Fourth International Workshop on Computational Intelligence & Applications
IEEE SMC Hiroshima Chapter, Hiroshima University, Japan, December 10 & 11, 2008

An approximatesolution method based on tabu
search fork-minimum spanning tree problems

Jun Ishimatsu, Hideki Katagiri, Ichiro Nishizaki and Tomohiro Hayashida
Graduate School of Engineering, Hiroshima University
Kagamiyama 1-4-1, Higashi-Hiroshima City, Hiroshima, 739-8527 Japan
email:{ishimatsujun,katagiri-h,nisizaki,hayashida} @hiroshima-u.ac.jp

Abstract—This paper considers k-minimum spanning tree II. PROBLEM FORMULATION
problems. An existing solution algorithm based on tabu search, . . : :
which was proposed by Katagiri et al., includes an iterative leeln that a graplt: = (V, E) Whe.reV 'S, a set of vertices
solving procedure of minimum spanning tree (MST) problems @nd E is a set of edges;-subtreeT), is defined as
for subgraphs to obtain a local optimal solution of k-minimum
spanning tree problems. This article provides a new tabu-search- TreG k<|V[-1L
based approximate solution method that does not iteratively

F ; -~ Then ak-minimum spanning tree problem is formulated as
solve minimum spanning tree problems. Results of numerical

experiments show that the proposed method provides a good minimize > w(e)
performance in terms of accuracy over those of existing methods e€E(Ty)
for relatively high cardinality k. subject to T}, € Ty,
|. INTRODUCTION where 7, is the set of allk-subtreeT}, in G, E(T}) denotes

A k-minimum spanning tree (MST) problem is a combi- the edges off}, andw(e) is a weight attached to an edge
natorial optimization problem to find a subtree with exactlfhe above problem is to seekkasubtree with minimum sum
k edges, i.e.k-subtree, such that the sum of the weightef weights. If the problem size is small, the problem can be
is minimal. The k-MST problem was firstly introduced by easily solved by finding thé-subtree with the minimum sum
Hamacher et al. [6] in 1993, and it can be applied to mamyf weights after enumerating all possitllesubtrees in a given
real-world problems in wide variety of decision making, e.g. igraph.
telecommunications [13], facility layout [10], open pit mining Even if the size of problem is not so large, it can be
[1], oil-field leasing [6], matrix decomposition [16], [17] andsolved by some exact solution algorithm. As for exact solution
guoram-cast routing [18]. algorithms fork-MST problems, a branch and bound method

Since the k-MST problem is NP-hard [11], [12], it is [18] and a branch and cut algorithm [7] have been developed
difficult to solve large-scale problems within a practicallyand implemented.
acceptable time. Therefore, it is very important to construct However, it has been shown that theViIST problem is NP-
solving methods which quickly obtain a near optimal solutiothard even if the edge weight is i1,2,3} for all edges, or if

As for existing approximate solution methods ffMST a graph is fully connected. The problem is also NP-hard for
problems, Urosevic et al. [3] provided approximate solutioplanar graphs and for points in the plane [12]. Therefore, it is
methods based on Variable Neighborhood Search (VN$hpossible to solve large-scale problems within a practically
Blum et al. [2] also proposed several metaheuristic approachasceptable time even if the problems is solved by efficient
Recently, Katagiri et al. [5] developed a solution method whiaexact solution methods.
uses a combination of tabu search and an iterative solvingTherefore, it is important to construct not only exact solution
procedure for minimum spanning tree (MST) problems. Thayethods but also efficients approximate solution methods.
showed that their method provides a better performance tHdetaheuristic approaches such as genetic algorithms are useful
existing methods for dense graphs with high cardinakty for getting an approximate optimal solution. Blum et al.
through some numerical experiments. [2] proposed three metaheuristic approacheg:tminimum

In this paper, we propose a new tabu-search-based appreypianning tree problems, namely, evolutionary computation,
mate solution method with an efficient local search algorithrtabu search and ant colony optimization. They compared their
Our local search algorithm obtains local optimal solutions gferformances through benchmark instances [8] and showed
k-MST not solving MST problems iteratively. In order tothat the performance of their metaheuristics depends not only
demonstrate efficiency of the proposed solution method, we the instances but also on the cardinalityFor example,
compare the performances of the proposed method with th@seant colony optimization approach is the best for relatively
of existing methods by Blum et al. and Katagiri et al. small ks, whereas a tabu search approach has an advantage

This paper is organized as follows: Section 2 providdsr large ks in terms of accuracy.
problem formulation. In Section 3, we introduce a summary Recently, Katagiri et al. [5] proposed a tabu-search-based
of tabu search. approximate solution method which includes a procedure of
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iteratively solving minimum spanning tree (MST) problems. Repeatthe following sequence until the stopping condition
They showed that their algorithm has a better performansemet:

in terms of accuracy in comparison with those of existing 1) setp — 1;

methods for dense graph with largs. 2) Until p = pimae, repeat the following steps:

a) (Shaking) Generate a trd¢ at random from the
p'" neighborhood ofl'(T" € N,,(T));
b) (Local search) Apply some local search method

[1l. SUMMARY OF TABU SEARCH AND VARIABLE
NEIGHBORHOOD SEARCH

A. tabu search with T” as initial solution; denote with™”’ the so
Tabu search [4] is one of metaheuristics and is the extension obtained local optimum;

of local search. Letz¢ be a current solution. Local search c¢) (Move or not) If this local optimum is better

generally improves the current solution because it moves from than the incumbent, move the(@& — 7"), and

the current solutionz® to a solutionz’ € N(z¢) which continue the search with; (p  1); otherwise,set

is better than the current solution, whefé(-) is a given pe=p+1

neighborhood structure. For simplicity, suppose thét is
a local minimum solution and that the next solutian is
selected as the best solution ama¥@z°). If the local search A. Initial solution

is applied fora’, thena’ is moved back tac® becauser® is A first, an edge: = {v, v’} is chosen uniformly at random.
the best solution among a neighborhaddz’). In this way, With this edge, a 1-subtreB with is generated. Theh — 1
cycling among solutions often occurs around local minima. '&jges are added to the subtree so as to constriciubtree.
order to avoid such cycling, TS algorithms use a short-tergin 5y 4 solution algorithm for MST problems is applied for

memory. The short-term memory is implemented as a set@if sybgraph of which vertices are selected asktisebtree.
tabu lists that store solution attributes. Attributes usually refgt s way, an initial solution of-minimum spanning tree is
to components of solutions, moves, or differences between tyoined. ’

solutions. Tabu lists prevent the algorithm from returning to
recently visited solutions. B. Neighborhood
Aspiration criteria permit a part of moves in the tabu list
to cancel any tabu status. The typical aspiration criterion is éc())
accept a tabu move if it leads to a new solution better th%@
the current best solution.
The outline of TS is as follows: n(Ty, 1) = Vo, \ V| = |V, \ V|
Step 1 Generate an initial solutiom and initialize a tabu
list TL.
Step 2 Find the best solutior’ € N(x) such thate’ ¢

IV. PROPOSED ALGORITHM

Let us introduce a distancg(7;,7>) between any two
lutions (trees with cardinality) 7, and7» as a cardinality
difference between their edge sets, i.e.,

Note that the distance functions above may be viewed as Ham-
ming distances if each solution is represented) byl vectors

U R
Step 3 Stop if a termination condition is satisfied. If not, 9 pil

then updatel'Z and return to Step 2 with distancep from T : T, € N,(Th) < n(T1,T2) = p. It
) ) ) T is clear that this function is metric.
In Step 2, a tabu list memorizes solution attributes. A tabu

tenure, i.e., the length of the tabu list determines the behavor Shake

of the algorithm. A larger tabu tenure forces the search Proces$ya use the procedure of Shake proposed by Miadenovic
to explore larger regions, because it forbids revisiting a highgﬁd Urosevic [14].

number of solutions.

In step 3, it is checked whether the algorithm satisfies
termination condition. The termination condition is usuall
related to the iteration number of the algorithm and/or the
iteration number of not updating the current best solution.

The distance function is used in our shaking step. In order
t8 obtain7T’ € N,(T), the following procedure is done with
cycles.

Step 1 Choose at random a set of a deleted veitgx €
V(T) and an added vertex, q ¢ V(7).

B. variable neighborhood search Step 2 Apply the Transition Algorithm (see Section V).

If the transition is infeasible, then return to Step 1.

Variable neighborhood search proposed by Mladenovic and Otherwise, terminate.

Hansen [15] is summarized as follows:

Variable Neighborhood Search (VNS) D. Local search

Initialization. Select the set of neighborhood structures We use tabu search as a local search for an initial solution
Np,p = 1,..., pmas.that will be used in the search; find anwhich is obtained by Shaking step. The flowchart of tabu
initial solutionT"; choose a stopping condition; search is as follows (see Fig.1):
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start criterion is defined to override the tabu status of a solution.

l One common aspiration criterion is to allow tabu solutions

. . . yielding better solution values than that of the best known
intensification f—— solution.

l In our TS implementation, we apply an extension of the

aspiration level concept by associating an attribute to each

update tabu tenure vertex of the graph. The tabu status of an attribute can be

revoked if it leads to a solution with smaller cost than that of
the best solution identified having that attribute. The aspiration

<>em level ~, of an attribute is initially set equal to the cost of
false the initial solutionT* if vertex v belongs to this solution,

true . . . L
and tooco otherwise. At every iteration, the aspiration level
. reset tabu lists of each attributey € V(T') of the current solution is updated
diversification | | - tenure to min{v,, f(T)}, where f(T) stands for the cost value of
solutionT'.

2) Update tabu tenure:Let nic,,., and 6;,. be given
parameters. If the current best solution is not updateg), ..
times, then we regards this situation as cycling and increase
tabu tenure using (1).

0 — 0+ 0;pe 1)

stopping conditio

end

Fig. 1. Flowchart of local search 3) Diversification strategyA diversification procedure, us-
ing the residence frequency memory function, will lead to
o o the exploration of region of the solution space not previously
1) Intensification: The procedure oftensificationrepeats \jisited. The residence frequency memory records the number
transitions based on hill climbing with tabu lists and aspiratiogf times a specific element has been part of the solution.
criterion: N . - Frequency-based memory is one of the long-term memories
a) Transition strategy: There are two major transition ang consists of gathering pertinent information about the
strategies; one isest improvement strategynd the other is search process so far. In our algorithm, we use residence
first improvement strategyThe best improvement strategy is grequency memory, which keeps each track of the number of
search strategy which selects the best solution of all solutiosrations where vertices have been explored.
in neighborhood as the next solution. On the other hand, therne giversification procedure begins at the situation
first improvement strategy selects the firstly found solutiopat some spanning tree is formed. Let(T,) =
of which objective function value is better than that of th%vEV(T ) Freq(v) denote a criterion for diversification. In a
current solution. In this paper, we use the first improvemegfanner similar to intensification strategy as described above,
strategy because it takes much computational time for searcfygnsition Algorithm is repeated withk cycles, where
neighborhood if we use the best improvement strategy. Thegg. () is the frequency of vertex to be searched.
strategies are also applied whe&mnsition Algorithm is used
in Intensification procedure. 4) Reset tabu: InList and OutList are set empty. A
b) Tabu list: Tabu lists store the induces of the edges th@arametep is reset the default value.
were recently added or removed. As described before, every
move consists of two steps; the first step is to remove one edg&) Stopping condition):If the iteration is beyond a given
e € T* from the current spanning tree’, and the second stepyg|ye, then terminate.
is to add an edge iV, (7° —e) \ {e} to T — e. The status of
the forbidden moves are explained as: If a verteys in the V. NEW TRANSITION ALGORITHM
tabu list, then our algorithm forbids the addition or deletion of The most important feature of the proposed algorithm is
the vertexv;. In this paper, we use two tabu listsList and that it does not apply a minimum spanning tree algorithm
OutList, which keep the induces of removed edges and to sitgatively for a subgraph with exactly + 1 vertices unlike
that of added edges, respectively. Tabu tenure, denotet] byhe solution method by Katagiri et al. [5]. Since minimum
is a period for which it forbids vertices in the tabu lists fronspanning tree algorithms find an optimal spanning tree for a
deleting or adding. fixed subgraph, the obtained solution is considered as a local
¢) Aspiration criterion: When an attribute is declaredminimum of k-minimum spanning tree problem. In this sense,
tabu, all solutions possessing this attribute are implicitly d®8ST algorithms is worth using for local search. However,
clared tabu. However, some of these solutions may have netle@re are many cases where it dose not need to use MST
been considered by the search. To remedy this, an aspiratdgorithms in order to find a local optimal solution. Therefore,
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in this paper, we consider a new transition algorithm which
move the current solution to a local minimum solution, not
using MST algorithms. As described in the previous section,
this algorithm is applied for vertex transition in Shaking
and any local search of Intensification and Diversification
procedures.

Our transition algorithm which obtains a local optimal
solution of k-minimum spanning tree, not using the algorithm
for solving MST problems, consists of two stages. Since
the algorithm is a little complex, we explain the outlinq-:ig_ 2. Example of V| = 12, |E| = 23, k = 7 (Bold lines are edges which
of the algorithm using a simple example (see Fig.2). Le&irm the current solution)

Vaer € V(Tx) andvgqq ¢ V(Tk) be the vertices selected as

the deleted and added vertices, respectively. @ ----- \ (+) ,
Transition algorithm for the first stage Ll L
Step 1 Let S;,t=1,2,3,--- be a set of sub-trees which :""@'“":@:“"@
is constructed by deleting;.;. Merge eaclt,; into a RN i N
vertex, calledsuper-vertexand letSy be v,44. Then S H _@
constructG’ (V' E’) according to following equation O ‘ . """
(see Fig.3):
V' — {S]t=0,1,2---} 1
E — {(Si,9)(5:,5;) € Eyi # j}
. - . . G'(V'E’
Step 2 Obtain a minimum spanning tree problem using (V2E) S,
some algorithm such as Prim method or Kruskul [ ]
method (see Fig. 4). ) ~ i ,
Step 3 Go to the second stage and apply the transition oo
algorithm for the second stage. () @ s,

Transition algorithm for the second stage 5, A N— S
Let the dotted lines denote the edges between super-vertices (v, ---
(see Fig.5). S

Step 1 Find edgee,,., whose weight is the maximum ’
fFrloan 2;“9‘;293”&2%5‘;’%6;;%'?;‘1 '[‘nij]‘i’r?]irr:?rrgfnesmg. 3. Example of generating” from G (ve1 = vs aNd vy = vs)
among all the dotted edges.

Step 2 If w(emaz) > w(emin), then go to Step 3.
Otherwise, go to Step 4.

Step 3 Delete the edge,,., and add the edge,,;,. Go
to Step 5.

Step 4 Attach label "explored” to a set of dotted lines that
connects subgraphs which are derived by deleting the
edgeenas-

Step 5 |If all the dotted line is labeled "explored”, then
terminate. Otherwise, return to Step 1.

The above algorithm is applied for all vertex transition proce-
dures in the subroutine of shaking and local search. Fig. 4. Graph of super-vertices and its minimum spanning tree

VI. NUMERICAL EXPERIMENTS

In order to compare the performances of our method withWe use C as the programming language and compiled all
those of representative existing solution algorithms, we solgeftware with C-Compiler: Microsoft Visual C++ 7.1. All the
some benchmark instances which includes the instances preetaheuristic approaches were tested on a PC with Celeron
vided by Blum [8] and our new instances. Tables | and Il sho®#06GHz CPU and Ram 1GB under Microsoft Windows
the results for instances by Blum [8] and our new instancesP. In the tables shown, TSI, TSK and TSB represent tabu
respectively. search approaches by this paper, Katagiri et al. and Blum et
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w(e,.) < we,,;,) W€ ) > W(e,,)

Fig. 5. Transition algorithm in the second stage

al., respectively. We executed each method in 30 runs af
computed thebest,meanand worst objective function values
for each method. represents a mean of computational time.

Table | shows that the performance of the proposed methg
is clearly better than that of the existing method by Katagir
et al. Also, our algorithm provides better performance tha
the method by Blum et al., for high cardinality whereas the
performance of the method by Blum et al. is the best for low
cardinality k.

Table Il shows the results for new instances which are mot
dense than the existing benchmark instances. It is observ
from Table Il that our algorithm provides as good a perfor
mance as the method by Katagiri et al.. Although the beg
values are often obtained by the method by Blum et al., th
performances of our algorithm are fairly better than the metho
by Blum et al. in respect to the mean and worse objectiv
function values. Therefore, we conclude that our algorithn
provides a better robustness performance than the method
Blum et al.

TABLE |

Objective value

graph k TSI TSK TSB
[NT= 1000 200 | best 4131 4098 3609
|E| = 1250 mean | 4147.6 4373.2 3685.9
d=25 worst 4174 4587 3771
o(d) =1.57 | 400 | best 9624 9936 8976
mean 9841.0 10088.0 9091.0
worst 9918 10202 9301
600 | best 16299 17243 16282
mean | 16319.0 17320.1 16323.7
worst 16349 17330 16454
800 | best 26429 27170 26552
mean 26429 271729 26687.3
worst 26429 27173 26755
900 best 32981 32981 33147
mean | 32984.5 33284.0 33187.6
worst | 32985 33459 33233
[NT = 400 80 best 1627 1478 1466
|E| = 800 mean 1627 1562.4 1477.5
d = 4.00 worst 1627 1627 1500
o(d) =0.00 | 160 | best 3330 3361 3217
mean 3346.1 345225 3240.0
worst 3369 3449 3259
240 | best 5264 5270 5215
mean 5281.6 54325 5224.6
worst 5325 5531 5234
320 best 7682 7684 7682
mean 7687.8 76979 7682.9
worst 7689 7719 7684
360 | best 9249 9256 9250
mean 9249 9257.8 9257
worst 9249 9259 9260
[NT= 1000 200 | best 1100 1130 1047
|E| = 5000 mean| 11411 11665 1063.7
d=10.0 worst 1175 1225 1078
o(d) =3.22 | 400 | best 2577 2682 2499
mean 2602.6 2698.9 2535.9
nd worst | 2639 2725 2604
600 | best 4570 4681 4516
mean 4590.4 4705.6 4548.6
worst 4608 4718 4603
d 800 | best | 7324 7405 7281
i mean | 73258  7418.9 7324.7
n worst 7359 7434 7405
900 best 9248 9375 9291
mean 9248 9375.0 9323.9
V worst 9248 9376 9372
[NT = 450 90 best 139 138 135
|E| = 8168 mean 141.3 145.1 136.7
€ 4 =36.30 worst 145 155 140
ed(d) = 16.83 [ 180 | best 346 349 337
mean 353.8 352.2 346.5
| worst 357 356 434
st 270 | best 631 643 630
e mean 632.1 649.2 653.4
d worst 637 654 728
360 best 1060 1062 1060
e mean | 1060.1 1062  1098.7
n worst 1064 1070 1158
by 405 best 1388 1389 1391
mean | 1388.0 1389.4 1410.8
worst 1389 1390 1467

VIlI. CONCLUSION

In this paper, we have proposed a new solution method

based on tabu search férminimum spanning tree problemsare not enough to conclude such advantage is still valid for
and compared the performance of the proposed method wdtiher types of benchmark instances. In the near future, we
those of existing methods though numerical experiments withill provide additional benchmark instances such as random
several benchmark instances. It has been shown that ¢naphs, geometric graphs or small- world graphs, and execute
proposed method has an advantage of robustness over rtfttge numerical experiments to clarify the advantage of our

existing methods. However, numerical experiments executegthod.
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TABLE I

trees,Asia-Pacific Journal of Operational Reseaydfol. 14, No.2, 9-26,
1997.

[10] L.R. Foulds, H.W. Hamacher, J. Wilson, Integer programming approches
to facilities layout models with forbidden area&nnals of Operations
Research, Vol. 81, pp. 405-417, 1998.

[11] M. Fischetti, H.W. Hamacher, K. Jornsten, F. Maffioli, Weighted ..
cardinality trees: complexity and polyhedral structudetworks, Vol. 24,
pp. 11-21, 1994.

[12] M.V. Marathe, R. Ravi, S.S. Ravi, D.J. Rosenkrantz, R. Sundaram,
Spanning trees short or sma8JAM Journal on Discrete Mathematics,
Vol. 9, No.2, pp. 178-200, 1996.

[13] N. Garg, D. Hochbaum, AiD (log k) approximation algorithm for the
k minimum spanning tree problem in the plamdgorithmica, Vol. 18,
No.1, pp. 111-121, 1997.

[14] N. Mladenovic, D. Urosevic, Variable Neighborhood Search fer
Cardinality Tree,Proceedings of Fourth Metaheuristics International
Conference, pp. 743-747, 2001.

[15] N. Mladenovic, P. Hansen, Variable Neighborhood Sea@dmputers
& Operations Research, Vol. 24 , pp. 1097-1110, 1997.

[16] R. Borndorfer, C. Ferreira, A. Martin, Matrix decomposition by branch-
and-cut, Technical ReportKonrad-Zuse-Zentrum fur Informationstech-
nik, Berlin, 1997.

[17] R. Borndorfer, C. Ferreira, A. Martin, Decomposing matrices into
blocks,SIAM Journal on Optimization, Vol. 9, No. 1, pp. 236-269, 1998.

[18] S.Y. Cheung, A. Kumar, Efficient quorumcast routing algorith-
ceedings of INFOCOM, Los Alamitos, USA, Silver Spring, MD: IEEE
Society Press, 1994.

Objective value

graph k TSI TSK TSB

[NT=300 60 best 554 546 554
|E| = 20000 mean | 579.9 572.0 628.8
d=133.3 worst 603 606 2180
o(d) =36.57 | 120 | best 1236 1267 1229
mean | 1294.2 1304.4 1613.4

wrost 1346 1384 3189

180 | best 2179 2241 2169
mean | 2184.5 2256.5 2838.9

worst 2208 2264 4517

240 | best 3564 3564 3566
mean | 3571.7 3568.8 4313.7

worst 3572 3581 5906

270 | best 4690 4690 4690
mean 4690 4690 5326.3

worst 4690 4690 6635

[NT= 300 60 best 355 354 357

|E| = 30000 mean | 361.6 359.8 503
d = 200.00 worst 367 364 2552

o(d) =38.99 [ 120 | best 891 897 877
mean | 898.5 912.4 1228.2

worst 920 922 3047

180 | best 1737 1661 1653
mean | 1738.2 1746.6 2194.9

worst 1764 1784 3947

240 | best 2760 2737 2740
mean | 2760.3 2753.0 3290.3

worst 2765 2765 5019

270 | best 3491 3491 3491
mean 3491 3491 4322.2

worst 3491 3491 5730

|[N| =300 60 best 237 224 224
|E| = 40000 mean | 243.3 238.1 405.4
d = 266.67 worst 255 257 2430

o(d) =24.61 [ 120 | best 566 547 554
mean 572.3 567.4 1075.3

worst 605 589 2787

180 | best 1016 1031 986
mean | 1034.9 1053.5 1653.1

worst 1055 1066 3271

240 | best 1671 1656 1647
mean | 1678.2 1659.3 2493.3

worst 1696 1676 3939

270 | best 2107 2107 2107
mean 2107 2108.5 28455

worst 2107 2109 4440
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