∗

0
k(r)e−cdM rdr = cdM

∫ r∗

0
(1 + o(1))e−cdM rdr → 1,

while for the second term,∣∣∣∣cdM

∫ ∞

r∗
k(r)e−cdMrdr

∣∣∣∣ ≤
∣∣∣∣cdM

∫ ∞

r∗
e−cdMrdr

∣∣∣∣ ≤ e−cdM r∗ → 0.

We then obtain the second part of (i).

(ii) is obtained because ω̃21 − ω̂21
p−→ 0 and λ̃21 − λ̂21

p−→ 0, using κ̂
p−→ 1.�
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