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Abstract

We analyze a general time-discrete mathematical model of single species population

dynamics with the intraspecific density effect and the harvesting/thinning effect. We

harvest a portion of the population at a moment in each year. We investigate the

condition under which the harvesting/thinning causes an eventual increase of its

population at the equilibrium, and show that such a paradoxical increase could

occur for the discrete single species population dynamics with a large family of

density effect functions. Some typical models are analyzed in detail according to the

possibility of the paradox emergence. Our result implies that the contest competition

would never cause the paradox, while the scramble competition would be likely to

cause it.
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1 Introduction

In this paper, we analyze a general time-discrete mathematical model of

single species population dynamics with the intraspecific density effect and

the harvesting/thinning effect. The harvesting/thinning is in general aimed to

minimize the possibility of a population extinction, to maintain a population

stock at productive levels, or to depress a pest density below some critical

‘damage threshold’ [1]. Related to these problems, a variety of mathematical

models introduced the harvesting/thinning effect have been considered and an-

alyzed, mainly from the viewpoint of a sustainable management/development

of natural resources (for example, see [2,3]).

In agriculture, one of the serious problems has been the pest outbreak.

So the pest management has been studied empirically and theoretically (for

reviews, see [4–12]). In many cases, pesticides have been used against the

pest. However, in some cases, the pesticide is effective only in the early period

of its introduction and subsequently results in an unexpected increase or an

outbreak of the pest in the later period. Such a paradoxical phenomenon in

the pest control is often called the pest resurgence. Many investigations about

the resurgence have been carried out (for instance, see [13–17]). It could be

caused by the emergence of a pesticide-resistant strain of the pest or by the

decrease of its enemy population affected by the pesticide [18]. Some other

researches showed that a small amount of pesticide could increase the pest

fecundity whereas a large amount of pesticide decreases the pest population

[18,19]. Such phenomenon is called the hormesis or the homoligosis [18,20].

The hormesis would play an important role to cause the resurgence [18].
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In previous researches, the harvesting/thinning by various forms of physi-

cal control, spraying of pesticides, and biological control was always regarded

to necessarily reduce the population size. In this paper, it is implied that

the subsequent population sizes would not be always reduced by the harvest-

ing/thinning, and such hypothesis that the harvesting/thinning would always

work to reduce the population size as the eventual consequence of its applica-

tion may be inappropriate in some cases.

In our time-discrete mathematical model of single species population dy-

namics with the intraspecific density effect and the harvesting/thinning effect,

we harvest a portion of the population at a moment in each year. We inves-

tigate the condition under which the harvesting/thinning causes an eventual

increase of its population at the equilibrium, and show that such a paradoxical

increase can occur for the discrete single species population dynamics with a

large family of density effect functions. Some typical models are analyzed in

detail according to the possibility of the paradox emergence.

Although our model is fundamental and very simple, we can see that the

harvesting/thinning would potentially work to increase the equilibrium size

of a population targeted by it. This appears to be a paradox against the in-

tuition from the direct effect of harvesting/thinning to reduce the population

size. In the previous researches, such resurgent phenomena against some har-

vesting/thinning operation in nature or in agriculture/fishery/forestry have

been used to be explained by some specific secondary effect of the harvest-

ing/thinning, as mentioned above. In contrast, our result implies that, even

without any of such specific causes, the resurgent phenomenon may emerge

only by the native ecological structure in the population dynamics disturbed

by the harvesting/thinning operation.
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Maximal sustainable yield (MSY) aside, our results imply that an appro-

priate harvesting/thinning would be useful to increase the (time-averaged)

population size as a consequence of the operation, which could enhance the

persistence or the sustainability of the targeted population.

2 Model

We consider the following time-discrete single species population dynamics:

ht+1 = λ {θR(ht) + (1 − θ)R((1 − ρ)ht)} (1 − ρ)ht, (1)

where ht is the population size at a fixed moment (i.e., a fixed observation

point) of the t th year. The sufficiently smooth function R (≥ 0) of the popu-

lation size introduces the intraspecific density effect on the reproductive rate,

satisfying that 0 < R ≤ 1. The positive parameter λ means the intrinsic

growth rate, and λR gives the per capita reproductive rate affected by the

intraspecific density effect.

We harvest a portion ρ (0 ≤ ρ < 1) of the population at a moment given

by θ (0 ≤ θ ≤ 1) in a specific season of each year (see Fig. 1). As the exact

definition, ht gives the population size at the beginning of the specific season in

the t th year. In our model (1), we consider only the case of such a proportional

harvesting/thinning, (1−ρ)ht, instead of a constant harvesting/thinning: ht−

H (H is an appropriate positive constant). This means that the assumed

harvesting/thinning is performed with a random operation, for example, by a

pesticide.

As in Matsuoka and Seno [21], we assume the specific season during which
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Fig. 1. Scheme of the population dynamics with harvesting/thinning in our model

(1). ht is the population density at the beginning of the t th specific season in which

the harvesting/thinning is applied.

the individual accumulates the energy for the reproduction. The total amount

of the accumulated energy is reflected to the reproductive success. Then we as-

sume that the cumulative density effect during the specific season determines

the total amount. As seen in (1), the cumulative density effect is assumed to

be additively given by the proportion θ of the period before/after the har-

vesting/thinning in the specific season. The case of θ = 0 may be regarded to

correspond to the harvesting/thinning before the specific season, and the case

of θ = 1 may be to the harvesting/thinning after it.

In this paper, we assume that the density effect function R(h) is suffi-

ciently smooth, two times continuously differentiable, satisfying that R(0) = 1,

lim
h→∞

R(h) = 0, and R′(h) = dR(h)/dh < 0 for any h > 0.

With these assumptions, the per capita reproductive rate λR is decreasing

in terms of the population size, which introduces the intraspecific density effect

that can regulate the population growth. When λ > 1, from the assumptions,

there is a unique positive value of h, say hc, such that λR(hc) = 1. We can

easily see that, in the case of no harvesting/thinning (ρ = 0), the population

approaches a stationary size given by hc: The equilibrium h = hc is globally

stable for any positive initial state h0.
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In contrast, when λ < 1, the population eventually goes extinct indepen-

dently of whether the harvesting/thinning is applied or not. This is because

the net reproductive rate given by ht+1/ht is always less than 1, as easily seen

from (1). When λ = 1, in the same reason, the population eventually goes

extinct if a harvesting/thinning is applied (ρ > 0). Also in the case of no har-

vesting/thinning (ρ = 0) when λ = 1, we can easily prove that the population

size is monotonically decreasing in generation, and that the extinction neces-

sarily occurs. Therefore, from the biological interest, we hereafter consider our

model (1) with the assumption λ > 1.

3 Analysis

3.1 Existence and stability of non-trivial equilibrium

In this section, we consider the existence of the non-trivial equilibrium

h = h∗ > 0 when a harvesting/thinning is applied with ρ > 0. The equilibrium

population size h∗ satisfies the following equation:

λ {θR(h∗) + (1 − θ)R((1 − ρ)h∗)} =
1

1 − ρ
. (2)

From the assumptions, λ > 1 and the function R(h) is monotonically decreas-

ing toward zero in terms of h > 0, and so is the function θR(h)+(1−θ)R((1−

ρ)h) of h. Since the left side of (2) is necessarily less than λ for h∗ > 0, the

equation (2) has a unique positive root only when λ(1 − ρ) > 1, that is, only

when ρ < 1− 1/λ. If ρ ≥ 1− 1/λ, it is clear that the equation (2) cannot have

any positive root for h∗, because the left side is less than 1/(1−ρ) for any h > 0

in this case. In the case of ρ ≥ 1 − 1/λ, the population size is monotonically
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decreasing in generation and necessarily goes extinct. From these arguments,

we now have the following result:

Result: The equilibrium h = h∗ > 0 uniquely exists if and only if ρ <

1 − 1/λ.

Making use of the standard local stability analysis for the equilibrium h =

h∗ > 0, we can get the following result:

Result: The equilibrium h = h∗ > 0 is asymptotically stable if

d

dh

[
h2 {θR(h) + (1 − θ)R((1 − ρ)h)}

]∣∣∣∣∣
h=h∗

> 0.

It is unstable if the inequality is reversed.

We remark that, when no harvesting/thinning is applied (i.e., ρ = 0), we

have h∗ = hc. Hence, from the above result, we find that, in the case of ρ = 0,

the equilibrium h = hc is asymptotically stable if λ |R′(hc)|hc < 2, while it is

unstable if this inequality is reversed. 　

3.2 Increase of the equilibrium population size by harvesting/thinning

In this section, we consider the ρ-dependence of the population size h∗ at

the non-trivial equilibrium. From the direct ρ-derivative for (2), we have the

following equation:

∂h∗

∂ρ
=

1

(1 − ρ)Λ

[
θR(h) + (1 − θ)

∂

∂h
{R((1 − ρ)h))h}

]
h=h∗

, (3)

where Λ = θR′(h∗)+(1−θ)(1−ρ)R′((1−ρ)h∗) < 0 because R′ < 0. Therefore

we obtain the following result:
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Result: To increase the harvesting/thinning rate causes the increase of the

equilibrium population size only if the following condition is satisfied:

θR(h∗) + (1 − θ)
d

dh
{R(h)h}

∣∣∣∣∣
h=(1−ρ)h∗

≤ 0. (4)

This is the condition for the emergence of such a paradox that the reduction

of population by the harvesting/thinning consequently causes its eventual in-

crease. We can immediately obtain the following important corollary from

(4):

Result: The paradoxical increase occurs only if

d

dh
{R(h)h}

∣∣∣∣∣
h=(1−ρ)h∗

< 0.

Therefore, in order of the paradox emergence, the function R(h)h which gives

what is sometimes called the reproduction curve in population ecology or the

return map in the dynamical system theory necessarily has a range of monoton-

ically decreasing. Further, as a conventional theoretical assumption to consider

the population dynamics, if the population is closed, that is, if any immigra-

tion or emigration is negligible in terms of the population size change, then

R(h)h → 0 as h → 0. In such a case, the above necessary condition for the

paradox emergence indicates a humped shape of the reproduction curve:

Result: The humped reproduction curve is necessary to cause the paradox

for the closed population dynamics.

Therefore, the population under a scramble competition [22] is likely to cause

the paradox, because the humped reproduction curve due to the intraspecific

density effect defines the scramble competition (As for the concept of ‘scram-

ble’ and the ‘contest’ competition, for example, see [23]).
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From (4), as a sufficient condition for the paradox emergence, we can find

the following:

Result: If the function R satisfies that

d

dh
{R(h)h} ≥ 0 for any h > 0,

then the equilibrium population size h∗ is always monotonically decreasing

in term of ρ, so that the paradoxical increase never occurs.

Therefore, it is implied that the paradoxical increase could occur only in the

case when the reproductive rate is sufficiently sensitive to the intraspecific

density effect and it steeply decreases as the population size gets sufficiently

large at least in a range of population size. The population under a contest

competition [22] never causes the paradox, because the reproduction curve due

to the contest competition is monotonically increasing (with an upper bound)

in terms of the population size.

In addition, from (4), we can find the following result, too:

Result: For sufficiently large θ (≤ 1), the paradoxical increase of the popu-

lation size never occurs and the harvesting/thinning makes the equilibrium

population size necessarily decrease.

This is because the condition (4) does not hold when θ = 1. From this result,

the harvesting/thinning in the later period of the specific season necessar-

ily decreases the equilibrium population size, compared to that without the

harvesting/thinning:

Result: The paradox emergence requires a sufficiently small θ.
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These arguments should be applied only for the case that the non-trivial

equilibrium exists stable, because our discussion is about the harvesting/thinning

effect on the population size at the equilibrium. In the subsequent section, we

consider some cases of concrete function R, in which we will make more detail

analysis for each case, combining the condition for the stability condition with

that for the paradox emergence.

3.3 Application for some typical cases

Beverton-Holt type function: logistic growth case

Next, let us consider the following rational function R:

R(h) =
1

1 + bh
, (5)

where b is a positive constant. This case corresponds to what is frequently

called the Beverton-Holt model [24–26]. This model has a monotonically in-

creasing reproduction curve, which corresponds to the contest competition

[22]. Whenever the non-trivial equilibrium h = h∗ > 0 exists for λ(1− ρ) > 1,

it is globally stable such that the population size asymptotically and mono-

tonically approaches h∗ from any positive initial value h0. This is the logistic

growth with the carrying capacity h∗.

In this case, we can easily find that the condition for the paradox emer-

gence (4) is never satisfied for any h∗ > 0. The paradoxical increase never

occurs in this case: The harvesting/thinning eventually makes the equilibrium

population size smaller than that before the harvesting/thinning is applied.
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Exponential function: Ricker model case

In this section, we consider the exponential function R,

R(h) = e−βh, (6)

where β is a positive constant. This gives what is called the Ricker model

or the Ricker-Moran model [27–30]. This model has a humped reproduction

curve corresponding to the scramble competition [22].

In the case of ρ = 0, we can easily find that the paradoxical increase

can occur if θ < 1/2 and e1/(1−θ) < λ < e2: For ρ = 0, the non-trivial

equilibrium h = h∗ > 0 exists globally stable if and only if 1 < λ < e2.

From our results about the general model, we can find that, if and only if

λ > e1/(1−θ), the paradoxical increase of h = h∗ > 0 occurs as ρ gets larger

near ρ = 0. That is, if we apply a weak harvesting/thinning for the population

at the equilibrium when the harvesting/thinning has not been applied yet, the

harvesting/thinning with θ < 1/2 and e1/(1−θ) < λ < e2 results in the paradox

emergence.

In the similar way, we can easily find that, for θ = 0, the paradoxical

increase occurs if and only if 1 − e2/λ < ρ < 1 − e/λ while the equilibrium

exists globally stable for 1−e2/λ < ρ < 1−1/λ. In contrast, for θ = 1, though

the equilibrium exists globally stable for 1 − e2/λ < ρ < 1 − 1/λ (the same

condition as that in the case of θ = 0), the paradoxical increase never occurs.

See Fig. 2.

As for the general case of ρ > 0 and 0 < θ < 1, we can numerically investi-

gate the time-averaged population size in the sufficiently later generations as

shown in Fig. 3. As in the case of the piecewise linear R, when the paradoxical
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Fig. 2. Bifurcation diagrams and the time-averaged values in terms of ρ for the

Ricker model case with the exponential R given by (6). Numerically drawn. (a)

θ = 0.3; (b) θ = 0.6; (c) θ = 0.9. Commonly β = 1.0 and λ = 20.0. In each case,

the upper is the bifurcation diagram and the lower the time-averaged value.

increase occurs at the equilibrium, there is such a specific value of ρ that the

harvesting/thinning enlarges the equilibrium population size by the largest

amount.

However, differently from the case of the piecewise linear R, even when the

population size has a chaotic or periodic variation, the time-averaged popu-

lation size does not always tend to become larger as the harvesting/thinning

gets stronger (the larger ρ). Roughly speaking from the numerical calcula-

tions, under the condition that the paradoxical increase occurs by the harvest-

ing/thinning applied in the earlier period of the specific season (the smaller

θ), the relatively weak harvesting/thinning could not reduce the time-averaged

size but eventually increase it, so that a sufficiently strong harvesting/thinning

is required in order to reduce the population size to the level less than that

before the harvesting/thinning is applied.

Under the condition that the paradoxical increase does not occur by the
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Fig. 3. (ρ, θ)-dependence of the time-averaged population size 〈h〉 in the sufficiently

later generations for the Ricker model case with the exponential R given by (6).

Numerically drawn with β = 1.0 and λ = 20.0. In the density plot, the lighter

region indicates the larger time-averaged population size 〈h〉. Some isograms are

numerically drawn by thin curves, too. In the region between the solid and dotted

curves, the paradoxical increase of the equilibrium population size in terms of ρ

occurs.

harvesting/thinning applied in the later period of the specific season (the larger

θ), the harvesting/thinning could reduce the (time-averaged) population size

as the result.

Power function

In this section, we consider the following power function R:

R(h) = h−γ, (7)

where γ is a positive constant different from 1. Since the right hand of (1) is a

constant independent of ht if γ = 1 in (7), we exclude this singular case. This

is the density effect studied by [31] (also see [32]). Although this density effect

function R does not satisfy the assumption R(0) = 1 for our arguments in
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this paper, our results are applicable as long as the equilibrium is considered.

This is because the assumption R(0) = 1 is relevant only to the existence of

equilibrium h = h∗, and further, in this case, the following unique non-trivial

equilibrium h = h∗ > 0 always exists:

h∗ =
[
λ

{
θ(1 − ρ) + (1 − θ)(1 − ρ)1−γ

}]1/γ
.

This equilibrium is asymptotically and globally stable for γ < 2, and unstable

for γ ≥ 2. When it is unstable, the population size shows an exciting oscillation

and positively diverges. Since the stability is determined only by the parameter

γ and independent of the harvesting/thinning, this could be regarded as one

of specific cases about the density effect function for our model framework.

From (4) and the expression of the non-trivial equilibrium h∗ given above,

we can find that the paradoxical increase never occurs if γ < 1. In contrast, if

γ > 1 (and γ < 2 for the stable existence of h = h∗ > 0), then



∂h∗

∂ρ
≤ 0 for ρ ≤ ρc;

∂h∗

∂ρ
> 0 for ρ > ρc,

where

ρc = 1 −
{

1 − θ

θ
(γ − 1)

}1/γ

.

Further from this result, we can easily find that the paradoxical increase always

occurs if γ ≥ 1/(1−θ) and θ < 1/2 whenever the non-trivial equilibrium exists

asymptotically stable. When 1 < γ < 1/(1−θ), the paradoxical increase occurs

if and only if ρ > ρc (see Fig. 4). With the same arguments, we can find that,
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Fig. 4. (γ, θ)- and (ρ, θ)-dependence of the paradox emergence for the model with

the power function R given by (7). Numerically drawn respectively with ρ = 0.4

and γ = 1.3. See the text for the detail.

for given ρ and γ > 1, the paradox emerges if θ ≤ θc where

θc =
γ − 1

γ − 1 + (1 − ρ)γ
.

Otherwise, it does not emerge (Fig. 4).

We can conclude that, in this case, the stronger density effect (the larger

γ) and the earlier harvesting/thinning (the smaller θ) make the paradoxi-

cal increase more likely to occur, whenever the non-trivial equilibrium exists

asymptotically stable.

Piecewise linear function: logistic map case

At first, let us consider the following piecewise linear function R:

R(h) =



1 − h

he

for 0 ≤ h < he;

0 for h ≥ he,

(8)
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where he is a positive constant beyond which every individual cannot succeed

in its reproduction. This case corresponds the scramble competition [22]. This

function does not satisfy all our assumptions for the function R because it

is not differentiable at h = he. Now we focus the value of h only in the

range [0, he) where every assumption is satisfied, because any positive h∗ is

necessarily in [0, he). As long as considered (8) only in [0, he), the population

dynamics (1) with (8) satisfies all our assumptions.

The population dynamics (1) with (8) essentially corresponds to what is

now called a logistic map, which is one of the most famous discrete population

dynamics models. It has been providing a variety of discussions about its

applicability for the real population dynamics, because it has a nature of

period-doubling bifurcation toward chaos [27,33–35] (see Fig. 5).

Cooke and Nusse [36] and Cook et al. [37] mathematically considered the

qualitative nature of the dynamics described by the similar discrete model

concerning the harvesting/thinning effect (only in the case of θ = 0 of our

model (1)), in which the harvesting/thinning was introduced by a constant

subtraction of population: ht − H (H is an appropriate positive constant)

instead of (1−ρ)ht in our model (1). However, no discussion about our present

subject of the paradox emergence has been done.

From (2) with (8), we can explicitly obtain the non-trivial equilibrium

population size:

h∗ =
1 − 1/{λ(1 − ρ)}
θ + (1 − θ)(1 − ρ)

· he. (9)

This equilibrium exists if and only if
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Fig. 5. Bifurcation diagrams and the time-averaged values in terms of ρ for the

logistic map case with the piecewise linear R given by (8). Numerically drawn. (a)

θ = 0.0; (b) θ = 0.2; (c) θ = 0.4; (d) θ = 0.6; (e) θ = 0.8; (f) θ = 1.0. Commonly

he = 1.0 and λ = 4.0. In each case, the upper is the bifurcation diagram and the

lower the time-averaged value.

1 < λ(1 − ρ) <
1

(1 − θ)ρ
.

The condition for the asymptotical stability is given by

λ(1 − ρ) < 3,

while the condition for the paradox emergence is now obtained as

λ(1 − ρ) > 2 +
θ

(1 − θ)(1 − ρ)
.
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From these conditions, we find that the paradoxical increase occurs at the

equilibrium state if and only if the following condition is satisfied:

2 +
θ

(1 − θ)(1 − ρ)
< λ(1 − ρ) < min{3, 1

(1 − θ)ρ
}. (10)

From this condition, we remark that the paradox emerges only if

ρ < min{1

2
,

1 − 2θ

1 − θ
}. (11)

Simultaneously we have the other necessary condition that θ < 1/2.

It is clear that the paradoxical increase never occurs for θ sufficiently near

1. In the case of θ = 0, it occurs when 2 < λ(1 − ρ) < min{3, 1/ρ} and

ρ < 1/2. In Fig. 5, we show numerical examples of the paradoxical increase of

population size by harvesting/thinning. It is interesting that the time-averaged

population size through a sufficiently large number of generations is increased

by harvesting/thinning even when the population size has a periodic or chaotic

variation as its limiting behaviour.

These results are illustrated by Fig. 6 numerically drawn with he = 1.0 and

λ = 4.0. We find that, when the paradoxical increase occurs at the equilibrium,

there is such a specific value of ρ that the harvesting/thinning enlarges the

equilibrium population size by the largest amount.

Moreover, roughly speaking from the numerical calculations, as long as the

population size has a chaotic or periodic variation, the time-averaged popula-

tion size tends to become larger as the harvesting/thinning gets stronger (the

larger ρ). See Figs. 5 and 6. Therefore, if the population size has a chaotic or

periodic variation, the relatively weak harvesting/thinning could not reduce

the time-averaged size but eventually increase it.
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Fig. 6. (ρ, θ)-dependence of the time-averaged population size 〈h〉 in the sufficiently

later generations for the logistic map case with the piecewise linear R given by

(8). Numerically drawn with he = 1.0 and λ = 4.0. In the density plot, the lighter

region indicates the larger time-averaged population size 〈h〉. Some isograms are

numerically drawn by thin curves, too. In the region under the dotted curve, the

paradoxical increase of the equilibrium population size in terms of ρ occurs.

Consequently, a sufficiently strong harvesting/thinning is required in order

to reduce the population size to the level lower than that before the harvest-

ing/thinning is applied. Otherwise, the population size could paradoxically

increase by the harvesting/thinning.

4 Conclusion

As shown in our analysis for some concrete models, according to the system

in which the paradox could emerge, we have a critical harvesting/thinning ratio

ρ that enlarges the equilibrium population size by the largest amount. With

the harvesting/thinning with ρ greater than it, the equilibrium population size

could be lowered, and with ρ greater than another greater critical value, the

population goes extinct as intuitively expected. This result demonstrates such
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a possibility of the harvesting/thinning operation that it could contribute to

enhance the population persistence if designed well in its strength and timing.

In our model, the paradox is more likely to emerge by the harvesting/thinning

in the earlier period of the specific season during which the reproductive suc-

cess in the adulthood is significantly determined because of the importance

of the net energy gain for the maturation of fecundity. This means that the

earlier reduction of the population density could work to sufficiently mod-

erate the density effect on the competition for the energy gain, and subse-

quently to increase the per capita net energy gain at the end of the specific

season. The increased per capita net energy gain is reflected to the overcom-

pensated total reproduction in the population which eventually leads to the

overcompensated population size in the next generation. On the other hand,

the harvesting/thinning in the later period of the specific season never causes

the paradox. Too later harvesting/thinning could work to moderate the den-

sity effect little and could be reflected to a weak enhancement in the total

reproduction, so that the population reduction by harvesting/thinning the

adult population leads to the smaller population size in the next generation.

Therefore, the harvesting/thinning aimed to the targeted population has to

be planned for the earlier stage of life history (e.g., egg or seed), while that

aimed to depress the targeted population has to be done for the later stage

(e.g., juvenile, pupa, or adult).

Moreover, in order of the paradox emergence, the density dependence has to

be sufficiently sensitive to the increase in the population density. As implied

by the result for the model with the power density effect function (7), the

sensitivity would be required to be stronger than the inverse of population

density (γ > 1 for (7)). As a consequence, the scramble competition would
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be likely to cause the paradoxical increase in the equilibrium (or the time-

averaged) population size by a harvesting/thinning.

Consequently, only for the targeted species which has a sufficiently sensitive

density dependence, the paradox could be caused by the harvesting/thinning

operated in the earlier stage of life history and with an appropriately inter-

mediate strength. Our result suggests that a large family of density effect

functions, that is, a large family of reproduction curves could cause the para-

doxical increase in the equilibrium (or the time-averaged) population size by

a harvesting/thinning.
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