Three new olefinic acetogenin glycosides from leaves of *Staphylea bumalda* DC.
 Etsuko Sueyoshi • Qian Yu • Katsuyoshi Matsunami • Hideaki Otsuka
 Received: 28 April 2008
 E. Sueyoshi • Q. Yu • K. Matsunami • H. Otsuka

8 Department of Pharmacognosy, Graduate School Biomedical Sciences, Hiroshima

9 University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan

10 E-mail: hotsuka@hiroshima-u.ac.jp

| 11 | Abstract Three new olefinic acetogenin glycosides (3, 6 and 7) have been isolated from             |
|----|----------------------------------------------------------------------------------------------------|
| 12 | Staphylea bumalda DC., together with four known congeners (1, 2 and 4, 5). Their                   |
| 13 | structures were determined on the bases of spectral data.                                          |
| 14 |                                                                                                    |
| 15 | Keywords Staphylea bumalda• Staphyleaceae • olefinic glycosides                                    |
| 16 |                                                                                                    |
| 17 | Introduction                                                                                       |
| 18 |                                                                                                    |
| 19 | Staphylea bumalda DC. (Staphyleaceae) is a deciduous shrub distributed in China,                   |
| 20 | Japan and Korea. Previously, we dealt with the isolation and structural investigation of           |
| 21 | 11 new megastigmane glucosides from the leaves of the title plant [1]. The present                 |
| 22 | paper describes the isolation and structure determination of three new olefinic                    |
| 23 | acetogenin glycosides (3, 6 and 7) and four known $C_6$ aliphatic glycosides; <i>n</i> -hexyl      |
| 24 | $\beta$ -D-gentiobioside (1) [2], (E)-2- and (Z)-3-hexenyl $\beta$ -D-glucosides (2 and 4) [3] and |

25 (Z)-3-hexenyl O- $\beta$ -D-glucopyranosyl-(1" $\rightarrow$ 6')- $\beta$ -D-glucopyranoside (5) [4], from the

26 leaves of the title plant.

# **Results and discussion**

| 30 | ( <i>E</i> )-Hex-2-en-1-ol <i>O</i> - $\beta$ -D-glucopyranosyl-(1" $\rightarrow$ 6')- $\beta$ -D-glucopyranoside (3), $[\alpha]_D^{25}$ |
|----|------------------------------------------------------------------------------------------------------------------------------------------|
| 31 | -43.9, was isolated as an amorphous powder and its elemental composition was                                                             |
| 32 | determined to be $C_{18}H_{32}O_{11}$ by HR-ESI-MS. The <sup>1</sup> H and <sup>13</sup> C NMR spectra showed the                        |
| 33 | presence of 12 signals assignable to two $\beta$ -glucopyranoses, which are expected to                                                  |
| 34 | comprise a $\beta$ -gentiobiose forming the l–6 linkage between the two glucose moieties                                                 |
| 35 | (Tables 1 and 2) and this was confirmed by the HMBC experiment, in which correlation                                                     |
| 36 | peaks between $\delta_{\rm H}$ 3.79 (H-6'a) and 4.14 (H-6'b), and $\delta_{C}$ 104 (C-1") were observed. The                             |
| 37 | remaining six carbon signals, representing a disubstituted double bond, three                                                            |
| 38 | methylenes, one of which possessed an oxygen atom, and a methyl carbon. The                                                              |
| 39 | coupling patterns of proton signals in the <sup>1</sup> H NMR spectrum showed the existence of a                                         |
| 40 | <i>trans</i> -double bond [ $\delta_{\rm H}$ 5.60 (1H, <i>dddt</i> , $J = 15$ , 7, 6 and 1 Hz) and 5.76 (1H, <i>dtt</i> , $J = 15$ , 7   |
| 41 | and 1 Hz)] and other NMR spectral data were essentially the same as those of 2. The                                                      |
| 42 | absolute configuration of glucose was determined to be of the D-series on HPLC                                                           |
| 43 | analysis of the hydrolyzate of 3 using an optical rotation detector. Therefore, the                                                      |
| 44 | structure of <b>3</b> was elucidated as shown in Fig. 1.                                                                                 |

| 45 | (Z)-Hex-3-en-1-ol O- $\beta$ -apiofuranosyl-(1" $\rightarrow$ 6')- $\beta$ -D-glucopyranoside (6), $[\alpha]_D^{23}$ -63.3, |
|----|-----------------------------------------------------------------------------------------------------------------------------|
| 46 | was isolated as an amorphous powder and its elemental composition was determined to                                         |
| 47 | be $C_{17}H_{30}O_{10}$ by HR-ESI-MS. The <sup>1</sup> H and <sup>13</sup> C NMR spectra showed the presence of 11          |
| 48 | signals assignable to 6-substituted $\beta$ -glucopyranose and outer $\beta$ -apiofuranose moieties                         |
| 49 | [5], which were expected to be linked through 1"-6' positions and this was confirmed                                        |
| 50 | by the HMBC experiment. The remaining six carbon signals analogous to those of                                              |
| 51 | compound 3 must form <i>n</i> -hexenol. The coupling patterns of proton signals in the ${}^{1}H$                            |
| 52 | NMR spectrum showed the existence of a <i>cis</i> -double bond [ $\delta_{\rm H}$ 5.38 (1H, <i>dtt</i> , <i>J</i> = 11, 7   |
| 53 | and 1 Hz) and 5.45 (1H, $dtt$ , $J = 11$ , 7 and 1 Hz)], which must be located on the                                       |
| 54 | 3-position from the fact that the methyl protons appeared as a triplet signal [ $\delta_H$ 0.97 (1H,                        |
| 55 | t, $J = 7$ Hz)] and the carbinol proton signals coupled as triplet with the adjacent                                        |
| 56 | methylene protons (Table 1). The absolute configuration of glucose was determined to                                        |
| 57 | be of the D-series on HPLC analysis of the hydrolyzate of 6 using an optical rotation                                       |
| 58 | detector. Therefore, the structure of 6 was elucidated as shown in Fig. 1.                                                  |
| 59 | (Z)-8-Hydroxyoct-5-enoic acid O- $\beta$ -D-glucopyranoside (7), $[\alpha]_D^{23}$ –23.8, was isolated                      |
| 60 | as an amorphous powder and its elemental composition was determined to be $C_{14}H_{28}O_8$                                 |
| 61 | by HR-ESI-MS. The <sup>1</sup> H and <sup>13</sup> C NMR spectra showed the presence of six signals                         |

| 62 | assignable to a $\beta$ -glucopyranose and the remaining eight carbon signals, including the                                    |
|----|---------------------------------------------------------------------------------------------------------------------------------|
| 63 | emerged three methylenes and one methylene, a carboxylic acid instead of the methyl                                             |
| 64 | group, compared with compound 6, a primary alcohol, and a disubstituted double bond,                                            |
| 65 | must form a 8-hydroxyoct-5-enoic acid. Judging from the coupling patterns of olefinic                                           |
| 66 | proton signals in the <sup>1</sup> H NMR spectrum [ $\delta_{\rm H}$ 5.42 (1H, <i>dtt</i> , <i>J</i> = 11, 7 and 1 Hz) and 5.47 |
| 67 | (1H, $dtt$ , $J = 11$ , 7 and 1 Hz)], the geometry of the double bond was determined to be in                                   |
| 68 | a cisoid form. The two-dimensional NMR spectra were closely inspected in order to                                               |
| 69 | determine the position of the double bond. In the H-H COSY spectrum, all the proton                                             |
| 70 | signals were correlated as shown in Fig. 2 and thus, the structure of 7 was elucidated as                                       |
| 71 | shown in Fig. 1. The correlation peaks, observed from the anomeric proton ( $\delta_H$ 4.27) of                                 |
| 72 | glucose to C-8 ( $\delta_C$ 70.4) and from the proton ( $\delta_H$ 3.56 and 3.87) of C-8 to the olefinic                        |
| 73 | carbon ( $\delta_C$ 127.7) in the HMBC spectrum also supported the structure (Fig. 2). The                                      |
| 74 | absolute configuration of glucose was determined to be of the D-series on HPLC                                                  |
| 75 | analysis of the hydrolyzate of <b>7</b> using an optical rotation detector.                                                     |
|    |                                                                                                                                 |

# 77 Experimental

### 79 General experimental procedures

| 80 | The following instruments were used to record physical data. Optical rotations: JASCO                  |
|----|--------------------------------------------------------------------------------------------------------|
| 81 | P-1030 digital polarimeter; FT-IR spectra: Horiba FT-710 spectrophotometer; <sup>1</sup> H and         |
| 82 | $^{13}\text{C}$ NMR spectra: JEOL $\alpha\text{-}400$ spectrometer (400 MHz and 100 MHz, respectively) |
| 83 | with TMS as internal standard; ESI-TOF-MS: Applied Biosystems QSTAR® XL                                |
| 84 | NanoSpray <sup>TM</sup> System. Parts of the general experimental procedures were described in         |
| 85 | previous papers [1].                                                                                   |
|    |                                                                                                        |

86

#### 87 Plant material

Leaves of *Staphylea bumalda* DC. were collected in the suburbs of Hiroshima City,
Japan, in June 2000, and a voucher specimen was deposited in the Herbarium of the

90 Department of Pharmacognosy, Division of Medicinal Chemistry, Graduate School of

91 Biomedical Sciences, Hiroshima University (00-SB-Hiroshima-0618).

92

#### 93 **Extraction and isolation**

94 The air-dried leaves of S. bumalda (5.71 kg) were extracted with MeOH ( $15 l \times 3$ ). Parts

95 of the extraction and isolation procedures were described in the previous paper [1].

| 96  | The 40% MeOH eluate (12.3 g) of obtained on Diaion HP-20 column chromatography                                |
|-----|---------------------------------------------------------------------------------------------------------------|
| 97  | (CC) was subjected to silica gel (300 g) CC, with elution with $CHCl_3$ (2 l) and                             |
| 98  | CHCl <sub>3</sub> -MeOH [(99:1, 3 l), (97:3, 3 l), (19:1, 3 l), (37:3, 3 l), (9:1, 3 l), (7:1, 3 l), (17:3,   |
| 99  | 3 l), (33:7, 3 l), (4:1, 3 l), (3:1, 3 l) and (7:3, 3 l)], 500 ml fractions being collected.                  |
| 100 | Combined fractions 41-51 (1.86 g) were separated by reversed-phase open CC                                    |
| 101 | (H <sub>2</sub> O-MeOH). The residues (228 mg in fractions 83–90, 224 mg in fractions 91–100                  |
| 102 | and 214 mg in fractions 101-113) were subjected to droplet counter-current                                    |
| 103 | chromatography (DCCC) (CHCl <sub>3</sub> -MeOH-H <sub>2</sub> O-1-PrOH) and HPLC (ODS, H <sub>2</sub> O-MeOH) |
| 104 | to give 17.8 mg of <b>7</b> from the first, 92.9 mg of <b>5</b> from the second and 30.0 mg of <b>3</b> from  |
| 105 | the third residues.                                                                                           |
| 106 | The 40-60% MeOH eluate (24.0 g) of obtained on Diaion HP-20 column                                            |
|     |                                                                                                               |

107 chromatography was subjected to silica gel (500 g) CC, with elution with  $CHCl_3$  (2 l)

108 and CHCl<sub>3</sub>-MeOH [(99:1, 3 l), (97:3, 3 l), (19:1, 3 l), (37:3, 3 l), (9:1, 3 l), (7:1, 3 l),

109 (17:3, 3 l), (33:7, 3 l), (4:1, 3 l), (3:1, 3 l) and (7:3, 3 l)], 500 ml fractions being

110 collected. Combined fractions 29-37 (3.00 g) of the 10-12.5% MeOH eluate were

111 filtrated in a vacuum filtrator to remove the precipitates from the mother liquid, which

112 (1.71 g) were separated by reversed-phase open CC (H<sub>2</sub>O-MeOH). The residue (90.4

| 113 | mg in fractions 112-123) were subjected to DCCC (CHCl <sub>3</sub> -MeOH-H <sub>2</sub> O-1-PrOH) and            |
|-----|------------------------------------------------------------------------------------------------------------------|
| 114 | HPLC (ODS, H <sub>2</sub> O-MeOH) to give 19 mg of <b>2</b> . Combined silica gel CC fractions 42–49             |
| 115 | (2.16 g) of the 15–17.5% MeOH eluate were filtrated in a vacuum filtrator to remove                              |
| 116 | the precipitate from the mother liquid, which (810 mg) were separated by                                         |
| 117 | reversed-phase open CC (H <sub>2</sub> O-MeOH). The residue (283 mg in fractions 92–101, 69.5                    |
| 118 | mg in fractions 102-106, 110 mg in fractions 114-120) were subjected to DCCC                                     |
| 119 | (CHCl <sub>3</sub> -MeOH-H <sub>2</sub> O-1-PrOH) and HPLC (ODS, H <sub>2</sub> O-MeOH) to give 9.8 mg of 4 from |
| 120 | the first, 23.1 mg of <b>6</b> from the second and 20.9 mg of <b>1</b> from the third residue.                   |
|     |                                                                                                                  |

## 122 Known compounds isolated

*n*-Hexyl *O*-β-D-glucopyranosyl-(1"→6')-β-D-glucopyranoside (1): amorphous powder;124 $[\alpha]_D^{26}$  -32.6 (*c* 1.4, MeOH) [2]. (*E*)-2-Hexenyl β-D-glucopyranoside (2), amorphous125powder;  $[\alpha]_D^{25}$  -32.6 (*c* 1.4, MeOH) [3]. (*Z*)-3-Hexenyl β-D-glucopyranoside (4),126amorphous powder;  $[\alpha]_D^{25}$  -33.4 (*c* 0.65, MeOH) [3]. (*Z*)-3-Hexenyl127*O*-β-D-glucopyranosyl-(1"→6')-β-D-glucopyranoside (5), amorphous powder;  $[\alpha]_D^{23}$ 128-41.0 (*c* 4.6, MeOH) [4].

130 (*E*)-Hex-2-en-1-ol O- $\beta$ -D-glucopyranosyl-(1" $\rightarrow$ 6')- $\beta$ -D-glucopyranoside (**3**)

- 131 Amorphous powder;  $[\alpha]_D^{25}$  -43.9 (c 0.54, MeOH); IR  $v_{max}$  (film) cm<sup>-1</sup>: 3367, 2927,
- 132 2874, 1650, 1370, 1165, 1072, 1040; <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD): Table 1; <sup>13</sup>C NMR
- 133 (100 MHz, CD<sub>3</sub>OD): Table 2; HR-ESI-MS (positive-ion mode) *m/z*: 447.1819 [M+Na]<sup>+</sup>
- 134 (Calcd for  $C_{18}H_{32}O_{11}Na: 447.1836$ ).
- 135
- 136 (Z)-Hex-3-en-1-ol O- $\beta$ -apiofuranosyl-(1" $\rightarrow$ 6')- $\beta$ -D-glucopyranoside (6)
- 137 Amorphous powder;  $[\alpha]_D^{23}$  –63.3 (*c* 1.54, MeOH); IR v<sub>max</sub> (film) cm<sup>-1</sup>: 3368, 2932,

138 2879, 1650, 1512, 1368, 1162, 1053; <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD): Table 1; <sup>13</sup>C NMR

- 139 (100 MHz, CD<sub>3</sub>OD): Table 2; HR-ESI-MS (positive-ion mode) m/z: 417.1728 [M+Na]<sup>+</sup>
- 140 (Calcd for  $C_{17}H_{30}O_{10}Na: 417.1731$ ).
- 141
- 142 (Z)-8-Hydroxyoct-5-enoic acid *O*-β-D-glucopyranoside (7)
- 143 Amorphous powder;  $[\alpha]_D^{23}$  –23.8 (c 1.19, MeOH); IR v<sub>max</sub> (film) cm<sup>-1</sup>: 3371, 2931,
- 144 2883, 1716, 1654, 1512, 1369, 1164, 1078, 1032; <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD): Table
- 145 1; <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD): Table 2; HR-ESI-MS (positive-ion mode) *m/z*:
- 146 343.1364  $[M+Na]^+$  (Calcd for  $C_{14}H_{28}O_8Na$ : 343.1363).

148 Analyses of the sugar moiety

| 149 | About 500 $\mu$ g each of <b>3</b> , <b>6</b> and <b>7</b> was hydrolyzed with 1N HCl (0.1 ml) at 100 for 2      |
|-----|------------------------------------------------------------------------------------------------------------------|
| 150 | h. The reaction mixtures were partitioned with an equal amount of EtOAc (0.1 ml), and                            |
| 151 | the water layers were analyzed with a chiral detector (JASCO OR-2090plus) on an                                  |
| 152 | amino column [Asahipak NH2P-50 4E, CH3CN-H2O (4:1), 1 ml/min]. Hydrolyzates of                                   |
| 153 | <b>3</b> , <b>6</b> and <b>7</b> gave the peak for D-glucose at the retention time of 14.4 min (positive optical |
| 154 | rotation sign). Peaks were identified by co-chromatography with authentic D-glucose.                             |
| 155 |                                                                                                                  |

#### 156 Acknowledgements

The authors are grateful for access to the superconducting NMR instrument at the Analytical Center of Molecular Medicine of Graduate School of Biomedical Sciences, Hiroshima University and an Applied Biosystem QSTAR XL system ESI (Nano Spray)-TOF-MS at the Analytical Center of Molecular Medicine and the Analysis Center of Life Science, respectively, of the Hiroshima University Faculty of Medicine.

162

163 **References** 

| 164 | 1. Yu Q, Matsunami K, Otsuka H, Takeda Y (2005) Staphylionosides A-K:               |
|-----|-------------------------------------------------------------------------------------|
| 165 | Megastigmane glucosides from the leaves of Staphylea bumalda DC. Chem Pharm         |
| 166 | Bull 53:800–807                                                                     |
| 167 | 2. Yuda M, Ohtani K, Mizutani K, Kasai R, Tanaka O, Jia M, Ling Y, Pu X, Saruwatari |
| 168 | Y (1990) Neolignan glycosides from roots of Codonopsis tangshen. Phytochemistry     |
| 169 | 29:1989–1993                                                                        |
| 170 | 3. Mizutani K, Yuda M, Tanaka O, Saruwatari Y, Fuwa T, Jia M, Ling Y, Pu X (1988)   |
| 171 | Chemical studies on Chinese traditional medicine, dangshen. I. Isolation of (Z)-3-  |

and (*E*)-2-hexenyl  $\beta$ -D-glucosides. Chem Pharm Bull 36:2689–2690

173 4. Noiarsa P, Yu Q, Matsunami K, Otsuka H, Ruchirawat S, Kanchanapoom T (2007)

174 (Z)-3-Hexenyl diglycosides from Spermacoce laevis Roxb. J Nat Med 61:406–409

- 175 5. Takeda Y, Ooiso Y, Masuda T, Honda G, Otsuka H, Sezik E, Yesilada E (1998) Irioid
- and eugenol glycosides from Nepeta cademea. Phytochemistry 49:787–791

|     |     | 1 1                                               | 1 ,                                           |                                           |
|-----|-----|---------------------------------------------------|-----------------------------------------------|-------------------------------------------|
| 8   |     | 3                                                 | 6                                             | 7                                         |
| 79  | 1   | 4.09 (1H, <i>ddd</i> , <i>J</i> =12, 7, 1 Hz)     | 3.54 (1H, <i>dt</i> , <i>J</i> =10, 7 Hz)     |                                           |
| 80  |     | 4.30 (1H, <i>ddd</i> , <i>J</i> =12, 6, 1 Hz)     | 3.83 (1H, <i>dt</i> , <i>J</i> =10, 7 Hz)     |                                           |
| 81  | 2   | 5.60 (1H, <i>dddt</i> , <i>J</i> =15, 7, 6, 1 Hz) | 2.38 (2H, q, J=7 Hz)                          | 2.30 (2H, <i>t</i> , <i>J</i> =7 Hz)      |
| 82  | 3   | 5.76 (1H, <i>dtt</i> , <i>J</i> =15, 7, 1 Hz)     | 5.38 (1H, <i>dtt</i> , <i>J</i> =11, 7, 1 Hz) | 1.67 (2H, quint., J=7 Hz)                 |
| 83  | 4   | 2.04 (2H, <i>qd</i> , <i>J</i> =7, 1 Hz)          | 5.45 (1H, <i>dtt</i> , <i>J</i> =11, 7, 1 Hz) | 2.12 (2H, q, J=7 Hz)                      |
| 84  | 5   | 1.42 (2H, sextet, J=7 Hz)                         | 2.08 (2H, quint.d, J=7, 1 Hz)                 | 5.42 (1H, <i>dt</i> , <i>J</i> =11, 7 Hz) |
| 85  | 6   | 0.92 (3H, <i>t</i> , <i>J</i> =7 Hz)              | 0.97 (3H, <i>t</i> , <i>J</i> =7 Hz)          | 5.47 (1H, <i>dt</i> , <i>J</i> =11, 7 Hz) |
| 86  | 7   |                                                   |                                               | 2.38 (2H, q, J=7 Hz)                      |
| 87  | 8   |                                                   |                                               | 3.56 (1H, <i>dt</i> , <i>J</i> =10, 7 Hz) |
| 88  |     |                                                   |                                               | 3.87 (1H, <i>dt</i> , <i>J</i> =10, 7 Hz) |
| 89  | 1′  | 4.30 (1H, <i>d</i> , <i>J</i> =8 Hz)              | 4.25 (1H, <i>d</i> , <i>J</i> =8 Hz)          | 4.27 (1H, <i>d</i> , <i>J</i> =8 Hz)      |
| 90  | 2'  | 3.19 (1H, <i>dd</i> , <i>J</i> =9, 8 Hz)          | 3.17 (1H, <i>dd</i> , <i>J</i> =9, 8 Hz)      | 3.17 (1H, <i>dd</i> , <i>J</i> =9, 8 Hz)  |
| 91  | 3'  | 3.27-3.38 (overlapped)                            | 3.27 (1H, <i>t</i> , <i>J</i> =9 Hz)          | 3.35 (1H, <i>t</i> , <i>J</i> =9 Hz)      |
| .92 | 4′  | 3.27-3.38 (overlapped)                            | 3.35 (1H, <i>t</i> , <i>J</i> =9 Hz)          | 3.27-3.38 (overlapped)                    |
| 93  | 5'  | 3.43 (1H, <i>ddd</i> , <i>J</i> =10, 6, 2 Hz)     | 3.39 (1H, <i>ddd</i> , <i>J</i> =9, 6, 2 Hz)  | 3.27-3.38 (overlapped)                    |
| 94  | 6'  | 3.79 (1H, <i>dd</i> , <i>J</i> =12, 6 Hz)         | 3.61 (1H, <i>dd</i> , <i>J</i> =11, 6 Hz)     | 3.67 (1H, <i>dd</i> , <i>J</i> =12, 6 Hz) |
| 95  |     | 4.14 (1H, <i>dd</i> , <i>J</i> =12, 2 Hz)         | 3.98 (1H, <i>dd</i> , <i>J</i> =11, 2 Hz)     | 3.87 (1H, <i>dd</i> , <i>J</i> =12, 2 Hz) |
| 96  | 1'' | 4.38 (1H, <i>d</i> , <i>J</i> =, 8 Hz)            | 5.00 (1H, <i>d</i> , <i>J</i> =2 Hz)          |                                           |
| 97  | 2'' | 3.22 (1H, <i>dd</i> , <i>J</i> =9, 8 Hz)          | 3.89 (1H, <i>d</i> , <i>J</i> =2 Hz)          |                                           |
| 98  | 3'' | 3.27-3.38 (overlapped)                            |                                               |                                           |
| 99  | 4'' | 3.27-3.38 (overlapped)                            | 3.75 (1H, <i>d</i> , <i>J</i> =10 Hz)         |                                           |
| 200 |     |                                                   | 3.96 (1H, <i>d</i> , <i>J</i> =10 Hz)         |                                           |
| 201 | 5'' | 3.27-3.38 (overlapped)                            | 3.58 (2H, <i>s</i> )                          |                                           |
| 202 | 6'' | 3.67 (1H, <i>dd</i> , <i>J</i> =12, 5 Hz)         |                                               |                                           |
| 203 |     | 3.87 (1H, <i>dd</i> , <i>J</i> =12, 2 Hz)         |                                               |                                           |

177 Table 1. The <sup>1</sup>H NMR spectroscopic data for compounds **3**, **6** and **7** (CD<sub>3</sub>OD, 400 MHz)

| 205 |     | pounds 5 | , <b>0</b> and <i>1</i> | $(CD_3OD,$ | 10 |
|-----|-----|----------|-------------------------|------------|----|
| 206 |     | 3        | 6                       | 7          |    |
| 207 | 1   | 71.1     | 70.6                    | 177.6      |    |
| 208 | 2   | 127.4    | 28.9                    | 34.4       |    |
| 209 | 3   | 135.9    | 126.0                   | 26.0       |    |
| 210 | 4   | 35.5     | 134.6                   | 27.6       |    |
| 211 | 5   | 23.4     | 21.6                    | 131.8      |    |
| 212 | 6   | 14.0     | 14.7                    | 127.7      |    |
| 213 | 7   |          |                         | 29.0       |    |
| 214 | 8   |          |                         | 70.4       |    |
| 215 | 1′  | 103.2    | 104.4                   | 104.4      |    |
| 216 | 2'  | 75.1     | 75.1                    | 75.2       |    |
| 217 | 3'  | 78.1     | 78.1                    | 78.0       |    |
| 218 | 4′  | 71.7     | 71.8                    | 71.7       |    |
| 219 | 5'  | 77.1     | 78.1                    | 78.2       |    |
| 220 | 6′  | 69.9     | 68.7                    | 62.9       |    |
| 221 | 1″  | 104.9    | 111.0                   |            |    |
| 222 | 2'' | 75.2     | 76.9                    |            |    |
| 223 | 3'' | 78.1     | 80.6                    |            |    |
| 224 | 4'' | 71.6     | 75.1                    |            |    |
| 225 | 5'' | 78.0     | 65.8                    |            |    |
| 226 | 6'' | 62.9     |                         |            |    |
| 227 |     |          |                         |            |    |
| 228 |     |          |                         |            |    |
| 229 |     |          |                         |            |    |
| 230 |     |          |                         |            |    |
| 231 |     |          |                         |            |    |
| 232 |     |          |                         |            |    |
| 233 |     |          |                         |            |    |
| 234 |     |          |                         |            |    |
| 235 |     |          |                         |            |    |
|     |     |          |                         |            |    |

Table 2. The <sup>13</sup>C NMR spectroscopic data
for compounds 3, 6 and 7 (CD<sub>3</sub>OD, 100 MHz)

- 236 Figure Legend
- 237 Figure 1 Structures
- 238 Figure 2 H-H COSY correlations ( ) and HMBC correlations (H— $\rightarrow$ C) of 7





Fig. 2 H-H COSY correlations ( $\longrightarrow$ ) and HMBC correlations ( $H\rightarrow$  C) of 7