中国地方における低度変成岩のK-Ar全岩年代

於保幸正*1 平山恭之*1 河本直実*2 鈴木峰央*2

*1 広島大学大学院総合科学研究科 *2 広島大学総合科学部

K-Ar whole-rock ages of low-grade metamorphic rocks in Chugoku, Southwest Japan

Yukimasa Oho*1, Yasuyuki Hirayama*1, Naomi Kawamoto*2 and Mineo Suzuki*2

 * ¹ Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashihiroshima, Japan
* ² Faculty of Integrated Arts and Sciences, Hiroshima University,

Kagamiyama 1-7-1, Higashihiroshima, Japan

Abstract

K-Ar whole-rock ages are obtained from the low-grade metamorphic rocks of the Misumi Group, the Jurassic Chizu Formation, the Jurassic Tsunotani Formation and the Permian Maizuru Group. The low-grade metamorphic rocks are distributed adjacent to the high P/T Sangun metamorphic rocks in the Chugoku district. There are quite differences in small-scale structures between the low-grade metamorphic rocks and the Sangun metamorphic rocks. In the low-grade metamorphic rocks, two generations of penetrative foliation and associated structures can be recognized: slaty cleavage and crenulation cleavage. On the other hand, three generations of foliation are developed in the Sangun metamorphic rocks: schistosity and two stages of crenulation cleavage. Obtained K-Ar whole-rock ages are nearly 170-190 Ma. This indicates that slaty cleavage in the low-grade metamorphic rocks have been formed in Middle Jurassic time, and that the Sangun memtamorphic rock has been formed before 170-190 Ma.

1. はじめに

三郡変成岩の放射年代の測定から,三郡変成岩 は形成時期や形成場の異なる複数の地質単元であ るという考えが生まれている(早坂,1987;柴 田・西村,1989).早坂(1987)は,三郡変成岩類 として一括されてきたものは,いくつかの異なる 時期に形成された変成岩類の集合であることを指 摘している.即ち,三郡変成岩類は広島から津和 野に分布する丹波層群相当層によって,北東ユニ ットと南西ユニットとに区分され,それぞれのユ ニットでは変成岩類の放射年代や線構造の方向な どが異なっており,変成作用の終結の時期が異な る可能性を指摘している.ただ,北東ユニットの 変成岩類の一部には,南西ユニットの変成岩類と 同じ起源の岩相を原岩とするものが含まれる可能 性があるとしている.柴田・西村(1989)は、早 坂(1987)に従い、北東ユニットを智頭地帯、南 西ユニットを周防地帯と呼び, 智頭地帯は約 180Maの放射年代で、また、周防地帯は約220Ma の放射年代で特徴づけられるとしている. ところ で、柴田・西村(1989)が呼んでいる智頭地帯お よび周防地帯では、岩石の微小構造の異なる2種 類の変成岩が存在することが明らかになっている (平山·於保, 1990; Oho and Hirayama, 1991a, 1991b; Hiravama, 1992). 一つは三郡変成岩プロ パーと呼べるものであり、重複変形を受け片理面 以外に複数の面構造が観察される.他の一つは, 層理面に斜交したスレートへき開が発達する低度 変成岩である.柴田・西村(1989)の智頭地帯に おいて三郡変成岩が重複変形を受け(Oho. 1988. 1989)、さらにこの地帯には三郡変成岩と異なる低 度変成岩が存在することを考慮に入れると (Oho and Hirayama 1991a, 1991b), この地帯の三郡変成 岩は本当に約180Maに三郡変成作用を受けたか否 か疑問が生じる.このことを検討するために、低 度変成岩の放射年代を求めた.以下,その結果に ついて報告する.

2. 地質概要および測定試料

中国地方には,先白亜系として三郡変成岩や非

変成中古生層と共に,弱い変成作用を受けた岩石 が分布する.それらの岩石としては、西から東へ、 島根県三隅地域に分布する三隅層群,山口県錦地域 に分布する二畳系錦層群,岡山県津山地域や鳥取 県若桜地域に分布するジュラ系智頭層および相当 層, 京都府舞鶴から岡山県井原地域に分布する二 畳系舞鶴層群,などがあげられる(図1).低度変成 岩にみられる微小構造の特徴は、泥質岩中に層理 面と斜交してスレートへき開がよく発達すること である.また、場所によってはスレートへき開と斜 交したちりめんじわへき開も観察される (Oho and Hirayama, 1991b). 即ち, 低度変成岩では2種類の 面構造がみられるのが一般的である.一方、三郡 変成岩では3種類の面構造が一般的に発達する. それらは片理と2種類のちりめんじわへき開であ る (Oho, 1988, 1989; 平山·於保, 1990; Hirayama, 1992; Oho and Hirayama, 1994). なお, 中国地方 以外に分布する九州北部でも三郡変成岩は同じ様 な面構造をもつことが知られている (Oho. 1993).

低度変成岩としてK-Ar全岩年代を測定した試料 は、三隅地域における三隅層群の泥質岩、津山市 北西方の鏡野地域の智頭相当層の泥質岩、明延地 域における舞鶴層群の泥質岩および若桜地域に分 布する角谷層の中の泥質基質の多いスランプ礫岩 である.島根県の三隅地域に分布する三隅層群は、 かつて三郡変成岩と考えられていた地層であるが、

A-Dは第4図の位置をそれぞれ示す

小構造および微小構造の観察から、これは三郡変 成岩ではなくスレートへき開の発達する低度変成 岩の可能性が高いことが報告されている(Oho and Hirayama, 1991a). 三隅層群中には、波長数 cmから数mの閉じた褶曲が発達し、褶曲軸面へき 開として層理面と斜交したスレートへき開が観察 される.スレートへき開は東北東から西北西の走 向をもち,北へ10-70°傾斜することが多い.ス レートへき開形成後には波長200 µm - 10 cmの緩 やかな褶曲が形成され、この褶曲軸面へき開とし てちりめんじわへき開が発達している. 岡山県の 鏡野地域には、智頭層の南西延長に当たると考え られる地層が分布する (Otoh, 1987), この地層 は主に泥質岩,砂質岩,泥質の基質をもつスラン プ礫岩およびチャートからなる地層である. 泥質 岩中には層理面と斜交したスレートへき開と、ス レートへき開を曲げるちりめんじわへき開が観察 される,明延地域に分布する舞鶴層群では,泥質 岩層や砂質岩層が波長数10mの閉じた褶曲をつく り、この褶曲軸面へき開としてスレートへき開が 発達している.スレートへき開の一般走向は北東 一南西であるが、後の褶曲のために場所により北 西 - 南東方向を向く所もある. スレートへき開の 傾斜は40°-70°NWであることが多い. 顕微鏡下 では, 泥質岩中にcleavage domains (Durney and Kisch, 1994)の平行配列と共に、イライト・緑泥 石などの板状鉱物の平行配列が観察される。鳥取 県若桜地域にはジュラ系の智頭層と角谷層とが分 布する(早坂, 1987; Otoh, 1987). 両層は主に スランプ礫岩からなり、 智頭層中にはチャート層 がみられる.スランプ礫岩は泥質の基質と砂岩, チャートのクラストから構成される. 基質部では イライト、緑泥石の平行配列で特徴づけられるス レートへき開が発達する (Oho and Hirayama, 1991b). また,スレートへき開を曲げるゆるやか な褶曲に伴ってちりめんじわへき開が形成されて いる.なお、以上の地層にみられるちりめんじわ へき開では、それに平行で新しく再結晶した板状 鉱物は観察されなかった.

以下,各試料の顕微鏡下の観察結果について記 載する.

<u>三隅地域</u>

8992902:泥質の基質をもち,楕円状の粒子から 構成される.楕円状の粒子は幅20-100µm,長さ 50-300µmの大きさをもち,スレートへき開の方 向に長軸を向けているものが多い.板状鉱物の平 行配列は顕著であり,時には50µmの大きさを持 つ白雲母も観察される.大きな石英粒子に隣接す るpressure shadowでは石英や白雲母が再結晶して いる.スレートへき開を曲げるちりめんじわへき 開がみられる(図2.a, 2.b).

9032205: 泥質の基質をもち,楕円状の粒子(幅 20 - 40 μ m,長さ30 - 100 μ m)から構成される. 板状鉱物は数 μ mから50 μ mの大きさをもち,平 行配列している.この試料ではchlorite-mica stacksが観察され,その長軸はスレートへき開方 向に伸びたものが多い(図2.c, 2.d).

鏡野地域

8741306:泥質の基質と20-70 μ mの大きさをも つ粒子から構成される.数 μ mの大きさをもつ板 状鉱物は顕著に平行配列している.スレートへき 開とは斜交してちりめんじわへき開が観察される (図 2.e, 2.f).

9080701:泥質な部分の中に粗粒な部分(大きさ 250-500 μ m)が混じっている.泥質な部分では 泥質の基質の中に30-50 μ mの粒子が存在する. スレートへき開の方向には数 μ mから10 μ mの大 きさをもつ板状鉱物がよく平行配列している.粗 粒な部分では板状鉱物の平行配列は顕著ではない が, cleavage domainsの平行配列が観察されるこ とがある(図2.g, 2.h).

明延地域

9040407:20-50 μ mの粒子と泥質な基質から構成される. Cleavage domainsで示されるスレート へき開は層理面とは斜交して発達する. Cleavage domainsと平行に板状鉱物(大きさ2-3 μ m)は平 行配列をしているが、その程度はやや弱い(図3. a、3.b).

図2. 三隅,鏡野地域における試料の顕微鏡写真. Siはスレートへき開の方向を示す. a,b:8992902; c,d:9032205; e,f:8741306; g,h:9080701; a,c,e,f: 平行ニコル; b,d,f,h:直交ニコル

図 3. 明延, 若桜地域における試料の顕微鏡写真. S1はスレートへき開の方向を示す a,b:9040407; c,d:9051507; e,f:89Y0506; g,h:9072401; a,c,e,f: 平行ニコル; b,d,f,h:直交ニコル

9051507:泥質の基質をもち、30 - 50 μ mの粒子 から構成される.数 μ mから10 μ mの大きさをも つ板状鉱物の平行配列が顕著である. Cleavage domainsに沿って、不透明鉱物(大きさ10 - 50 μ m) が並んで観察される. なお、大きな粒子に隣接し たpressure shadowには、再結晶している白雲母が 観察される(図 3.c, 3.d).

若桜地域

89Y0506: 泥質な部分に粗粒な部分(大きさ 1.5 - 5 mm)が混じっている. 泥質な部分では, 50 - 100 µ mの大きさをもつ粒子が存在し,板状鉱 物の平行配列は顕著である(図 3.e, 3.f).

9072401:泥質な部分に粗粒部分(大きさ0.5 - 1.5 mm)が混じっている.泥質な部分では30 - 100 μ mの粒子があり、板状鉱物(大きさ数 μ m - 10 μ m)は網目状に平行配列している. 30 - 100 μ mの大きさをもつ不透明鉱物がcleavage domains に沿って並んでいるのがよく観察される(図 3.g, 3.h).

3. 放射年代

放射年代の測定はテレダイン・アイソトープ社 に依頼し, Dalrymple and Lanphere (1969) に従 ってK-Ar全岩年代を求め,キャリブレーションは Flish (1982) によった.測定値および定数は表1 に示すとおりであり,年代は次の式によって求め た.

 $T = 1804.08 \times \log e\left[\left(\frac{4^{n}Ar^{*}}{K} \times 0.1426\right) + 1\right]$

ここで,*T*は放射年代(百万年),*K*はカリウムの 重量%,⁴⁰Ar*は10⁻⁵scc/gである.

得られた値は,三隅地域の三隅層群で154±8Ma, 168±8Ma, 鏡野地域の智頭層相当層で177±9Ma, 191±10Ma, 明延地域の舞鶴層群で182±7Ma, 143±7Ma, 若桜地域の角谷層で171±9Ma, 142± 7Ma, である (図4,表1).

4. 考察とまとめ

スレートのような変成度の低い岩石についての K-Ar年代については、砕屑性の雲母の影響などの 問題があげられているが、ほぼスレートへき開形 成に伴う再結晶の時期を示すことが知られている (例えば, Harper, 1964; Adams et al., 1975). ここ で得られた放射年代は全岩年代であり、白雲母を 分離して得られたものではないのでその精度はや や劣るが、柴田・西村(1989)が智頭地帯の三郡 変成岩で報告した170 - 190Maの値とほぼ同じ年代 を示している.ただ、この年代より若い値を示す ものが三隅層群、舞鶴層群および角谷層でそれぞ れ1 試料みられる. これが花崗岩による熱的影響 で若返りを示しているか否かについては現在のと ころ分からない.多くの試料が示す170-190Maは, 恐らく低度変成岩にみられるスレートへき開形成 に伴う白雲母の再結晶の時期を示すものと推定さ れる. ところで, 岩石の微小構造についてみると, 三郡変成岩では3種類の面構造(片理と2方向の ちりめんじわへき開)がみられるのに対して、低 度変成岩では2種類の面構造(スレートへき開と ちりめんじわへき開)が発達し、スレートへき開 に平行にイライトや緑泥石などの板状鉱物が再結

Sample No.	Group or Formation	Age (Ma)	⁴⁰ Ar radiogenic (10 ^{−5} scc/g)	Radiogenic Argon (%)	K (wt.%)
8992902	Misumi Gp.	168±8	2.56	96.9	3.78
9032205	Misumi Gp.	154±8	2.08	97.7	3.31
8741306	Chizu Fm.	177±9	2.36	94.7	3.27
9080701	Chizu Fm.	191 ± 10	2.02	95.0	2.58
9040407	Maizuru Gp.	143±7	1.27	94.9	2.20
9051507	Maizuru Gp.	182 ± 9	2.43	96.5	3.26
89Y0506	Tsunotani Fm.	142±7	1.64	96.1	2.85
9072401	Tsunotani Fm.	171±9	2.54	96.4	3.65
λ_{β} =4.962 × 10-10/year; λ_{ϵ} =0.581 × 10 ⁻¹⁰ /year; 40K/K=1.167 × 10 ⁻² atom%.					
表 1 低度変成岩のK-Δr放射在代測定値					

晶している.また,三郡変成岩中にみられるちり めんじわへき開のうち,最初に形成されたものに 沿っては片理と斜交した白雲母の配列がみられる (Oho, 1988, 1989).これらのことから,柴田・西 村(1989)が報告した三郡変成岩についての170-190Maの放射年代は三郡変成作用の時期を示すも のではなく,スレートへき開を形成する板状鉱物 の再結晶の時期を示す可能性が高い.即ち,三郡 変成岩は変成作用の後,さらに再結晶作用を伴う 変形を受けており,この影響によって放射年代の 若返りが起きていると考えられる.今後,三郡変 成岩の放射年代を詳細に調べるためには,170-190Maの変形の影響を十分に考慮する必要があろ う.

図4. 測定試料の位置図.

A:三隅地域,B:鏡野地域,C:明延地域,D:若桜地域.地 形図は国土地理院発行,5万分の1地形図「益田」,「津山西部」, 「大屋市場」,「若桜」の一部を使用

5. 文献

- Adams, C. J. D., Harper, C.T. and Laird, M.G., 1975, K-Ar ages of low grade metasediments of the Greenland and Waiuta Groups in Westland and Buller, New Zealand. N. Z. Journal of Geology and Geophysics, 18, 39-48.
- Dalrymple, G.B. and Lanphere, M. A., 1969, Potassiumargon dating: principles, techniques, and applications to geochronogy. W. H. Freeman and Co., 258 pp, San Francisco.
- Durney, D. W. and Kisch, H. J., 1994, A field classification and intensity scale for first-generation cleavages. Jour. Aust. Geol. Geopys., 15, 257-295.
- Flish, M., 1982, Pottasium-argon analysis, in Odin, G. S. ed., Numerical Dating in Stratigraphy. John Wiley and Sons, Ltd. New York.
- Harper, C. T., 1964, Potassium-argon ages of slates and their geological significance. Nature, 203, 468-470.
- 早坂康隆, 1987, 西南日本内帯西部地域における中・古 生代造構作用の研究.広島大地研報, no. 27, 119-204.
- 平山恭之,於保幸正,1990,徳山市須万地域における三 郡変成岩の重複変形.地質学雑誌,96,903-913.
- Hirayama, Y., 1992, Deformational differences and geologic reraltion between the Sangun metamorphic rocks (Tsuno Group) and the low-grade metamorphic Permian rocks (Nishiki group) in the Suma area, Tokuyama City, Southwest Japan. Jour. Geol. Soc. Japan, 98, 1009-1030.
- Oho, Y., 1988, Multiple deformations of the Sangun meta-

morphic rocks in the Asahi area, Okayama Prefecture, Southwest Japan. Jour. Geol. Soc. Japan, 94, 411-417.

- Oho, Y.,1989, Superimposed folds of the Sangun metamorphic rocks in the Ochiai-Asahi area, Okayama Prefecture, Southwest Japan. Jour. Geol. Soc. Japan, 95, 541-551.
- Oho, Y., Hirayama, Y., 1991a, Deformation features of the Misumi Group ("Sangun metamorphic rocks") in the Misumi area, Shimane Prefecture, Southwest Japan. Jour. Geol. Soc. Japan, 97, 791-797.
- Oho, Y., Hirayama, Y., 1991b, Microstructural diffirence between the Sangun metamorphic rocks and the Jurassic rocks in the Wakasa area, Tottori Prefecture, Southwest Japan. Jour. Geol. Soc. Japan, 97, 1001-1004.
- Oho, Y., 1993, Deformational structures of the Sangun metamorphic rocks in the Kurume-Joyou area, Fukuoka Prefecture, Southwest Japan. Jour. Geol. Soc. Japan. 99, 195-203.
- Oho, Y., Hirayama, Y., 1994, Deformational features of the Sangun metamorphic rocks in the Tokuyama area, Yamaguchi Prefecture, Southwest Japan. Jour. Geol. Soc. Japan, 99, 195-203.
- Otoh, S., 1987, Late Paleozoic tectonic development in the northern part of the Chichibu geosyncline in the East Chugoku Mountains, Southwest Japan. Jour. Fac. Sci., Univ. Tokyo, Sec. II, 21, 379-415.
- 柴田 賢・西村祐二郎, 1989, 三郡変成岩の同位体年代. 地質学論集, no. 33, 317-341.