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Abstract. With a reaction-diffusion system, we consider the dispersing two-species Lotka-
Volterra model with a temporally periodic interruption of the interspecific competitive re-
lationship. We assume that the competition coefficient becomes a given positive constant
and zero by turns periodically in time. We investigate the condition for the coexistence of
two competing species in space, especially in the bistable case for the population dynamics
without dispersion. We could find that the spatial coexistence, that is, the spatially mutual
invasion of two competing species appears with two opposite-directed travelling waves if a
condition for the temporal interruption of the interspecific relationship is satisfied. Further,
we give a suggested mathematical expression of the velocity of travelling waves.
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1 Introduction

The spatial distribution of organisms has been attracting empirical/theoretical ecological re-
searches (for review, see [11, 22, 25] and references therein). The spread of an invader species
in space could be characterized by some natures of the temporally variable spatial distri-
bution, which is naturally affected by the interaction with the other species: competition,
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predation/parasitism, mutualism, etc.
Gause’s competitive exclusion hypothesis says that two species utilizing a common niche

for their persistence cannot coexist, so that one of them eventually goes extinct [9]. However,
not a few empirical and theoretical researches have indicated that two competing species can
coexist even when they utilize a common niche for their persistence, if some environmental
factor has a heterogeneity to regulate their competitive relationship: The environmental
heterogeneity could allow the coexistence of two species competing for a common niche (for
a review, see Chapter 7 of [3]). In such a case, the environmental ‘heterogeneity’ could be
spatial and/or temporal. Indeed, in nature, any interspecific relationship is neither tem-
porally nor spatially homogeneous in time and/or in space. Especially as for the temporal
heterogeneity, a seasonal change of niche could cause a temporal variation of the interspe-
cific relationship [3, 14, 15]. What effect does the temporal heterogeneity of an interspecific
relationship have on the nature of population dynamics?

Hutchinson [14, 15] discussed the effect of temporal heterogeneity of niche on the com-
petitive relationship, and argued that the temporal heterogeneity allows the coexistence of
competing species. Hutchinson’s ideas have been elaborated on by many researchers, and
discussed the effect of environmental seasonal change, for example, about the food avail-
ability on the competing species coexistence (for a review, see [10]). As for theoretical and
mathematical researches about the effect of temporally environmental heterogeneity on the
competition system, the Lotka-Volterra competition system with temporally periodic coeffi-
cients has been studied by some mathematical researchers in the last century [5, 6, 19, 20, 21].
In those researches, the temporally periodic coefficients are assumed to have positive value,
so that the model involves a seasonal change of the strength of competition. Those works
showed that such a temporally periodic variation of coefficients in the Lotka-Volterra com-
petition system causes a variety of dynamical natures which do not appear with constant
coefficients, including not only the coexistence but also a tristable situation depending on
the initial state (frequently mentioned as the state at which a new species invades).

On the other hand, the temporal variation of spatial distribution of competing species
has been studied theoretically with some mathematical models, for example, of the reaction-
diffusion system, the cellular automaton, or the integro-difference/differential equations (for
a review, see [11]). Specifically with respect to the travelling wave emerging for the Lotka-
Volterra type of reaction-diffusion model of two competing species in one-dimensional space,
some mathematical analyses have discussed the critical velocity [8, 13, 16, 17, 18]. They
analyzed the Lotka-Volterra competition system in the homogeneous space, and presented
the mathematical estimation of the velocity of travelling wave. However, some mathematical
open problems have been left, especially about the velocity of travelling wave.

In this paper, we consider the dispersing two-species Lotka-Volterra system with a tem-
porally periodic interruption of the interspecific competitive relationship. Two competing
populations diffuse in one-dimensional space. We assume that the competition coefficient is
constant in a fixed time interval of length τ+, while it is zero in the other time interval of
length τ−. The temporal variation of the competition coefficient is rigorously periodic with
period T = τ+ + τ−, in which the competition coefficient becomes a given positive constant
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and zero by turns, the other parameters being constant in time. In the same framework
of mathematical model without diffusion, Nakajima et al. [19] discussed the condition for
the coexistence of two competing species and that for the permanence of the system. In
this paper, we discuss the spatial coexistence of two competing species, that is, the mutual
invasion to cause a coexisting zone in space, especially in the bistable case for the population
dynamics without dispersion. Such a coexisting zone is expanding by two opposite-directed
travelling wave fronts at the boundary layers. Their velocities are different from each other,
about which we give the suggested mathematical expression of the velocity, making use of
numerical results.

Not only for the competitive relationship but also for any other type of interspecific rela-
tionship, such a temporal interruption of the interspecific relationship would occur in nature,
for example, due to a seasonal separation of niches (habitat, home range, food, etc.) for two
species. From a mathematical viewpoint, such a type of temporally variable interspecific
relationship can be modelled by introducing a temporally interruptive vanishment of terms
which represent the interspecific relationship in the model equations.

We find some interesting natures of such a competition system, distinguished from the
Lotka-Volterra competition system with the temporally constant interspecific competitive
relationship, although some of them are still mathematically open problems. The spatial
coexistence, that is, the spatially mutual invasion of two competing species can occur if
a condition for the temporal interruption of the interspecific relationship is satisfied. We
demonstrate the possibility of the coexistence between competing species in a common spa-
tial region without the segregation of habitats, which could be realized by a temporal hetero-
geneity of the interspecific relationship, even for two competing species that cannot coexist
in a temporally and spatially stationary/homogeneous environment.

2 Model

2.1 Two Competing Species with Diffusion

We consider the following Lotka-Volterra competition system of two species in one dimen-
sional space:





∂n1(x, t)

∂t
= D1

∂2n1(x, t)

∂x2
+ {r1 − β1n1(x, t)− µ12(t)n2(x, t)}n1(x, t)

∂n2(x, t)

∂t
= D2

∂2n2(x, t)

∂x2
+ {r2 − β2n2(x, t)− µ21(t)n1(x, t)}n2(x, t),

(2.1)

where ni(x, t) (i = 1, 2) is the population density of species i at position x and time t.
Parameters Di, ri and βi (i = 1, 2) are all positive, which respectively mean the diffusion
coefficient to indicate the mobility, the intrinsic growth rate to give the maximal reproductive
capacity, and the intraspecific competition coefficient to indicate the strength of the density
effect on each individual from the others of the same species.
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The function of time µij(t) (i, j = 1, 2; i 6= j) introduces the interspecific competition
between populations of species 1 and 2. In this paper, this function is assumed to be rigor-
ously periodic in time: µij(t + T ) = µij(t) for any t (≥ 0) with a given positive constant T .
Constant T gives the species-independent period of the temporal variation in the strength of
interspecific competition. We assume that the competitive relationship temporally changes
in a rigorously periodic manner, because of a seasonal environmental change to cause con-
sequently a seasonal change of the niche utilized by each species.

2.2 Boundary Condition

We consider the system (2.1) on the infinite one dimensional space, x ∈ R, with the following
boundary condition:

(
n1

n2

)

x→−∞
=

(
r1

β1

0

)
and

(
n1

n2

)

x→+∞
=

(
0
r2

β2

)
for any t (≥ 0),

where ri/βi (i = 1, 2) is the carrying capacity for species i, that is, the stationary population
size of species i without the competing species.

2.3 Initial Condition

We consider our model (2.1) with the following initial condition:

n1(x, 0) =

{
r1/β1 for x ∈ (−∞, 0]

0 for x ∈ (0, +∞)

n2(x, 0) =

{
0 for x ∈ (−∞, 0]

r2/β2 for x ∈ (0, +∞).

Hence, we consider the case of a spatial collapse of two competing populations. In back
of the front to the counter population, each population asymptotically has the saturated
population density following the carrying capacity, as introduced by the boundary condition
given in the previous section.

2.4 Temporally Interruptive Competition Coefficient

In this paper, we consider the two competing species system with a temporal interruption
of the interspecific competitive relationship (see Fig. 1). We assume that the competition
coefficient µij (i, j = 1, 2; i 6= j) is a positive constant in a time interval of length τ+, while it
is zero in another time interval of length τ−. Besides, we assume that the temporal variation
of the competition coefficient is rigorously periodic with period T = τ+ + τ−, in which the
competition coefficient becomes a given positive constant and zero by turns. Mathematically
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Figure 1: Temporally interruptive competitive relationship for (2.3) with non-dimensionalized
parameters, m̂ij = rjµ̂ij/(riβj) (i, j = 1, 2; i 6= j), τ̃+ = τ+/T (0 < τ̃+ < 1) and τ̃− = 1− τ̃+.

in short, we assume the following:

µij(t) =

{
µ̂ij (kT ≤ t < kT + τ+)

0 (kT + τ+ ≤ t < (k + 1)T )
(i, j = 1, 2; i 6= j), (2.2)

where k = 0, 1, 2, . . ., and µ̂ij (i, j = 1, 2; i 6= j) is a given positive constant.

2.5 Non-dimensionalized System

Making use of the following transformation of variables and parameters, we can reduce the
number of parameters to be considered in our mathematical analysis:

t̃ =
t

T
; x̃ =

x√
D1T

; Ni =
βi

ri

ni (i = 1, 2);

ρi = riT (i = 1, 2); mij =
rjµij

riβj

(i, j = 1, 2; i 6= j); d21 =
D2

D1

.

With these transformations, we get the following non-dimensionalized system mathemati-
cally equivalent to (2.1):





∂N1(x̃, t̃)

∂t̃
=

∂2N1(x̃, t̃)

∂x̃2
+ ρ1

{
1−N1(x̃, t̃)−m12(t̃)N2(x̃, t̃)

}
N1(x̃, t̃)

∂N2(x̃, t̃)

∂t̃
= d21

∂2N2(x̃, t̃)

∂x̃2
+ ρ2

{
1−N2(x̃, t̃)−m21(t̃)N1(x̃, t̃)

}
N2(x̃, t̃),

(2.3)

with the boundary condition
(

N1

N2

)

x̃→−∞
=

(
1
0

)
and

(
N1

N2

)

x̃→+∞
=

(
0
1

)
for any t̃ (≥ 0),
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Figure 2: In case of temporally continuous competition without diffusion. For the system given
by (2.3), when the diffusion terms are omitted and when τ̃+ = 1 with τ̃− = 0, the stationary state
(N∗

1 , N∗
2 ) is determined only by those constant competitive coefficients m̂ij (i, j = 1, 2; i 6= j). Re-

gion I: Species 2 goes extinct, (N∗
1 , N∗

2 ) = (1, 0); Region II: Species 1 goes extinct, (N∗
1 , N∗

2 ) = (0, 1);
Region III: Two species coexist, (N∗

1 , N∗
2 ) = ((1− m̂12)/(1− m̂12m̂21), (1− m̂21)/(1− m̂12m̂21));

Region IV: One species goes extinct, while another survives, depending on the initial state. This
is the bistable case.

and the initial condition

N1(x̃, 0) =

{
1 for x̃ ∈ (−∞, 0]
0 for x̃ ∈ (0, +∞)

N2(x̃, 0) =

{
0 for x̃ ∈ (−∞, 0]
1 for x̃ ∈ (0, +∞).

Temporally interruptive competitive relationship of mij (i, j = 1, 2; i 6= j) is now given
by

mij(t̃) =

{
m̂ij (k ≤ t̃ < k + τ̃+)

0 (k + τ̃+ ≤ t̃ < k + 1)
(i, j = 1, 2; i 6= j),

where k = 0, 1, 2, . . ., and m̂ij = (rj/ri)µ̂ij/βj (i, j = 1, 2; i 6= j). The interval with competi-
tion τ̃+ = τ+/T now satisfies that 0 < τ̃+ < 1, because the period of temporally repetitive
change of competitive relationship is now normalized into 1 (see Fig. 1).

3 Analysis

3.1 The Case Without Diffusion

Lotka-Volterra two species competition system (2.1) without diffusion (i.e. D1 = D2 = 0)
and with a temporally interruptive competitive relationship same as (2.2) was studied by
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Nakajima et al. [19] according to the species coexistence and the permanence. Especially,
they analyzed the effect of interruption of competitive relationship in case that, if the com-
petition is temporally kept constant without any temporal interruption, the system is in the
bistable situation, that is, one of two species goes extinct and another persists depending on
the initial state (see Fig. 2). With numerical calculations and some analytical arguments,
they showed the following dynamical natures brought by the interruption of competitive
relationship:

• For sufficiently large τ̃−, there appears a set of initial states with which the coexistence
occurs in a periodic oscillation (Fig. 3(a)).

• For an intermediate range of τ̃−, there appears a set of initial states with which one
species goes extinct although it is persistent if the competition is temporally kept
constant (see Fig. 3(b)). In short, the inversion of which species goes extinction occurs.

• For sufficiently small τ̃−, for any initial state, the equilibrium state is identical to that
in case with temporally constant competitive relationship.

• The permanence of system can be realized by the interruption of competitive rela-
tionship, where the permanence means that there exists such a compact set K in the
positive cone of phase space for (N1, N2) that all trajectories in the interior do not exit
K. This is equivalently expressed by the following condition (for instance, see [12]):

There exists a δ > 0 such that

δ < lim inf
t→∞

Ni(t) < ∞ for i = 1, 2,

whenever Ni(0) > 0 (i = 1, 2).

In our case, the permanence is determined by τ̃− and the competition coefficients (m̂12

and m̂21). Nakajima et al. [19] proved the following theorem:

If and only if the following condition is satisfied, the system is permanent,
so that two species coexist independently of the initial state,

max [〈m12〉, 〈m21〉] < 1. (3.4)

The left side of inequality (3.4) means that both of the time-averaged competition
coefficients 〈mij〉 (i, j = 1, 2; i 6= j) is less than 1. This condition for the permanence

(3.4) gives the following critical value τ̃ †− for τ̃− in terms of the permanence:

τ̃ †− = 1− 1

max [m̂12, m̂21]
. (3.5)

When and only when τ̃− > τ̃ †−, the permanence can hold.
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Figure 3: Numerical examples of the trajectory in the phase plane of (N1, N2) in a bistable
case for the Lotka-Volterra two species competition system without diffusion and with temporally
interruptive competitive relationship. Dashed curve is the numerically drawn separatrix in the
case without the interruption of competition. With the periodic interruption of competition, (a) a
trajectory converges to a coexistent state with m̂21 = 1.4; (b) a trajectory converges to the state
(1, 0) with m̂21 = 1.5. In both cases, (N1(0), N2(0)) = (0.2, 0.6); ρ1 = 10.0; ρ2 = 15.0; m̂12 = 1.36;
τ̃− = 0.3. Without the interruption of competition, the trajectory would converge to the state
(0,1), because the initial point is above the separatrix in the corresponding case.

3.2 Spatial Dynamics

Numerical calculations

In this paper, we show some interesting results given by numerical calculations for (2.3) in
which we commonly used parameter values d21 = 1.0/3.0, ρ1 = 1.0, ρ2 = 2.0, m̂12 = 2.0
and m̂21 = 5.0/3.0. Parameter values except for d21 correspond to the bistable case for
the population dynamics with temporally continuous competition without diffusion, that is,
when m̂12 > 1 and m̂21 > 1 (see Fig. 2). The value of the diffusion coefficient d21 is chosen to
realize the standing distribution when the competition coefficients are temporally constant,
making use of the mathematical result by Rodrigo and Mimura [23, 24].

Profile of travelling wave

Numerical calculations show the existence of some travelling wave solutions which have a
temporally periodic change of the profile (see Fig. 4). After a transition state affected by the
initial distribution, the spatial distribution of each population density appears to converge
asymptotically a travelling wave which has a temporally periodic change of its shape.

In case of relatively small τ̃− (= 1− τ̃+), when the period with no competition is relatively
short, the wave shape oscillates due to the temporal change of competitive coefficients. In
case of Fig. 4(a), the spatial distribution of population density shows a temporal shift to
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Figure 4: Profile of travelling waves after sufficient transient period from the initial distribution.
The 3D drawings and the corresponding density plots by numerical calculations. In the density
plot, the darker plot indicates the lower population density. (a-1, a-2) In case of τ̃− = 0.3. Both
fronts appear to oscillate back and forth and eventually go to left with a common time-averaged
velocity. The spatial distribution of species 1 expands while that of species 2 shrinks. (b-1, b-2)
In case of τ̃− = 0.75. The wave front for species 1 goes to right while that for species 2 does to
left. Spatial distributions of both species expand. In case of (b-1, b-2), population densities in
the middle region between two fronts appear plateau (spatially constant) distribution. For both
calculations, d21 = 1.0/3.0, ρ1 = 1.0, ρ2 = 2.0, m̂12 = 2.0 and m̂21 = 5.0/3.0.

left. This means the spatial invasion of species 2 into the habitat of species 1, while species
1 shrinks its spatial distribution due to the competitor’s spatial invasion. As illustrated
by Fig. 5(a), after a transition state, each travelling wave at time t + T appears to have a
shape approximatedly identical to that at time t, that is, the ultimate wave shape temporally
changes and periodically repeats the same with period T . In case of Fig. 5(a), it seems that
two wave fronts move parallel in terms of the time-averaged location. About this point, we
will consider in detail the temporal variation of the location of wave front in the next section.

In case of sufficiently large τ̃− larger than a certain critical value τ̃ ∗−, when the temporal
break of the competition is relatively long, two wave fronts go in direction opposite to each
other in terms of the time-averaged location after a transient period (see Fig. 4(b)). In
this case, we can say that the mutual invasion of the competitive species occurs. In such
a case as indicated by Fig. 4(b), the population density in the region between two wave
fronts appears to have a quasi-plateau (spatially almost constant) distribution, which shows
a temporally periodic oscillation. The movement of two wave fronts expands such a zone
of the quasi-plateau distribution. This means that the coexistent zone temporally expands.
Also in this case, after a transition state, each spatial distribution of the population density
appears to converge asymptotically a travelling wave which has a temporally periodic change
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Figure 5: Temporal snapshots of the profile of travelling waves. Comparison at different temporal
moments by period T . Numerically drawn. It is demonstrated that the shape of travelling front is
identical between two moments different by period T , that is, the shape has a temporally periodic
nature with period T . (a) In case of τ̃− = 0.3. Both fronts appear to go to left with a common
time-averaged velocity. Spatial distribution of species 1 expands while that of species 2 shrinks. (b)
In case of τ̃− = 0.75. The wave front for species 1 goes to right while that for species 2 does to left.
Spatial distributions of both species expand. In case of (b), it is clear that population densities in
the middle region between two fronts appear plateau (spatially constant) distribution. For both
calculations, d21 = 1.0/3.0, ρ1 = 1.0, ρ2 = 2.0, m̂12 = 2.0 and m̂21 = 5.0/3.0.

of the shape, as illustrated by Fig. 5(b).

Location of wave fronts

To examine the direction and the velocity of the wave front movement, which is affected by
the nature of temporally variable competitive relationship, we temporally trace the location
of wave front at a given (low) value of the population density Ni (i = 1, 2), making use of
numerical calculations. The result is illustrated in Fig. 6.

From numerical calculations with τ̃− = 0.0, when every competition coefficient is tem-
porally constant so that the competition relationship always exists, we see that the front
stops moving and realizes the standing distribution after a transient period affected by the
initial distribution, as shown in Fig. 6(a). This is the expected result due to our choice of
the parameter values as mentioned in the first part of this section.

In case of relatively small τ̃−, when the period with no competition is relatively short,
the wave front oscillates due to the temporal change of competitive coefficient. Further, the
time-averaged location of wave front moves as shown in Fig. 6(b) (see also Figs. 4(a) and
5(a)). We note that the time-averaged locations of two wave fronts become parallel after a
transient state. This means that the time-averaged velocities of two wave fronts asymptot-
ically approach a common constant. This type of the time-averaged parallel movement of
wave fronts appears for τ̃− less than a certain critical value τ̃ ∗−, although the time-averaged
velocity depends on the value of τ̃−.
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Figure 6: Temporal variation of the location of wave fronts. Numerically drawn. (a) In case
of τ̃− = 0.0, when the competition coefficients are temporally constant, so that the competition
relationship always exists. After a transient period affected by the initial distribution, the front
stops moving and realizes the standing distribution. (b) In case of τ̃− = 0.3. Early transient
variation is shown magnified. Both fronts appear to oscillate and eventually go to left with a
common time-averaged velocity. The spatial distribution of species 1 expands while that of species
2 shrinks. (c) In case of τ̃− = 0.75. The wave front for species 1 goes to right while that for species
2 does to left. Spatial distributions of both species expand. For all calculations, d21 = 1.0/3.0,
ρ1 = 1.0, ρ2 = 2.0, m̂12 = 2.0 and m̂21 = 5.0/3.0.

For τ̃− larger than a certain critical value τ̃ ∗−, when the period with no competition is
sufficiently long, the time-averaged locations of two wave fronts go in direction opposite to
each other after a transient state (Fig. 6(c), Figs. 4(b) and 5(b)). In this case, we can say that
the mutual invasion of competing species occurs. The time-averaged velocity asymptotically
approaches a constant, although the magnitude depends on the species. In such a case, as
illustrated in Fig. 5(b), the population densities in the zone between two wave fronts appear
a quasi-plateau (spatially almost constant) distribution, and show a temporally periodic
oscillation. The movement of two wave fronts expand such a zone of the quasi-plateau
distribution. Since the time-averaged velocity asymptotically approaches a constant, the
expansion of such a zone has a time-averaged constant speed after a transient state.

Time-averaged velocity

As indicated in Fig. 6, the wave front appears to have a time-averaged constant velocity
of its movement after a transient state from the initial distribution. So we numerically
examined the time-averaged velocity of the wave fronts of two competing populations after
a sufficiently long initial period. As shown in Fig. 7, it is clearly indicated that there exists a
critical value τ̃ ∗− for τ̃−, below which the temporally interruptive competition causes a time-
averaged movement of the wave fronts in a common direction which velocity would depend
also on the difference of diffusion coefficients for two populations (i.e. the value of d21 in
the non-dimensionalized system (2.3)). Numerical calculations indicate that, in such a case,
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Figure 7: τ̃−-dependence of the time-averaged velocity 〈c〉 of wave fronts. Numerical plots for
different m̂21: (a) m̂21 = 5.0/3.0; (b) m̂21 = 19.0/6.0. Commonly for both cases, d21 = 1.0/3.0,
ρ1 = 1.0, ρ2 = 2.0, and m̂12 = 2.0. The arrow indicates the critical value τ̃∗− of τ̃− with respect to
the mutually spatial invasion of competing species. The thick gray curves indicate the theoretically
suggested time-averaged velocities 〈c1〉 and 〈c2〉 given by (3.6) and (3.7) with the time-averaged
competition coefficient 〈mij〉 = m̂ij (1− τ̃−) (i, j = 1, 2; i 6= j).

the time-averaged velocities of the wave fronts equal to each other, which means a parallel
movement of the two wave fronts in the same direction as illustrated in Fig. 6(b).

With τ̃− beyond the critical value τ̃ ∗−, the mutual invasion occurs in space, and the two
wave fronts go in direction opposite to each other in terms of time-averaged location after a
transient period from the initial distribution (see also Figs. 4(b), 5(b) and 6(c)), that is, the
two wave fronts have time-averaged velocities different in sign.

This type of “bifurcation” in the time-averaged velocity appears even with another set
of parameter values as illustrated in Fig. 7(b). This is a case when the spatial distribution
of species 2 expands while that of species 1 shrinks if the competition always exists between
two species (i.e. τ̃− = 0). In contrast, in case of Fig. 7(a), if the competition always exists,
an immobile (i.e. standing) spatial distribution fronts appear (see also Fig. 6(a)).

Theoretical implications

In case of τ̃− = 1.0, two populations are independent of each other because of no interspe-
cific relationship between them. Each wave front asymptotically approaches a temporally
constant shape of the travelling wave with a constant velocity, which is so-called the Fisher
type of travelling wave solution. The asymptotic velocity is 2

√
ρ1 and −2

√
d21ρ2 respectively

for N1 and N2 [7] (for review, see [22] and its references). The competition could reduce the
time-averaged velocity compared to that for the Fisher type of travelling wave, as indicated
in Fig. 7 with 2

√
ρ1 = 2.0 and −2

√
d21ρ2 = −1.63. Although the numerically estimated

time-averaged velocity in Fig. 7 appears beyond that for the Fisher type, it may occur due
to some numerical artifacts to estimate the time-averaged velocity.

Further, for the case of τ̃− < 1.0, we have a theoretical cue to discuss the numerical
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results more detail. When τ̃− = 0, that is, when the competitive reaction always exists,
making use of the marginal stability analysis [1], we have the following critical velocities
below which no travelling wave solution exists [8]:

c1 = 2
√

ρ1(1− m̂21) for species 1;

c2 = −2
√

ρ2d21(1− m̂12) for species 2,

only if m̂21 < 1 and m̂12 < 1 respectively. Hence, in our case, let us consider the follow-
ing theoretically suggested time-averaged critical velocities to compare with the numerical
results:

〈c1〉 = 2
√

ρ1(1− 〈m21〉) for species 1; (3.6)

〈c2〉 = −2
√

ρ2d21(1− 〈m12〉) for species 2, (3.7)

where 〈mij〉 = m̂ij (1− τ̃−) (i, j = 1, 2; i 6= j) is the time-averaged competition coefficient.
As a result, shown in Fig. 7, numerical calculations give well-matched results compared
to these theoretically suggested time-averaged critical velocities, although the numerically
obtained time-averaged velocities appear beyond them in magnitude. These numerical results
may include some numerical artifacts already mentioned above.

As for the case when m̂21 > 1 and m̂12 > 1 for τ̃− = 0, that is, when 〈m21〉 > 1 and
〈m12〉 > 1 in our model, we could not find any theoretical cue applicable for our numerical
results. As implied by [13], when the interspecific competition is stronger than the intraspe-
cific competition, that is, when m̂21m̂12 > 1 for τ̃− = 0 or when 〈m21〉〈m12〉 > 1 in our model,
these theoretically obtained critical velocities would not be attainable and some other ve-
locity would be realized. Indeed, travelling waves emerge with a constant time-averaged
velocity even when 〈m21〉〈m12〉 > 1 in our model, as indicated by Fig. 7.

Comparison to the case without diffusion

From numerical calculations for the diffusion system (2.3), as shown in Fig. 7, we note
that the critical value τ̃ †− given by (3.5) would correspond to the critical value τ̃ ∗− for the
diffusion system (2.3), since the corresponding numerical value of τ̃ ∗− in numerical calculations

appeared to coincide with the critical value τ̃ †−: τ̃ ∗− = τ̃ †−. This is just a conjecture at
present, and hence is an open mathematical problem to be considered in the next step of
this research. Indeed, as shown in Fig. 8, numerical calculations showed a d21-dependence
of the time-averaged velocity of the travelling wave and subsequently the possibility of the
mutually spatial invasion, although we cannot deny at present the possibility that it may be
caused by some numerical artifacts.

In case of the mutual invasion for the diffusion system (2.3), as shown in Fig. 9, we
found that the population densities in the middle region between two travelling fronts ap-
pear plateau (spatially constant) distribution, and show a temporally periodic oscillation.
Since the spatially constant distribution indicates that the contribution of the diffusion to
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Figure 8: d21-dependence of the time-averaged velocity of travelling wave, numerically calculated
with τ̃− = 0.35, ρ1 = 1.0, ρ2 = 2.0, m̂12 = 2.0 and m̂21 = 5.0/3.0. The time-averaged competition
coefficient 〈mij〉 = m̂ij (1− τ̃−) (i, j = 1, 2; i 6= j) is beyond 1 for both species.

the temporally periodic oscillation of population density would be negligible, such a tempo-
rally periodic oscillation in the middle region between travelling fronts could be regarded to
correspond to the periodic oscillation in the case without diffusion (i.e. the periodic orbit
in the phase space. See Fig. 3(a)). In this sense, we could imply that at least τ̃ ∗− ≥ τ̃ †−,
because the mutually spatial invasion occurs with such a zone of the plateau distribution of
population density.

4 Concluding Remarks

Analyzing the dispersing two-species Lotka-Volterra system with temporally periodic inter-
ruption of interspecific competitive relationship, we demonstrate that temporally interruptive
competition can allow a mutual invasion of two competing species dispersing in space, so as
to establish a zone of coexistence.

For a snapshot of the spatial distribution in case of the mutual invasion, we can classify
the spatial distribution into three zones (Fig. 9, also see Figs. 4(b), 5(b) and 6(c)): species
1 dominant zone (resident region of species 1), species 2 dominant zone (resident region
of species 2), and coexistent zone (interspecific reaction-elicited region). Especially in our
model, population densities appear a temporally periodic oscillation within the coexistent
zone, due to the temporally periodic variation of competitive relationship. Since such a
temporally periodic variation is involved only in the competitive relationship, the temporally
periodic oscillation of population density could be observed only in the coexistent zone. If
a seasonal change of the environment or the animal behavior affects only some features of
an interspecific relationship, this type of spatially restricted seasonal variation of population
density would be observed.
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Figure 9: A snapshot of the travelling wave profile. Numerically drawn in case of the mutually
spatial invasion, with τ̃− = 0.75, d21 = 1.0/3.0, ρ1 = 1.0, ρ2 = 2.0, m̂12 = 2.0 and m̂21 = 5.0/3.0.

Species coexistence in space was frequently discussed from the viewpoint of the spatial
heterogeneity: shelter, buffer, or reserver etc [3]. Alternatively it was discussed also from a
niche separation/differentiation [2, 4]: a subsequent segregation of habitats after an inter-
specific reaction. In this paper, we demonstrated the possibility of the coexistence between
competing species in a common spatial region without the segregation of habitats, which
could be realized by a temporal heterogeneity of the interspecific relationship, even for two
competing species that cannot coexist in a temporally and spatially stationary/homogeneous
environment (e.g. in an experimental setting). In some cases, the spatial heterogeneity
and/or the niche separation would not be essential for the competing species’ coexistence
in nature. In our model, the condition for the occurrence of such a coexistence in space
is determined by the time-averaged strength of competition, although the time-averaged
velocity of the subsequently emerging travelling wave, that is, the time-averaged velocity
of the expanding/shrinking resident-occupied region significantly depends on the detail of
parameter values. So a temporal expansion/shrink of a species habitat could not be dis-
cussed only from the time-averaged nature of population dynamics, while the possibility of
the coexistence would be determined only from it.

We examined the time-averaged velocity with numerical calculations for our dispersing
two-species Lotka-Volterra system with a temporally periodic interruption of the interspecific
competitive relationship. Dependence of the time-averaged velocity on parameters in our
model suggests some mathematically open problems. In fact, even in case of the two-species
Lotka-Volterra competition system with constant parameters, the velocity of travelling wave
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solution is still a mathematically open problem (for instance, see [18]).
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