
Particle Swarm Optimization
Combining Diversification and Intensification
for Nonlinear Integer Programming Problems

Takeshi Matsui, Masatoshi Sakawa, Kosuke Kato and Koichi Matsumoto
Hiroshima University

1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527 JAPAN
email:{ tak-matsui, sakawa, kosuke-kato}@hiroshima-u.ac.jp, matsumoto@msl.sys.hiroshima-u.ac.jp

Abstract—In this research, focusing on nonlinear integer pro-
gramming problems, we propose an approximate solution method
based on particle swarm optimization proposed by Kennedy
et al. And we developed a new particle swarm optimization
method which is applicable to discrete optimization problems
by incoporating a new method for generating initial search
points, the rounding of values obtained by the move scheme
and the revision of move methods. Furthermore, we showed the
efficiency of the proposed particle swarm optimization method
by comparing it with an existing method through the application
of them into the numerical examples. Moreover we expanded
revised particle swarm optimization method for application to
nonlinear integer programming problems and showed more
effeciency than genetic algorithm. However, variance of the
solutions obtained by the PSO method is large and accuracy is not
so high. Thus, we consider improvement of accuracy introducing
diversification and intensification.

I. I NTRODUCTION

In general, actual various decision making situations are
formulated as large scale mathematical programming problems
with many decision variables and constraints.

If a value of the decision variables is integer, the problem is
called an integer programming problem. For integer program-
ming problems, we can have optimal solution by application
of the dynamic programming fundamentally. However, since
optimization problems become larger and more complicated,
a high speed and accurate optimization method is expected.
In particular, for nonlinear integer programming problems
(NLIP), there are not the general strict method or approxi-
mation method, such as branch and bound method for linear
programming problems. In such a case, a solution method
depended on property in problems is proposed. In recent years,
a particle swarm optimization (PSO) method was proposed by
Kennedy et al. [2] and has attracted considerable attention as
one of promising optimization methods with higher speed and
higher accuracy than those of existing solution methods. And
Kato et al. showed the efficiency of improved PSO method
than genetic algorithm for nonlinear programming problems
[1].

Moreover we expanded revised particle swarm optimization
method for application to NLIP and showed more effeciency
than genetic algorithm [5]. However, variance of the solutions

obtained by the PSO method is large and accuracy is not so
high.

In this research, we focus on NLIP and consider improve-
ment of accuracy combining diversification and intensification.

II. N ONLINEAR INTEGER PROGRAMMING PROBLEMS

In this research, we consider general nonlinear integer
programming problem with constraints as follows:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . ,m

lj ≤ xj ≤ uj , j = 1, 2, . . . , n
x = (x1, x2, . . . , xn)T ∈ Zn





(1)

wheref(·), gi(·) are convex or nonconvex real-valued func-
tions, lj anduj are the lower bound and the upper bound of
each decision variablexj .

III. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization [2] method is based on the
social behavior that a population of individuals adapts to
its environment by returning to promising regions that were
previously discovered [3]. This adaptation to the environment
is a stochastic process that depends on both the memory of
each individual, called particle, and the knowledge gained by
the population, called swarm.

In the numerical implementation of this simplified social
model, each particle has three attributes: the position vector in
the search space, the current direction vector, the best position
in its track and the best position of the swarm.
Step 1: Generate the initial swarm involvingN particles at
random.
Step 2: Calculate the new direction vector for each particle
based on its attributes.
Step 3: Calculate the new search position of each particle from
the current search positon and its new direction vector.
Step 4: If the termination condition is satisfied, stop. Other-
wise, go to Step 2.
To be more specific, the new direction vector of thei-th
particle at timet, vt+1

i , is calculated by the following scheme
introduced by Shi and Eberhart [7].

vt+1
i := ωtvti + c1R

t
1(pti − xti) + c2R

t
2(ptg − xti) (2)

43

In (2), Rt1 andRt2 are random numbers between 0 and 1,pti
is the best position of thei-th particle in its track at timet
andptg is the best position of the swarm at timet. There are
three parameters such as the inertia of the particleωt, and two
parametersc1, c2.

Then, the new position of thei-th particle at timet, xt+1
i ,

is calculated from (3).

xt+1
i := xti + vt+1

i (3)

wherexti is the current position of thei-th particle at time
t. After the i-th particle calculates the next search direction
vector vt+1

i by (2) in consideration of the current search
direction vectorvti, the direction vector going from the current
search positionxti to the best search position in its trackpti and
the direction vector going from the current search positionxti
to the best search position of the swarmptg, it moves from the
current positionxti to the next search positionxt+1

i calculated
by (3). In general, the parameterωt is set to large values in
the early stage for global search, while it is set to small values
in the late stage for local search. For example, it is determined
as:

ωt := ω0 − t · (ω0 − ωTmax)
0.75 · Tmax

(4)

wheret is the current time,Tmax is the maximal value of time,
ω0 is the initial value ofωt andωTmax is the final value of
ωt.

The search procedure of PSO is shown in Fig. 1. If the
next search position of thei-th particle at timet, xt+1

i , is
better than the best search position in its track at timet, pti,
i.e., f(xt+1

i) ≤ f(pti), the best search position in its track
is updated aspt+1

i := xt+1
i . Otherwise, it is updated as

pt+1
i := pti. Similarly, if pt+1

i is better than the best position
of the swarm,ptg, i.e., f(pt+1

i) ≤ f(ptg), then the best search
position of the swarm is updated aspt+1

g := pt+1
i . Otherwise,

it is updated aspt+1
g := ptg.

p
i
t

x
i
t

x
i
t+1

v
i
t

v
i
t+1

p
g
t

Fig. 1. Movement of an individual.

In the original PSO method, however, there are drawbacks
that it is not directly applicable to constrained problems and
its liable to stopping around local solutions.

To deal with these drawbacks of the original PSO meth-
ods, Kato et al. incorporated the bisection method and a
homomorphous mapping to carry out the search considering
constraints. In addition, Kato et al. incorporated the multiple
stretching technique and modified move schemes of particles
to restraining the stopping around local solutions [1].

Moreover we expanded revised particle swarm optimiza-
tion method for application to NLIP (rPSONLIP) [5]. In
rPSONLIP, we enabled application of the revised PSO method
to NLIP by incorporating using integer random number in
generating initial search position and rounding search direction
vector vt+1

i in updating equation (3). However, we simply
make the search direction vector integer value and all elements
of the search direction vector become0. Thus, on the element
that absolute value is maximum in elements of the search
direction vector before rounding, we set the search direction
vector 1 or -1 depending on the plus or minus. Therefore, we
revised that all of the particles always move. The process of
rPSONLIP can be shown in Fig. 2.

t T

r

f x S x

0

Fig. 2. The algorithm of rPSONLIP.

IV. RPSOCOMBINING DIVERSIFICATION AND

INTENSIFICATION

We expanded revised particle swarm optimization method
for application to NLIP and showed more effeciency than
genetic algorithm [5]. However, variance of the solutions
obtained by rPSONLIP is large and accuracy is not so high.
In this research, we consider improvement of accuracy of
rPSONLIP. At first we introduce new move scheme with
loop in order to prevent a particle from stopping around
boundary. Next, for diversification (reinforcement of global
search), we introduce new move scheme to restrain to stopping
around local optimal solutions. Furthermore, for intensification
(reinforcement of convergence search in promising region), we
introduce local search in the best search position of the swarm.

44

A. new move scheme with loop

To deal with drawbacks, we analyzed search process in
detail and found that the decision variable of some particles
was fixed on the upper or lower bound (boundary) on the way
of search. Such a particle is easy to stop at the boundary and
causes depression of search efficiency. Moreover, for example
in such a situation, in case that the decision variable taking
upper (lower) bound value at the current search position takes
lower (upper) bound value at the optimal solution, it is not easy
for the particle moving in feasible region to move around the
optimal solution. Thus, moving with loop from upper to lower
or from lower to upper for the decision variable that absolute
value is maximum in the element of the search direction
vector to boundary outside on the decision variable fixed in the
boundary (upper or lower bound), we restrain to the stopping
around the boundary for a particle (Fig. 3).

boundary

Fig. 3. Move with loop.

We show the results of the application to quadratic integer
programming maximizing problem withn = 50 andm = 5
in Table I. In these experiments, we set the maximal search
generation numberTmax = 5000 and the swarm sizeN = 100.
And the number of trial is 40.

TABLE I
RESULTS OF THE APPLICATION TO THE PROBLEM WITHn = 50 AND m = 5

rPSONLIP rPSONLIP
method with loop

best 39143.5 39204.0
mean 38077.9 37658.5
worst 36986.5 36010.0

time (sec) 115.677 91.648

From Table I, incorporating new move scheme with loop
proposed in this research, we can improve efficiency of rP-
SONLIP. On the other hand, the best value of rPSONLIP with
loop is inferior to rPSONLIP and it turns worse on accuracy.

B. diversification

There is often that the best search position of the swarm
is not updated for a long generation in PSO. If the best
search position of the swarm is not global optimal solution,
a particle has to move from this search position. Kato et al.
[1] incorporated multiple stretching technique to restrain to
stopping around local optimal solutions. and we apply it in
rPSONLIP. However, for the problem that the decision variable

takes integer, this technique does not work well, and there is
the case that a particle stops around local optimal solutions.
We propose new move scheme to restrain to stopping around
local optimal solutions if the decision variable takes integer.
To be more specific, if the best search position of the swarm is
not updated for a long generation, we multiply the third term
of right-hand side in (2) by -1 and incorporate the direction
away fromptg, then decide next search direction vectorpt+1

i

following equation (Fig. 4).

Fig. 4. New move scheme if the best search position of the swarm is not
updated for a long generation.

vt+1
i = ωtvti + c1R

t
1(pti − xti)− c2Rt2(ptg − xti) (5)

In this move scheme we can restrain to stopping around
current best search position of the swarm. However, con-
vergence to plural local optimal solutions may occur. Thus,
we prevent convergence to plural local optimal solutions by
adding the penalty depending on distance from the local
optimal solutions. To be more specific, forq local optimal
solutionsx̄k, k = 1, . . . , q, we consider the functionS(x) as
follows:

dk(x) = ‖x− x̄k‖ (6)

Pk(x) =
{
G dk(x) ≤ 1
0 dk(x) > 1 (7)

S(x) = f(x) +
q∑

k=1

Pk(x) (8)

Here,dk(x) is distance between current search position and
the local optimal solution̄xk. Pk(x) is the function adding
the penalty ifdk(x) ≤ 1, if not, not adding the penalty.S(x)
is the new evaluation value added summation of the penalty
to the objective function value depending on the distance
between current search position andq local optimal solutions.
Using S(x), the evaluation value includes the penalty in a
certain region from local optimal solutions and we can prevent
convergence to local optimal solutions. We show the results
of the application of rPSONLIP with loop and diversification
to quadratic integer programming maximizing problem with
n = 50 andm = 5 in Table II. In these experiments, we set
the maximal search generation numberTmax = 5000 and the
swarm sizeN = 100. And the number of trial is 40.

From Table II, incorporating modified new move scheme,
efficiency and accuracy of rPSONLIP are improved. In addi-
tion, we can reduce computational time more compared that
we apply multiple stretching technique.

45

TABLE II
RESULTS OF THE APPLICATION TO THE PROBLEM WITHn = 50 AND m = 5

rPSONLIP rPSONLIP
method with loop and divesification with loop

best 39214.5 39143.5
mean 38265.5 38077.9
worst 37193.5 36986.5

time (sec) 78.664 115.677

C. intensification

For further improvement of efficiency and accuracy, inten-
sification (reinforcement of convergence search in promising
region) is needed. In this research, we introduce local search
in the best search position of the swarm since we regard the
region around the best search position of the swarm as the
promising region. To be more concrete, a particle searches
neighborhood in the best search position of the swarm if the
best search position of the swarm is not updated for a long
generation and moves the best search position besides that
of the swarm (Fig. 5). However, visitation occurs if the best
search position of the swarm just before is the local optimal
solution. Thus, we introduce the method to forbid this situation
(tabu).

:the best search position of the swarm

:the best search position of the swarm stopping

Fig. 5. Local search in the best search position of the swarm.

We show the results of the application of rPSONLIP
with loop, diversification and intensificaiton (rPSODINLIP)
to quadratic integer programming maximizing problem with
n = 50 andm = 5 (same problem as Table I, II) in Table III.
In these experiments, we set the maximal search generation
numberTmax = 5000 and the swarm sizeN = 100. And the
number of trial is 40.

TABLE III
RESULTS OF THE APPLICATION TO THE PROBLEM WITHn = 50 AND m = 5

rPSODINLIP rPSONLIP
method (proposed) with loop and diversification

best 39258.5 39214.5
mean 38585.3 38265.5
worst 37193.5 37193.5

time (sec) 79.116 78.664

From Table III, the proposed rPSODINLIP is better than
rPSONLIP with loop and diversificiation with respect to the
best objective function value, the mean one. From these results,
efficiency and accuracy are improved more.

D. The procedure of rPSO combining diversification and
intensification

The procedure of the proposed rPSO combininig diversifi-
cation and intensification for NLIP (rPSODINLIP) is summa-
rized as follows.
Step 1: Find an integer feasible solution by PSO in considera-
tion of the degree of violation of constraints, and use it as the
basepoint of the homomorphous mapping,r. Let t := 0 and
go to Step 2.
Step 2: Generate feasible initial integer search positions based
on the homomorphous mapping proposed by Koziel and
Michalewicz [4]. To be more specific, mapN points generated
randomly in then dimensional hypercube[−1, 1]n to the
feasible regionX using the homomorphous mapping, and let
these points inX be initial search positionsx0

i , i = 1, . . . , N .
In addition, let the initial search position of each particle,x0

i ,
be the initial best position of the particle in its track,p0

i , and
let the best position amongx0

i , i = 1, . . . , N be the initial
best position of the swarm,p0

g. Go to Step 3.
Step 3: Calculate the value ofωt by (4). For each particle,
using the information ofpti and ptg, determine the direction
vectorvt+1

i to the next search positionxt+1
i by the modified

move schemes proposed by Kato et al. [1]. Next, move it to
the next search position by (3) and go to Step 4.
Step 4: If the particle does not move since the current search
position and the next search position are the same either, revise
vt+1
i to 1 or −1 depending on the plus and minus on the

element that the absolute value is maximum in the element of
vt+1
i before revising an integer value. Go to Step 5.

Step 5: Move with loop from upper to lower or from lower to
upper for the decision variable that absolute value is maximum
in the element of the search direction vector to boundary
outside if the decision variable fixed in the boundary (upper
or lower bound). Go to Step 6.
Step 6: Check if the current search position of each paticle in
the subswarm with repair based on the bisection method,xt+1

i ,
is feasible. If not, repair it to be feasible using the bisection
method, and go to Step 7.
Step 7: Determine whether the new move scheme to restrain
to stopping around local optimal solutions is applied or not.
If it is applied, go to Step 8. Otherwise, go to Step 9.
Step 8: Determine the direction ectorvt+1

i to the next search
position xt+1

i by the modified new move scheme explained
in section IV-B. Next, move it to the next search positon by
(3) and evaluate each particle by the value ofS(·) for xt+1

i ,
i = 1, . . . , N . Go to Step 10.
Step 9: Evaluate each particle by the value off(·) (objective
function) forxt+1

i , i = 1, . . . , N . Go to Step 10.
Step 10: If the evaluation function valueS(xt+1

i) or f(xt+1
i)

is better than the evaluation function value for the best search
position of the particle in its track,pti, update the best search
position of the particle in its track aspt+1

i := xt+1
i . If not, let

pt+1
i := pti and go to Step 11.

Step 11: If the minimum ofS(xt+1
i), i = 1, . . . , N or

the minimum of f(xt+1
i), i = 1, . . . , N is better than the

46

evaluation function value for the current best search position
of the swarm,ptg, update the best search position of the swarm
aspt+1

g := xt+1
imin

. Otherwise, letpt+1
g := pt+1

g and go to Step
12.
Step 12: Determine whether the local search is applied or not.
If it is applied, go to Step 13. Otherwise, go to Step 14.
Step 13: Search neighborhood in the best search position of
the swarm and update the best search position of the swarm.
Go to Step 14.
Step 14: If the condition of the secession is satisfied, apply
the secession to every particle according to a given probability,
and go to Step 15.
Step 15: Finish ift = Tmax (the maximal value of time).
Otherwise, lett := t+ 1 and return to Step 3.

V. NUMERICAL EXAMPLES

We apply the proposed PSO (rPSODINLIP) and genetic
algorithm for nonlinear integer programming problems (GAN-
LIP) [6] which is one of the exisiting efficient methods, to
two nonlinear integer programming maximizing problems with
different scale. The number of trial is 40 for rPSODINLIP and
GANLIP. Tables IV and V show the results obtained by both
methods: the best objective function value of 40 trials, the
mean one, the worst one, and the mean computational time.
In these experiments, the parameters of GANLIP are set as the
population sizeN = 100. On the other hand, the pareameters
of rPSODINLIP are set as the size of the swarmN = 100.
And we set the maximal search generation numberTmax =
5000 for all problems.

For the problem, as shown in Table IV, the proposed
rPSODINLIP can always obtain the optimal value (0.942),
while GANLIP cannnot; and the mean computational time of
rPSODINLIP is shorter than that of GANLIP. For the problem,
as shown in Table V, the proposed rPSODINLIP is better than
GANLIP with respect to the best objective function value, the
mean one, the worst one, and the mean computational time.

From these results, it is indicated that the proposed rP-
SODINLIP is superior to GANLIP and rPSODINLIP is
promising as an optimization method for nonlinear integer
programming problems.

TABLE IV
RESULTS OF THE APPLICATION TO THE PROBLEM WITHn = 20 AND m = 3

method rPSODINLIP GANLIP
best 0.942 0.939
mean 0.942 0.932
worst 0.942 0.923

time (sec) 39.994 76.020

VI. CONCLUSION

In this research, focusing on a paritcle swarm optimization,
we considered its application to NLIP. In order to improve
accuracy of rPSONLIP, we incorporated new move scheme
with loop, reinforcement of global search (diversificaiton)

TABLE V
RESULTS OF THE APPLICATION TO THE PROBLEM WITHn = 3 AND m = 3

method rPSODINLIP GANLIP
best 0.915 0.906
mean 0.914 0.901
worst 0.914 0.896

time (sec) 55.748 149.026

andreinforcement of convergence search in promising region
(intensification). We showed the efficiency of the proposed rP-
SODINLIP method by comparing it with an existing method,
GANLIP, through their application in some numerical exam-
ples.

ACKNOWLEDGMENT

This research was partially supported by The 21st Century
COE Program on “Hyper Human Technology toward the 21st
Century Industrial Revolution”.

REFERENCES

[1] K. Kato, T. Matsui, M. Sakawa and K. Morihara, An approximate solution
method based on particle swarm optimization for nonlinear programming
problems,Journal of Japan Society for Fuzzy Theory and Intelligent
Informatics, Vol.20, No.3, pp.399–409, 2008.

[2] J. Kennedy and R.C. Eberhart, Particle swarm optimization,Proceedings
of IEEE International Conference on Neural Networks, pp. 1942–1948,
1995.

[3] J. Kennedy and W. M. Spears, Matching algorithms to problems: an
experimental test of the particle swarm and some genetic algorithms on
the multimodal problem generator,Proceedings of IEEE International
Conference on Evolutionary Computation, pp.74–77, 1998.

[4] S. Koziel and Z. Michalewicz, Evolutionary algorithms, homomorphous
mappings, and constrained parameter optimization,Evolutionary Compu-
tation, Vol.7, No.1, pp.19–44, 1999.

[5] T. Matsui, K. Kato, M. Sakawa, T. Uno and K. Matsumoto, Particle swarm
optimization for nonlinear integer programming problems,Proceedings
of International MultiConference of Engineers and Computer Scientists
2008, pp. 1874–1877, 2008.

[6] M. Sakawa, K. Kato, M.A.K. Azad and R. Watanabe, A genetic algorithm
with double string for nonlinear integer programming problems,IEEE
SMC 2005 Conference Proceedings, pp. 3281–3286, 2005.

[7] Y.H. Shi and R.C. Eberhart, A modified particle swarm optimizer,Pro-
ceedings of IEEE International Conference on Evolutionary Computation,
pp. 69–73, 1998.

47

