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Abstract

In this paper, we consider the role of “leads” of the first difference of integrated

variables in the dynamic OLS estimation of cointegrating regression models. Specifi-

cally, we investigate Stock and Watson’s (1993) claim that the role of leads is related

to the concept of Granger causality by a Monte Carlo simulation. From the simu-

lation results, we find that the dynamic OLS estimator without leads substantially

outperforms that with leads and lags; we therefore recommend testing for Granger

non-causality before estimating models.
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1 Introduction

Since the seminal work of Engle and Granger (1987), cointegrating regressions have

become one of the standard tools in analyzing integrated (I(1)) variables. Although

the ordinary least squares (OLS) estimator is consistent in the presence of a se-

rial correlation in the error term and/or a correlation between the regressors and

cointegration errors, it is well known that the OLS estimator contains the so-called

second-order bias. In the literature, there are three typical estimators that deal

with this problem: the fully modified OLS estimator proposed by Phillips and

Hansen (1990), Park’s (1992) canonical cointegrating regression estimator, and the

dynamic OLS (DOLS) estimator of Phillips and Loretan (1991), Saikkonen (1991),

and Stock and Watson (1993). These three estimators are known to be asymp-

totically equivalent and efficient. In this paper, we focus on the DOLS estimator

among the three estimators and consider the role of “leads” of the first difference

of the integrated variables in DOLS. Specifically, we focus on Stock and Watson’s

(1993, p.786) claim that leads are unnecessary if the cointegrating error does not

Granger-cause the first-difference of I(1) variables that appear in the right side.

To the best of authors’ knowledge, no studies have investigated the finite sample

performance of the DOLS estimator without leads after Granger non-causality test.

Thus, we investigate the case where leads are unnecessary for the DOLS method,

and by using the Monte Carlo simulation, we demonstrate that in such a case, we

can expect the improvement of the DOLS estimator in terms of the mean squared

error (MSE) by excluding leads from the regressors.

2 Relation between Leads and Granger Causal-

ity

We consider a typical cointegrating regression model as follows:

yt = α + β′xt + u1t = θ′zt + u1t (1)

Δxt = u2t
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where θ = [α, β′]′, zt = [1, x′
t]′ and xt is an n-dimensional I(1) vector. As in

Saikkonen (1991) we assume that ut = [u1t, u′
2t]

′ is a stationary process with

∞∑
j=−∞

‖E[utut−j ]‖ < ∞,
∞∑

m1,m2,m3=−∞
|κijkl(m1,m2,m3)| < ∞

where κijkl(m1,m2,m3) is the fourth order cumulant of ut, and the spectral density

matrix of ut, denoted by fuu(λ), is bounded away from zero. Under this condition,

u1t is expressed as

u1t =
∞∑

j=−∞
Π′

ju2t−j + vj (2)

where

Πj =
1
2π

∫ 2π

0
f12(λ)f22(λ)−1 exp(ijλ)dλ

with f12(λ) and f22(λ) are the (1,2) and (2,2) blocks of fuu(λ). It is known that∑∞
j=−∞ ‖Πj‖ < ∞ and that vt is a stationary process such that E(u2svt) = 0 for

all s and t. See also Brillinger (1981). By inserting (2) into (1), the model can be

expressed as

yt = α + β′xt +
K∑

j=−K

Π′
jΔxt−j + v̇t (3)

where v̇t = vt +
∑

|j|>K Π′
j u2t−j and K is known as the lead-lag truncation param-

eter. Saikkonen (1991) showed that the OLS estimator of β based on (3) does not

suffer from the second-order bias and is efficient in a certain class of distributions.

Let us consider the case where

Πj = 0 for ∀j < 0. (4)

In this case, the model becomes

yt = α + β′xt +
K∑

j=0

Π′
jΔxt−j + v̇t (5)

and then we do not have to include the leads of Δxt as regressors. We therefore

expect an improvement of the finite sample efficiency by estimating (5) because we

do not have to include extra regressors. In this case, we note that condition (4) is re-

lated to the concept of Granger causality. According to Sims (1972) and Proposition

11.3 in Hamilton (1994), condition (4) holds if and only if u1t does not Granger-cause
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u2t. In other words, it is possible to efficiently estimate the cointegrating regression

model without any leads of the first difference of integrated variables if the past

values of u1t do not help to predict u2t. Therefore, we recommend that the null

of Granger non-causality be tested before estimating the cointegrating regression

model.

Tests for Granger non-causality can be conducted by approximating the process

of ut by a finite-order vector autoregressive model: ut = Ψ1ut−1 + Ψ2ut−2 + · · · +
Ψput−p +et. Let ût = [û1t, u

′
2t]

′, where û1t = u1t−(θ̂−θ)′zt is the regression residual

from (1) with θ̂ being the OLS estimator of θ. We then estimate

ût = Ψ1ût−1 + Ψ2ût−2 + · · · + Ψpût−p + êt (6)

and test the hypothesis that H0 : Ψ1,21 = Ψ2,21 = · · · = Ψp,21 = 0 where Ψj,21 is the

(2, 1) block of Ψj and êt = [ê1t, e
′
2t]

′ with ê1t = e1t−(In+1−Ψ1L−· · ·−ΨpL
p)(θ̂−θ)′zt

and L being the lag operator. Although û1t includes an estimation error, its effect

is asymptotically negligible. In fact, we can show that for j = −p, · · · , p,

1
T

∑
1≤t−j,t≤T

û1tû1t−j =
1
T

∑
1≤t−j,t≤T

u1tu1t−j + Op

(
1
T

)
,

1
T

∑
1≤t−j,t≤T

û1tu
′
2t−j =

1
T

∑
1≤t−j,t≤T

u1tu
′
2t−j + Op

(
1
T

)

while for j ≥ 0,

1√
T

∑
1≤t−j,t≤T

ût−j ê
′
t =

1√
T

∑
1≤t−j,t≤T

ut−je
′
t + Op

(
1√
T

)
.

by the asymptotic technique explained in, for example, Chapters 17–19 in Hamilton

(1994). If the evidence of Granger non-causality is observed by tests based on (6),

we can expect the finite sample efficiency gain by excluding the leads of Δxt from

(3) and estimating (5).

We may also consider verifying condition (4) by investigating whether or not the

regression error from (5) is serially uncorrelated. For this purpose, the portmanteau

tests are available as explained in Lütkepohl (1993).

To demonstrate the case where the model can be expressed as (5), we consider

the following case:

u1t =
∞∑

j=0

φjε1t−j and u2t = ε2t where
∞∑

j=0

j|φj | < ∞
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and εt =

⎡
⎣ ε1t

ε2t

⎤
⎦ ∼ iid

⎡
⎣

⎛
⎝ 0

0

⎞
⎠ ,

⎛
⎝ σ11 σ12

σ21 Σ22

⎞
⎠

⎤
⎦ . (7)

We then decompose ε1t as

ε1t = ε1·2t + ε̃2t (8)

where ε1·2t = ε1t − σ12Σ−1
22 ε2t and ε̃2t = σ12Σ−1

22 ε2t. Note that ε1·2t is uncorrelated

with all the leads and lags of ε2t and ε̃2t. Using this decomposition, u1t can be

expressed as

u1t =
∞∑

j=0

φjε1·2t−j +
K∑

j=0

φj ε̃2t−j +
∞∑

j=K+1

φj ε̃2t−j

= vt +
K∑

j=0

Π′
jΔxt−j +

∞∑
j=K+1

φj ε̃2t−j (9)

where Π′
j = φjσ12Σ−1

22 and vt =
∑∞

j=0 φjε1·2t−j . Since E(ε2sε1·2t) = 0 for all s and

t, it is evident that vt is uncorrelated with Δxt−j for all j. The regression form in

(5) is obtained by inserting (9) into (1).

3 Monte Carlo experiments

To investigate the finite sample performance of the dynamic OLS estimator with-

out leads, we conduct a Monte Carlo experiment. We consider the following data

generating process with one dimensional I(1) regressor:

yt = 1 + xt + u1t, Δxt = u2t with x0 = 0,

⎡
⎣ u1t

u2t

⎤
⎦ =

⎡
⎣ a11 0

0 a22

⎤
⎦

⎡
⎣ u1t−1

u2t−1

⎤
⎦ +

⎡
⎣ ε1t

ε2t

⎤
⎦ with

⎡
⎣ u10

u20

⎤
⎦ =

⎡
⎣ 0

0

⎤
⎦ ,

⎡
⎣ ε1t

ε2t

⎤
⎦ ∼ iidN

⎛
⎝0,

⎡
⎣ 1 σ12

σ12 1

⎤
⎦

⎞
⎠ .

We set T = 100, σ12 = σ21 = 0.4,0.8, and a11 and a22 are 0.2,0.5,0.8. The

computation was conducted by using the GAUSS matrix language, and the number

of replications is 10,000 for all the cases with the first 50 observations discarded.
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Note that we do not have to include leads when a22 = 0 whereas we do need leads

when a22 	= 0. The simulation results are summarized in Tables 1 and 2 (further

simulation results are available from the author upon request).

For the choice of K, we use the general-to-specific method by Ng and Perron

(1995) with 1% and 5% significant levels and information criteria, i.e., the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC).

To test for Granger non-causality, we use the residuals obtained from the DOLS

estimators with four types of K. With regard to the choice of p, we use the larger

p selected by AIC and BIC, and conduct Wald test with 5% significant level. If the

null of Granger non-causality H0 is rejected we use leads and lags, and if H0 is not

rejected, we use only lags in the estimation.

Table 1 reports the case where we do not have to include leads in the regression

model. From the table we observe that the dynamic OLS estimator after Granger

non-causality test substantially outperforms that with leads and lags in all the cases.

In particular, in terms of the MSE, the MSE of the DOLS estimator without leads

are approximately half of that with leads and lags in many cases. We also observe

that the bias of the estimator is much reduced when we use the information criteria

for the selection of K.

Table 2 shows the results when a22 	= 0; in this case we should include both

leads and lags. We observe that the bias becomes larger in many cases when we

do not include leads in the model. However, we also observe from Table 2 that the

exclusion of leads results in the smaller MSE in some cases, even though both leads

and lags should be included based on the asymptotic theory. The possible reason

is that the degrees of freedom with both leads and lags are smaller than those with

only lags and hence the finite sample performance with leads and lags becomes poor.

4 Conclusion

In this paper, we considered the role of leads of the first difference of the I(1) re-

gressors in the dynamic OLS estimation. Based on a Monte Carlo simulation, we

found that the dynamic OLS estimator without leads after Granger non-causality

test substantially outperforms that with leads and lags when leads are, in fact, un-
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necessary. We also found that even if both leads and lags are required in the model,

the pretest of Granger non-causality results in a better finite sample performance

in view of the MSE in some cases.
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Table 1: Simulation Results (Non-Causal Case)

GS001 GS005 AIC BIC

a11 a22 σ12 L&L Lags L&L Lags L&L Lags L&L Lags

BIAS 0.00294 0.00292 0.00096 0.00080 0.00245 0.00119 0.00430 0.00332

0.2 0 0.4 STDEV 0.06261 0.04816 0.08115 0.05743 0.05452 0.04872 0.03911 0.03933

MSE 0.00393 0.00233 0.00659 0.00330 0.00298 0.00238 0.00155 0.00156

BIAS 0.01008 0.01025 0.00266 0.00348 0.00648 0.00363 0.01584 0.01144

0.5 0 0.4 STDEV 0.09891 0.07600 0.12518 0.08889 0.09918 0.08160 0.06377 0.06476

MSE 0.00989 0.00588 0.01568 0.00791 0.00988 0.00667 0.00432 0.00433

BIAS 0.03775 0.04050 0.02043 0.02215 0.02525 0.01976 0.05711 0.04346

0.8 0 0.4 STDEV 0.23113 0.17605 0.27694 0.20314 0.26759 0.20275 0.16099 0.16125

MSE 0.05485 0.03263 0.07711 0.04175 0.07224 0.04150 0.02918 0.02789

BIAS 0.00374 0.00369 0.00126 0.00144 0.00209 0.00118 0.00611 0.00367

0.2 0 0.8 STDEV 0.04145 0.03194 0.05211 0.03731 0.03808 0.03190 0.02730 0.02707

MSE 0.00173 0.00103 0.00272 0.00139 0.00146 0.00102 0.00078 0.00075

BIAS 0.00891 0.00937 0.00353 0.00427 0.00578 0.00375 0.01456 0.00950

0.5 0 0.8 STDEV 0.06694 0.05025 0.08134 0.05617 0.06914 0.05384 0.04746 0.04597

MSE 0.00456 0.00261 0.00663 0.00317 0.00481 0.00291 0.00246 0.00220

BIAS 0.04592 0.04608 0.02964 0.02843 0.03128 0.02498 0.06808 0.04711

0.8 0 0.8 STDEV 0.17302 0.13553 0.19058 0.13988 0.19115 0.14091 0.15098 0.13040

MSE 0.03205 0.02049 0.03720 0.02038 0.03752 0.02048 0.02743 0.01922

Note: “GS001”, “GS005”, “AIC”, “BIC” denote the dynamic OLS estimator with K chosen by the general to specific

approach with 1% and 5% significant levels, AIC, and BIC, respectively. “L&L” denotes the dynamic OLS estimator with

the leads and lags, and “Lags” denotes the dynamic OLS estimator without leads after testing for Granger non-causality.

Table 2: Simulation Results (Causal Case)

GS001 GS005 AIC BIC

a11 a22 σ12 L&L Lags L&L Lags L&L Lags L&L Lags

BIAS 0.00028 −0.00035 −0.00045 −0.00032 0.00031 0.00000 −0.00030 −0.00032

0.2 0.2 0.4 STDEV 0.05033 0.03857 0.06603 0.04694 0.04309 0.03821 0.03121 0.03137

MSE 0.00253 0.00149 0.00436 0.00220 0.00186 0.00146 0.00097 0.00098

BIAS −0.00029 −0.00041 −0.00023 −0.00009 −0.00004 −0.00009 −0.00033 −0.00023

0.5 0.5 0.4 STDEV 0.05197 0.03909 0.06581 0.04722 0.04983 0.04165 0.03176 0.03208

MSE 0.00270 0.00153 0.00433 0.00223 0.00248 0.00174 0.00101 0.00103

BIAS 0.00010 −0.00024 −0.00013 0.00004 −0.00041 −0.00026 −0.00011 −0.00015

0.8 0.8 0.4 STDEV 0.05517 0.04239 0.06700 0.04911 0.06359 0.04884 0.03480 0.03503

MSE 0.00304 0.00180 0.00449 0.00241 0.00404 0.00239 0.00121 0.00123

BIAS 0.00019 0.00022 0.00008 0.00027 0.00031 0.00025 0.00007 0.00008

0.2 0.2 0.8 STDEV 0.03269 0.02496 0.04173 0.02950 0.02932 0.02501 0.02004 0.02031

MSE 0.00107 0.00062 0.00174 0.00087 0.00086 0.00063 0.00040 0.00041

BIAS 0.00011 0.00011 −0.00009 0.00008 0.00011 0.00031 0.00010 0.00011

0.5 0.5 0.8 STDEV 0.03359 0.02514 0.04266 0.02988 0.03392 0.02693 0.02031 0.02068

MSE 0.00113 0.00063 0.00182 0.00089 0.00115 0.00073 0.00041 0.00043

BIAS −0.00027 −0.00003 −0.00013 0.00008 −0.00003 0.00020 0.00024 0.00019

0.8 0.8 0.8 STDEV 0.03714 0.02569 0.04441 0.03016 0.04230 0.03063 0.02334 0.02250

MSE 0.00138 0.00066 0.00197 0.00091 0.00179 0.00094 0.00055 0.00051

Note: “GS001”, “GS005”, “AIC”, “BIC” denote the dynamic OLS estimator with K chosen by the general to specific

approach with 1% and 5% significant levels, AIC, and BIC, respectively. “L&L” denotes the dynamic OLS estimator with

the leads and lags, and “Lags” denotes the dynamic OLS estimator without leads after testing for Granger non-causality.
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