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Abstract—In this research, focusing on nonlinear integer pro- obtained by the PSO method is large and accuracy is not so
gramming problems, we propose an approximate solution method high.

based on particle swarm optimization proposed by Kennedy | this research, we focus on NLIP and consider improve-

et al. And we developed a new particle swarm optimization . - I . e
method which is applicable to discrete optimization problems ment of accuracy combining diversification and intensification.

by incoporating a new method for generating initial search I
points, the rounding of values obtained by the move scheme

and the revision of move methods. Furthermore, we showed the In this research, we consider general nonlinear integer
efficiency of the proposed particle swarm optimization method programming problem with constraints as follows:
by comparing it with an existing method through the application o

of them into the numerical examples. Moreover we expanded minimize f(x)

revised particle swarm optimization method for application to subject to g;(x) <0, i=1,2,...,m
nonlinear integer programming problems and showed more
effeciency than genetic algorithm. However, variance of the
solutions obtained by the PSO method is large and accuracy is not
so high. Thus, we consider improvement of accuracy introducing where f(), gi(-) are convex or nonconvex real-valued func-
diversification and intensification. tions, I; andwu; are the lower bound and the upper bound of
each decision variable;.

. NONLINEAR INTEGER PROGRAMMING PROBLEMS

@)

ljﬁ[l,‘j SUJ‘7 j=1,2,...,n
x=(11,%9,...,2,) € 2"

I. INTRODUCTION

) o ) o [1l. PARTICLE SWARM OPTIMIZATION
In general, actual various decision making situations are

formulated as large scale mathematical programming problem? _arltukz)lehswarrrlho?tlmlzanoln t'[2] m:zt_hodd_ .'g b;aseo(lj ont thte
with many decision variables and constraints. soctal behavior: that a popuiation ot Individuals -adapts 1o
its environment by returning to promising regions that were

If a value of the decision variables is integer, the pmblemrg'f[eviously discovered [3]. This adaptation to the environment

. . : -~ IS a stochastic process that depends on both the memory of
ming problems, we can have optimal solution by application

. . ._each individual, called particle, and the knowledge gained by
of the dynamic programming fundamentally. However, singg population, called swarm

optimization problems become larger and more complicated, C . o .
) 2 : In the numerical implementation of this simplified social
a high speed and accurate optimization method is expected. . . ) s .
model, each particle has three attributes: the position vector in

In particular, for nonlinear integer programming problem S -
P ' ger prog 9p §1e search space, the current direction vector, the best position
(NLIP), there are not the general strict method or approxi- - .
. . In its track and the best position of the swarm.
mation method, such as branch and bound method for lingar

programming problems. In such a case, a solution method. " 1: Generate the initial swarm involving particles at

depended on property in problems is proposed. In recent ye%?fgdom.

a particle swarm optimization (PSO) method was proposed ep 2: Calculate the new direction vector for each particle

Kennedy et al. [2] and has attracted considerable attentionﬁglsS ed on its attributes.

. L L ep 3: Calculate the new search position of each particle from
one of promising optimization methods with higher speed an : . e
. . . the current search positon and its new direction vector.
higher accuracy than those of existing solution methods. A X

Kato et al. showed the efficiency of improved PSO methowisg égoh;othset;gr?matlon condition is satisfied, stop. Other-
Eg]an genetic algorithm for nonlinear programming problem]so be more specific, the new direction vector of th¢h

. . - .(gJarticIe at timet, v!™!, is calculated by the following scheme
Moreover we expanded revised particle swarm optimizati Moduced b Shiland Eberhart [7]
method for application to NLIP and showed more effeciency y '

than genetic algorithm [5]. However, variance of the solutions v := w'v} 4 1 R} (p} — =}) + c2R5(p}, — x})  (2)
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In (2), R} and R} are random numbers between 0 angpl,  Moreover we expanded revised particle swarm optimiza-
is the best position of thé-th particle in its track at tim¢ tion method for application to NLIP (rPSONLIP) [5]. In
and ptg is the best position of the swarm at timeThere are rPSONLIP, we enabled application of the revised PSO method
three parameters such as the inertia of the pariéjend two to NLIP by incorporating using integer random number in

parameters;, cs. generating initial search position and rounding search direction
Then, the new position of theth particle at timet, '™, vector »!*' in updating equation (3). However, we simply
is calculated from (3). make the search direction vector integer value and all elements

Q=i 3)

xr

of the search direction vector becomeThus, on the element
that absolute value is maximum in elements of the search

where z! is the current position of the-th particle at time direction vector before rounding, we set the search direction

t. After the i-th particle calculates the next search directiofector 1 or -1 depending on the plus or minus. Therefore, we
vector v't! by (2) in consideration of the current searctiévised that all of the particles always move. The process of

direction vectom!, the direction vector going from the currenfPSONLIP can be shown in Fig. 2.

search positior:! to the best search position in its trgakand
the direction vector going from the current search position
to the best search position of the swew@q it moves from the
current positionz! to the next search positior:ﬁ+1 calculated
by (3). In general, the parametef is set to large values in
the early stage for global search, while it is set to small values
in the late stage for local search. For example, it is determined
e t - (w0 — wTmeax)
t._,0 i _

v 0.75 - Tax @
wheret is the current time] .« is the maximal value of time,
w¥ is the initial value ofw! andw”m=x is the final value of
wt.
The search procedure of PSO is shown in Fig. 1. If the
next search position of théth particle at timet, /™!, is
better than the best search position in its track at timg,
i.e., f(xi™h) < f(p!), the best search position in its track
is updated agp!™' := z!*'. Otherwise, it is updated as
pi™! = pt. Similarly, if p!™ is better than the best position
of the swarmp?, i.e., f(p*") < f(p},), then the best search
position of the swarm is updated pg"*l = pﬁ“. Otherwise,
it is updated ag™ := p!.

I O‘/x’ T~
o p,'r ! vil

Find an integer feasible solution
as the basepoint solution r by PSO

-
Generate the initial swarm

by homomorphous mapping.

Move each paticle
depending on situations

Move each particle by the revision
of move methods if all elements of
the search direction vector are 0.

Apply the bisection method
to the subswarm with repair

Apply multiple
Stretching technique?

A4
Evaluate each particle Evaluate each particle
by the value of f(x). by the value of S(x).

l |

Update the best search
positon in its track

for each particle. Apply secession
Update the best search
position of the swarm

Fig. 2. The algorithm of rPSONLIP.

IV. RPSOCOMBINING DIVERSIFICATION AND
INTENSIFICATION

We expanded revised particle swarm optimization method
Fig. 1. Movement of an individual. for application to NLIP and showed more effeciency than
genetic algorithm [5]. However, variance of the solutions
In the original PSO method, however, there are drawbacbtained by rPSONLIP is large and accuracy is not so high.
that it is not directly applicable to constrained problems arld this research, we consider improvement of accuracy of
its liable to stopping around local solutions. rPSONLIP. At first we introduce new move scheme with
To deal with these drawbacks of the original PSO mettoop in order to prevent a particle from stopping around
ods, Kato et al. incorporated the bisection method andbaundary. Next, for diversification (reinforcement of global
homomorphous mapping to carry out the search considerisgarch), we introduce new move scheme to restrain to stopping
constraints. In addition, Kato et al. incorporated the multipleround local optimal solutions. Furthermore, for intensification
stretching technique and modified move schemes of particlesinforcement of convergence search in promising region), we
to restraining the stopping around local solutions [1]. introduce local search in the best search position of the swarm.
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A. new move scheme with loop takes integer, this technique does not work well, and there is

To deal with drawbacks, we analyzed search process the case that a particle stops around Iogal optimallsolutions.
detail and found that the decision variable of some particl¥4e Propose new move scheme to restrain to stopping around
was fixed on the upper or lower bound (boundary) on the ng):al optimal solg'tlor?s if the decision varl.a'ble takes mteger'.
of search. Such a particle is easy to stop at the boundary iyoe more specific, if the best _search p03|t!on of the swarm is
causes depression of search efficiency. Moreover, for exampfd Updated for a long generation, we multiply the third term
in such a situation, in case that the decision variable takif§ 1ght-hand side in (2) by -1 and incorporate the d|re1ct|on
upper (lower) bound value at the current search position tai@¥ay frompg, then decide next search direction vect)r
lower (upper) bound value at the optimal solution, it is not ead§!lowing equation (Fig. 4).
for the particle moving in feasible region to move around the
optimal solution. Thus, moving with loop from upper to lower Optq
or from lower to upper for the decision variable that absolute '
value is maximum in the element of the search direction
vector to boundary outside on the decision variable fixed in the
boundary (upper or lower bound), we restrain to the stopping
around the boundary for a particle (Fig. 3).

Fig. 4. New move scheme if the best search position of the swarm is not
boundary updated for a long generation.
R

vith = W'l + 1 R (pl — al) — o R (P, — ) (5)

In this move scheme we can restrain to stopping around
current best search position of the swarm. However, con-
vergence to plural local optimal solutions may occur. Thus,
we prevent convergence to plural local optimal solutions by

Fig. 3. Move with loop. adding the penalty depending on distance from the local
optimal solutions. To be more specific, fgrlocal optimal
We show the results of the application to quadratic integeolutionsZ, k = 1,..., ¢, we consider the functio®(x) as
programming maximizing problem with = 50 andm = 5 follows:
in Table 1. In these experiments, we set the maximal search dp(x) = ||z — Zx | (6)
generation numbé€r;,,., = 5000 and the swarm siz&€ = 100.
And the number of trial is 40. di(z) <1
TABLE | k(x) >
RESULTS OF THE APPLICATION TO THE PROBLEM WITH: = 50AND m =5
S(x) = f(x) + )  Pr(z) 8)
rPSONLIP | rPSONLIP Pt
method with loop
best 391$3.5 39204.0 Here,d;(z) is distance between current search position and
mean 38077.9 37658.5 ; P ; ; :
worst 269865 26010.0 the local oppmal SO|utanBk. Py(x) is _the function adding
fime (sec) | 115.677 91.648 the penalty ifd;(x) < 1, if not, not adding the penaltys(x)

is the new evaluation value added summation of the penalty
to the objective function value depending on the distance
From Table I, incorporating new move scheme with loofpetween current search position anptbcal optimal solutions.
proposed in this research, we can improve efficiency of rBsing S(x), the evaluation value includes the penalty in a
SONLIP. On the other hand, the best value of rPSONLIP wittertain region from local optimal solutions and we can prevent
loop is inferior to rPSONLIP and it turns worse on accuracgonvergence to local optimal solutions. We show the results
of the application of rPSONLIP with loop and diversification
to quadratic integer programming maximizing problem with
There is often that the best search position of the swamn= 50 andm = 5 in Table Il. In these experiments, we set
is not updated for a long generation in PSO. If the beite maximal search generation numigr,, = 5000 and the
search position of the swarm is not global optimal solutioswarm sizeN = 100. And the number of trial is 40.
a particle has to move from this search position. Kato et al. From Table Il, incorporating modified new move scheme,
[1] incorporated multiple stretching technique to restrain tefficiency and accuracy of rPSONLIP are improved. In addi-
stopping around local optimal solutions. and we apply it ition, we can reduce computational time more compared that
rPSONLIP. However, for the problem that the decision variablge apply multiple stretching technique.

B. diversification
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TABLE I . . - .
RESULTS OF THE APPLICATION TO THE PROBLEM WITH: = 50aND m =5 D- The procedure of rPSO combining diversification and

intensification
rPSONLIP rPSONLIP o -
method | with loop and divesification| with loop The procedure of the proposed rPSO combininig diversifi-
best 39214.5 39143.5 cation and intensification for NLIP (rPSODINLIP) is summa-
mean 38265.5 38077.9 ;
worst 37193.5 36986.5 rized a_s f.OIIOWS'. . . . .
fime (sec) 8664 115.677 Step 1: Find an integer feasible solution by PSO in considera-
tion of the degree of violation of constraints, and use it as the
basepoint of the homomorphous mappirg,Let ¢ := 0 and
. o go to Step 2.
C. intensification Step 2: Generate feasible initial integer search positions based

For further improvement of efficiency and accuracy, interon the homomorphous mapping proposed by Koziel and
sification (reinforcement of convergence search in promisifdichalewicz [4]. To be more specific, mdp points generated
region) is needed. In this research, we introduce local searamdomly in then dimensional hypercubé—1,1]™ to the
in the best search position of the swarm since we regard fieasible regionX using the homomorphous mapping, and let
region around the best search position of the swarm as these points inX be initial search positions{, i = 1,..., N.
promising region. To be more concrete, a particle searchesaddition, let the initial search position of each partictd,
neighborhood in the best search position of the swarm if the the initial best position of the particle in its tragk), and
best search position of the swarm is not updated for a lofeg the best position among?, i = 1,..., N be the initial
generation and moves the best search position besides thest position of the swarnpg. Go to Step 3.
of the swarm (Fig. 5). However, visitation occurs if the bes$tep 3: Calculate the value oft by (4). For each particle,
search position of the swarm just before is the local optimasing the information ofp! and pg, determine the direction
solution. Thus, we introduce the method to forbid this situatiorectorv!** to the next search positian{** by the modified
(tabu). move schemes proposed by Kato et al. [1]. Next, move it to
the next search position by (3) and go to Step 4.

Step 4: If the particle does not move since the current search

position and the next search position are the same either, revise

v/t to 1 or —1 depending on the plus and minus on the

element that the absolute value is maximum in the element of

v!*! before revising an integer value. Go to Step 5.

O the oot seareh postton o the swarm Step 5: Move with loop from upper to lower or from lower to

& e peRen e svam sooene upper for the decision variable that absolute value is maximum

in the element of the search direction vector to boundary
Fig. 5. Local search in the best search position of the swarm.  outside if the decision variable fixed in the boundary (upper
or lower bound). Go to Step 6.

We show the results of the application of rPSONLIRStep 6: Check if the current search position of each paticle in
with loop, diversification and intensificaiton (rPSODINLIP)he subswarm with repair based on the bisection methﬁd,,
to quadratic integer programming maximizing problem witks feasible. If not, repair it to be feasible using the bisection
n = 50 andm = 5 (same problem as Table I, Il) in Table Ill.method, and go to Step 7.

In these experiments, we set the maximal search generat®ep 7: Determine whether the new move scheme to restrain
numberT,,.x = 5000 and the swarm siz&¥ = 100. And the to stopping around local optimal solutions is applied or not.
number of trial is 40. If it is applied, go to Step 8. Otherwise, go to Step 9.
Step 8: Determine the direction ectof™" to the next search

TABLE IIl " 1 e )
RESULTS OF THE APPLICATION TO THE PROBLEM WITH: = 50AND m =5 POSIION = by the modified new move scheme explained
in section 1V-B. Next, move it to the next search positon by
(3) and evaluate each particle by the valuesgf) for z!*,

rPSODINLIP rPSONLIP
method (proposed) | with loop and diversification i=1,...,N. Go to Step 10.
best 39258.5 39214.5 Step 9: Evaluate each particle by the valuef¢f) (objective
Mol g?i’gg:g g%gg:g function) forz!*!,i =1,..., N. Go to Step 10.
fime (sec) | 79.116 78.664 Step 10: If the evaluation function val(z!™") or f(z!™)

is better than the evaluation function value for the best search

position of the particle in its trackp!, update the best search
From Table IIl, the proposed rPSODINLIP is better thamposition of the particle in its track ep,ﬁ“ = mf“. If not, let

rPSONLIP with loop and diversificiation with respect to thq;frl := p! and go to Step 11.

best objective function value, the mean one. From these resutgp 11: If the minimum ofS(a:ﬁ“), it = 1,...,N or

efficiency and accuracy are improved more. the minimum of f(z!™), i = 1,..., N is better than the
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. . " TABLE V
evaluation function value for the current best search poSitiOBesyITs OF THE APPLICATION TO THE PROBLEM WITH: = 3 AND m = 3

of the swarmp?, update the best search position of the swarm

it

aspytt = ;! . Otherwise, lepi*! .= p{** and go to Step method | TPSODINLIP | GANLIP

12. best 0.915 0.906

Step 12: Determine whether the local search is applied or not. meaft‘ ggﬁ 823(13
.. . . WOTrSs! . .

If it is applied, go to Step 13. Otherwise, go to Step 14. fime (se<) EETIS 40096

Step 13: Search neighborhood in the best search position of
the swarm and update the best search position of the swarm.
Go to Step 14.

Step 14: If the condition of the secession is satisfied, appipdreinforcement of convergence search in promising region
the secession to every particle according to a given probabilifijtensification). We showed the efficiency of the proposed rP-

and go to Step 15. SODINLIP method by comparing it with an existing method,
Step 15: Finish ift = T,,.x (the maximal value of time). GANLIP, through their application in some numerical exam-
Otherwise, lett := ¢ + 1 and return to Step 3. ples.
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TABLE IV
RESULTS OF THE APPLICATION TO THE PROBLEM WITHr = 20AND m = 3

method | rPSODINLIP | GANLIP
best 0.942 0.939
mean 0.942 0.932
worst 0.942 0.923
time (sec) 39.994 76.020

VI. CONCLUSION

In this research, focusing on a paritcle swarm optimization,
we considered its application to NLIP. In order to improve
accuracy of rPSONLIP, we incorporated new move scheme
with loop, reinforcement of global search (diversificaiton)
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