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Abstract—In this paper, we review the development of studies the Pareto equilibrium solution from the scalarization via a
on multiobjective noncooperative games, and particularly we weighting coefficient vector.
focus on nondominated equilibrium solutions in multiobjective In multiobjective two-person zero-sum games, assuming

two-person nonzero-sum games in normal and extensive forms. that | is th t Contini et al. [5 id |
After outlining studies related to multiobjective noncooperative at one player is the nature, Contini et al. [5] consider a mul-

games, we treat multiobjective two-person nonzero-sum games in tiobjective expected payoff maximization problem for a given
normal form, and a mathematical programming problem yielding  probability distribution of strategies of the nature. Moreover,

nondominated equilibrium solutions is shown. As for extensive specifying a goal for each of the objectives, they formulate a
form games, we first provide a game representation of the j4int probability maximization problem with respect to goal
sequence form, and then formulate a mathematical programming hi t Zel 30 lari ltiobiecti i
problem for obtaining nondominated equilibrium solutions. achievement. Zeleny [30] sga arlzes. a .mu 10 J?C_ ve two-
person zero-sum game by using a weighting coefficient vector
[. INTRODUCTION and obtains a minimax solution to the corresponding scalarized

An equilibrium solution based on the principle of rationa$ingle-objective two-person zero-sum game. Especially, he
responses is an important solution concept in a conventiog&ows that the formulated problem can be reduced to a linear
noncooperative games. As an extension of the equilibrium dgogramming problem when one player of the pair is the
lution, Pareto equilibrium solutions in multiobjective noncoopRature. Moreover, he points out that, because the set of Pareto
erative games are defined on the basis of the concept of Pagdgilibrium solutions is generally large, it is difficult to select
optimality from multiobjective optimization. The concept oft certain solution among the set and proposes a compromise
Pareto optimal solutions is extended to nondominated solutic¥gategy such that the distance from the ideal point, which
by using dominance cones [29]' [22] This review papé$ a vector of the maxima of the objectives, IS minimized.
outlines the development of multiobjective noncooperativ8troducing a goal for each of the objectives in a multiobjective
games and focuses on nondominated equilibrium solutionsty¢p-person zero-sum game, Cook [6] formulates the problem
multiobjective two-person nonzero-sum games in normal afinimizing a weighted sum of the differences between the
extensive forms. Employing the concept of nondominated s&xpected payoff vector and the corresponding goals; he shows
lutions, Nishizaki and Notsu define nondominated equilibriufat the formulated problem can be reduced to a linear
solutions in multiobjective two-person nonzero-sum games Riogramming problem.
normal and extensive forms [15], [16], and give the necessaryCorley [7] provides the necessary and sufficient condition
and sufficient conditions for a pair of mixed strategies to betBat a pair of mixed strategies is a Pareto equilibrium solution
nondominated equilibrium solution. Moreover, they formulaté @& multiobjective two-person nonzero-sum game by using
mathematical programming problems yielding nondominatéde Kuhn-Tucker condition [13] for optimality of the multi-

equilibrium solutions by using the necessary and sufficiefbjective mathematical programming problems. Moreover, he
conditions. shows that a Pareto equilibrium solution is a solution of a

parametric linear complementarity problem with parameters

Il. DEVELOPMENT OF STUDIES ON MULTIOBJECTIVE  pheing the elements of the weighting coefficient vector.
NONCOOPERATIVE GAMES Ghose and Prasad [9] propose a solution concept of Pareto
Blackwell [1] investigates the properties of the set in whichptimal security strategies which is an extension of a minimax
the payoffs of players converge through successive long-rsalution of a single-objective two-person zero-sum game. They
plays in a multiobjective two-person zero-sum game. Fgive a necessary condition and a sufficient condition for a
a multiobjective two-person game, either zero-sum gamPareto optimal security strategy from the relationship between
or nonzero-sum, Shapley [21] defines a Pareto equilibriuamultiobjective game and the corresponding scalarized single-
solution by introducing the concept of Pareto optimalitpbjective game. In a conventional single-objective two-person
from multiobjective optimization. He proves the existence afero-sum game, a minimax solution is a saddle point, i.e.,



an equilibrium solution; but in a multiobjective two-persomNishizaki to a multiobjective two-person nonzero-sum game
zero-sum game, there does not always exist a solution whigfthout and with fuzzy payoffs; they formulate a mathematical
is not only a Pareto optimal security strategy but also @rogramming problem yielding the equilibrium solutions.

Pareto equilibrium solution. Ghose [10] proves that all the Borm et al. [3] study the structure of a set of Pareto
Pareto optimal security strategies can be obtained througladilibrium solutions of a multiobjective two-person nonzero-
finite number of scalarizations of a multiobjective games by;m game; they show that a set of Pareto equilibrium solutions
showing that an extension set of vectors of security levelsjis not always a union of polytopes if at least one player has
polyhedral. Fernandez and Puerto [8] show that the necessgi$ or more objectives and both players have three or more
and sufficient condition that a pair of mixed strategies is gure strategies. Moreover, defining a set of mixed strategies
Pareto optimal security strategy in multiobjective two-persas¥ the opponent in which a subset of pure strategies are
zero-sum games is that it is a Pareto optimal solution toggtimal responses, they investigate the characteristics of Pareto
certain multiobjective linear programming problem; from thigquilibrium solutions.

fact, they demonstrate that all the Pareto optimal securityUsing the concept of nondominated solutions which is an

strategies c;’;\n' be obtained bly finding aIII the I:areto optim8liension of that of Pareto optimal solutions to multiobjective
EXtreme S0 u'_uons. Voorneveld [2.4] newly de ne a _Pare athematical programming problems [29], [22], Nishizaki and
optimal security strategy from a different viewpoint. Withou g, [15] consider nondominated equilibrium solutions in

assuming that the opponent chooses a mixed strategy for eﬁﬁntiobjective two-person nonzero-sum game in normal form.
of the objectives separately, he considers a multiobjective

two-person zero-sum game where the opponent is allowed tExtension of games in extensive form under a multiobjective

choose only one mixed strategy. By doing so, he constru&@wronmem is made by Krieger [12], and existence of Pareto

a standard matrix game arising from the multiobjective t\Noe-qUIIIbrlum solutions is cons_|deretd. F_or rfnulnolﬂle_zcrt:_ve kt.WO'd
person zero-sum games. person nonzero-sum game in extensive form, Nishizaki an

Wierzbicki [28] investigates the relationship between th’<\elOtsu [1.5] define a nondominateq equilibrium solution based
Pareto equilibrium solutions of a multiobjectimeperson non- on dom!nanpe cones by em_ploymg the sequence form [.23]’
cooperative game and the equilibrium solutions of the corjel-l] Wh'_Ch IS a repres_entatlon .W'th compact mathematical
sponding single-objective game scalerized by the generali gamulanon for games in extensive form.
scalarizing functions including the scalarization by a weighting
coefficient vector. For multiobjective-person noncooperative
games with cross-constrained continuum strategy sets, Charnes!!l. N ONDOMINATED EQUILIBRIUM SOLUTIONS OF
et al. [4] define a nondominated equilibrium solution and itdMULTIOBJECTIVE TWO-PERSON NONZERGSUM GAMES IN
extension by using the concept of nondominated solutions NORMAL FORM
based on dominance cones in multiobjective mathematical
programming problems; they give necessary conditions apd Multiobjective two-person nonzero-sum game
sufficient conditions for ann-tuple of strategies to be a
nondominated equilibrium solution. However, they do not deal A multiobjective two-person nonzero-sum game can be
with a multiobjectiven-person noncooperative game with @epresented by the following multipl® x n matrices:
discrete set of pure strategies and its probability mixture. Zhao
[31] define a hybrid solution and a quasi-hybrid solution on

the basis of a Pareto equilibrium solution of a multiobjective -k K

n-person noncooperative game and the core of-person co- 41 v @i

operative game; he shows the existence of the solutions. Wang Al = e s k=111, (1a)
[27] investigate the existence of Pareto equilibrium solutions i aml oA |

in a multiobjectiven-person noncooperative game; he presents ko ko -

sufficient conditions to guarantee the existence of a Pareto bry bin

equilibrium solution. Voorneveld et al. [26] study axiomatic Be=| : - |, k=1..mn. (1b)
properties of the Pareto equilibrium solutions by extending bﬁfl .. bl

the axiomatization of the equilibrium solution of a single-

objective n-person noncooperative game [19]. Voorneveld et

al. [25] define ideal equilibrium solutions which maximize alln the game(A,B), A £ (Al,... . A1)T, B = (B!,...,B2)T,

the objectives for all players and examine some propertiesigyer 1 hasn pure strategies and objectives, and player 2

the solutions. hasn pure strategies ang objectives, where a superscription
Sakawa and Nishizaki [20] incorporate a fuzzy goal witd means the transposition of a vector or a matrix. Then, when

respect to each of the objectives in a multiobjective two-perséfyer 1 chooses a pure strategy {1,...,m} and player

zero-sum game with fuzzy payoffs and examine a minimak choosesj € {1,...,n}, player 1 obtains a payoff vector

strategy for degrees of attainment of the fuzzy goals. Nishizdd; - -»a/) and player 2 obtains a payoff vectd, ..., b?).

and Sakawa [17], [18] extend the results by Sakawa andWe define the following setX andY of mixed strategies



of players 1 and 2, respectively: two vectorul,u? € A and two nonnegative scalang,n?> 0,
ntul +n2u? € A holds. A polar cone of\ is given as

m
A _ T - . P
X—{x—(xl,...,xm) | i;x.—l7 x.§0,|—1,...,m}7 A = {yeRK [yTu<0, YueA}. (5)

(2a)  We define a domination cone prescribing a preference
n relation. Foro,0’ € O ¢ RX, when o is preferred tod/, it
é _ T L ) H 9 L )
Y= {y— (Y, 5¥n) " | ,Zlyl =120 j= 1""?”}' is denoted byo = 0. Then, a domination cone is defined as
= (2b) follows.
Definition 3.2: Giveno € O C R¥, a nonzero vectad € R¥
When player 1 chooses a mixed strategy X and player 2 is a domination factor foo if o~ o+ pd for all p > 0. Then,
choosesy € Y, expected payoff vectors of both players are domination con®(o) of o is a set of all domination factors
expressed as follows: for o.
Throughout this paper, we use only a constant domination
T Ay A (T Al T T
XAYS (XA, XCATY) (38)  coneA 2 'D(0) for all 0 € O, and simply callA a domination
X By2 (x"Bly,...,x"B"2y)T. (3b) cone. Furthermore, we restrict a domination cone to a poly-

) ) S _ hedral cone with nonempty interior which can be represented
B. Nondominated solutions to a multiobjective mathematicgy {he following by using its generatf = (¢ t=1,...,p}

programming problem

Before examining nondominated equilibrium solutions in A = {ne RX | m= im‘},rt >0, t=1,... ,p}. (6)
multiobjective two-person nonzero-sum games, we first review t=
solutions concepts and related matters in multiobjective math-then g multiobjective mathematical programming problem
ematical programming. For convenience, let us introduce thgn pe defined by the three tuglg, f(2),A), whereZ = {ze
follqwing notation: for any two \(ector}sz’ eRN,z=Z & z= pN | 9(z) £ 0,h(z) = O} is a feasible regionf(z) is a vector
7, i=1....Nj2zsZez52,i=1,.. ,N;2<Z 7 <z, of the multiple objectives, and c R¥ is a domination cone.
i=1..,Njz<Z&zsZandz# 7. A nondominated solution to a multiobjective mathematical

Let z be anN-dimension real decision variable. Consider &rogramming problentz, f(z),A) is defined as follows.
multiobjective mathematical programming problem minimiz- pefinition 3.3: Given a multiobjective mathematical pro-
ing K objective functionsf(z) = (f1(2), ..., fk(2))" subject gramming problem(Z,f(2), A), z € Z is said to be a
to My inequality constraintg)(z) = (91(2),--.,9w,(2))" =0 nondominated solution if there does not exist anotherZ
and M equality constraint$)(z) = (m(2),...,hm,(2)" =0, such that
where 0 is an appropriate dimensional zero ve¢r..,0)"

corresponding to a dimension of the left hand side. Then, f(z)ef(9+A and f(z) # f(Z). )

a multiobjective mathematical programming problem can be s 5 gomination coneA is the negative quadrant, any

written as: nondominated solution is also a Pareto optimal solution.
min  f(2) (4a) A condition that a point is a nondominated solution is given

. N by Yu [29] and Tamura and Miura [22]. Because we restrict a
s.t. zeZ={zeR"[9(29 =0, h(z7=0}.  (4b) domination cone to a polyhedral cone and the Tamura and
Miura condition is a more natural extension of the Kuhn
and Tucker condition [13] of optimality for a multiobjective

There does not generally exist a solution minimizing all th@athematlcal programming problem, we employ the Tamura

objectives simultaneously. Then, Pareto optimal solutions su%ﬁgtg/“ligz fsogd:c',?:j?m?ﬁ;?elzpea ﬁﬁg‘::ﬂ%ﬂ ;?ﬁt‘%ﬁa'r of mixed
that any improvement of one objective can be achieved onﬁy 9 q )

at the expense of another are introduced, and they are define polar CQHEA for_a d_ommatlon cone can be represe.nted

as follows. in the following by using its generatef = {\! [t =1,...,q}:
Definition 3.1: Z € Zis said to be a Pareto optimal solution K

if there does not exist anotherc Z such thatf(z) < f(z). N ={weR
As a slightly weaker solution concept than Pareto optimality,

weak Pareto optimal solutions are defined by replasingith ~ Let

Let O= {f(z) € R | z€ Z} be a feasible area of the multiple
objective values in an objective space.

q
= V,4>0t=1...,9p. (8
w t;Zt (i 2 Q} 8

< in the above definition. o .  F(@=[Df@"V,...,0f(2)TVA, (92)
Next, we present a definition of a nondominated solution h(2) 21 (2)

proposed by Yu [29] which is a solution concept generalized 07z 7 Ton Vi

from a Pareto optimal solution. To begin with, we give Df(Z)TVt: : : c ], te{d,...,q}.

definitions of a cone and related concepts. A Aet R is 9 (2) A (2) vt

said to be a cone if, for any vectare A and nonnegative ooy oz K

scalarn = 0, nu € A holds. A is a convex cone if, for any (9b)



For a multiobjective mathematical programming problemlayer 1. This can be explicitly expressed as follows. Sets of
(Z,f(2),N), assume thaig(z) and h(z) satisfy the Slater nondominated responses of players 1 and 2 are defined as
constraint qualificationv‘Tf(z), t=1,...,q are concave, and
Z is a convex set. Then, the following necessary and sufficien

Ly ALY — i
condition is given by Tamura and Miura [22ke Z is a N (A7) = {x& X | there does not exis €X such that

nondominated solution if and only if there exist vectprs 0, frxy) € f1(X;y)+A},  (13a)
A >0 andy such that N2(x,A%) = {y € Y | there does not exis{ € Y such that
2\ 2. 2
F(Z)Ll— Dg(Z)T)\ _ Dh(Z)TLIJ -0 (103) f (y,X) ef ()/,X) +A } (13b)
92"\ =0 (10b)

0 10c Then, by using the concept of nondominated responses, a
(10c) setN(A1,A?) of nondominated equilibrium solutions can be
z)=0. (10d)  represented by

If the generator of the polar cone of the domination cone is 5 1 1 ) )
specified b}® = V1= (1,0,...,0)T,... Vk=(0,...,0,1)T},  NALA?) = {(x",y") | X e N (y",AY), y* € N*(x",A%)}.
the Tamura and Miura condition corresponds to the Kuhn and (14)
Tucker condition [13] for Pareto optimality to a multiobjective

mathematical programming problem. A relation between the domination cones and the sets of

nondominated equilibrium solutions is shown in the following
C. Nondominated equilibrium solutions of a multiobjectivgroposition.

game Proposition 3.1:Let Al and AY denote domination cones

First, we show a definition of Pareto equilibrium solutionsf player 1, and\? andA?’ denote domination cones of player
given by Shapley [21], which can be considered as a specfain a multiobjective two-person nonzero-sum gateB).
case of nondominated equilibrium solutions. Then, if AL c AY andA2 c A?, N(AY,A?) € N(ALA2).

Definition 3.4: In a multiobjective two-person nonzero-sum From the fact that there exists at least one Pareto equilibrium

game(A,B), a pair of strategie$x*,y*) € X x Y is said to be solution [21], we obtain the following theorem showing the
a Pareto equilibrium solution if there does not exist anothekistence of nondominated equilibrium solutions.

(%,y) € X xY such that Theorem 3.1:In a multiobjective two-person nonzero-sum
T T T T game (A,B) in normal form, for any domination cones of
XTAY SXAY, XTBY <X By (11) players 1 and 2, there exists at least one nondominated

A multiobjective two-person nonzero-sum gaiffe B) can equilibrium solution.

be reduced to a single-objective two-person nonzero-sum game

by using a weighting coefficient vectéw,v) € R}, x R?, N N .
whereR!, , ={zeR! | z> 0}. Because there exists at least on®- Necessary and sufficient condition for a nondominated
equilibrium solution in a single-objective two-person nonzerd&quilibrium solution

sum game, it is known that there also exists at least one Pareto

equilibrium solution [21], [7]. In a multiobjective two-person nonzero-sum gafAeB) in
Let f(x;y) £ xTAy and f2(y;x) 2 x"By, and we define normal form, given domination cones! and A? of players
nondominated equilibrium solutions in the following. 1 and 2, respectively, the fact that a strategyof player

Definition 3.5: Let AL and A2 denote domination cones ofL IS & nondominated response for a stratggyof player

players 1 and 2, respectively. Then, in a multiobjective twc COrresponds to the fact that is a nondominated solu-
person nonzero-sum ganté, B), a pair of strategie&, y*) € tion to a multiobjective mathematical programming problem

1(y- 1 o
X x Y is said to be a nondominated equilibrium solution ifX: f~(Xy"),/A"), and similarly the fact that a strategy of

there does not exist anothéx,y) € X x Y such that player 2 is a nondominated response for a strategyof
player 1 corresponds to the fact thgt is a nondominated
f1(xy*) € FRGy") + AL, f2(y5x) € F2(y;x") + A2, solution to a multiobjective mathematical programming prob-

(12) lem (Y, f2(y;x"),A%). Then, the following theorem can be
obtained by using the Tamura and Miura condition (10) to
In particular, by lettingA\l = R* and A2 =R, any non- the two multiobjective mathematical programming problems
dominated equilibrium solution is also a Pareto equilibriurtX, f1(X;y*),At) and (Y, f2(y;x*),A?).
solution, whereR!. = {ze R' | z< 0}. Theorem 3.2:In a multiobjective two-person nonzero-sum
The above definition means that is a nondominated game(A,B) in normal form, letv! = {V** |[t; =1,... g1} and
response of player 1 for a strategy of player 2, andy* W2 ={w2 |t, =1,...,qp} denote generators of polar cones
is a nondominated response of player 2 for a stratégpf A* andA?* of the domination coneA® andA? of players 1



and 2, respectively, wherd™ andA?* are represented as  and only if (x*,y*,a*,B*,5",&*) is an optimal solution to the
following mathematical programming problem.

d1
Al*:{wleer = 6[1\/&,6[120,&:1,...,(]]_}, A Loman k

2, mex 5 5 5 5 sy

(15a) =
%@ QR I le B ( )
2 _ ) o2 cf _ _ + €1, Wy X. —o— 17a

A% = {w eR"™ wZ_tzlatzth,stz >0th=1,... ,qz}. tzZlkzleZZ 2"k

=

q I
) st vy Zétv}(la‘jlyjfago,izl,...,m (17b)
Then, (x*,y*) is a nondominated equilibrium solution if and thzlklr 11;
only if there exista*, B*, 8, ande* satisfying the following 2 2 & wt2x|b _B<0. j=1...n (170
condition, wheren* andB* are scalars and* ande* areq;- = 1k2 1,Z| 27k =7 T
and g2-dimensional vectors, respectively.

g n m
2 2 ZlXBtVElX %*0‘*:0, (16a) _ZXaflzo, x=0 (17d)
1= 1k1 1i I:n
O|2 % 1= 0, >0 17e

Z Z &, WX biFy; —B" =0, (16b) JZlyJ yz (17€)
t2 1k2 1i

0>0, €¢>0. (171)
1 ¥ < —

Z Z Z o Vtkl ajlyj—a*<0,i=1,...,m, (16c) By specifying the generators of the polar cones of

1ky=1]=
th Y o the domination cone a¥! = {v! = (1,0,...,0)T,... V1 =
2 2 m i) ) ) )

Z%Wffz xb?—p <0, j=1..,n,  (16d) (0,..,0)T} and W2 = {w! = (1,0, ...,0)T,..., w2 =

tz 1k2 1i (0,...,0,1)T}, for the strictly positive multiplier vectord > 0
. P s and € > 0, any nondominated equilibrium solution is also a
izixi —-1=0, x' 20, (16€)  pareto equilibrium solution, and then we obtain the following
n corollary.
Z yj—1=0, y"' 20, (16f) Corollary 3.1: For a multiobjective two-person nonzero-
sum gamgA,B) in normal form,(x*,y*) is a Pareto equilib-
5" >0, £ >0. (16g) rium solution if and only if(x*,y*,a*,*,8*,€*) is an optimal

solution to the following mathematical programming problem.
If the domination cones of players 1 and 2 are the neg-

ative quadrant, any nondominated equilibrium solution ismax ziz 5k1X|31 yj + z leskleb|2yj a—B
also a weak Pareto equilibrium solution and the generators =1 . )

of the polar cones of the domination coneVi$ = {v! = (18a)

(1,0,...,07, ...,v1=(0,...,0,1)T} andW? = {w! = (1,0, non

0T, w2 =(0,..., 0, 1) }. Furthermore, if the mul- S z Z B, aly;—a <0, i=1, (18b)

tiplier vectors are strictly positive, i.ed > 0, € > 0, any r =1j=1

nondominated equilibrium solution is also a Pareto equilibrium 2 o <

solution. From the above facts, we straightforwardly obtain 1218'@)“'0'1 B=0, j=1, (18c)

the necessary and sufficient condition for a Pareto equilibrium m

solution. in -1=0, x=0 (18d)
i=

E. Mathematical programming problem for obtaining non- d o >

dominated equilibrium solutions 2 yi—-1=0,y=0 (18e)

Using the necessary and sufficient condition for a nondom- >0, £€>0. (18f)
inated equilibrium solution, we formulate a mathematical pro-
gramming problem whose optimal solutions are nondominatEd Scalarized Two-Person Nonzero-Sum Games

equilibrium solutions. By using weighting coefficient vectodse er and@ e R:E,
Theorem 3.3:In a multiobjective two- person nonzero-sumwhere R, = {ze R' |z= 0}, a muItiobjective two-person
game(A B) in normal form, letvl={V1|t; =1,...,q;} and nonzero-sum gameA,B) = ((Al,...,A1)T (BL,...,B2)T)

={w? |t =1,...,02} denote generators of polar conegan be reduced to a single-objective two-person nonzero-
/\1* and A?* of the domination coneA® and A? of players sum game(AjA! + --- 4+ A A1, 6;B + ... +6,,B2). In a
1 and 2, respectively, wherd and A% are represented asmultiobjective two-person nonzero-sum gageB), let V! =
(15). Then,(x*,y*) is a nondominated equilibrium solution if {V2 | t; = 1,... o1} and W? = {w2 | t, = 1,...,qp} denote



generators of polar coneA™ and A% of the domination IV. NONDOMINATED EQUILIBRIUM SOLUTIONS OF A

conesA! and A? of players 1 and 2, respectively, whehé* MULTIOBJECTIVE TWO-PERSON NONZERG®SUM GAME IN

and A% are represented as (15). Then, we consider a single- EXTENSIVE FORM

objective two-person nonzero-sum game scalarized by weigit- A multiobjective two-person nonzero-sum game and se-

ing coefficient vectord € A* and@ € A%*. From the result by quences in the extensive form game

Mangasarian and Stone [14] and the parameter transformation
=Yl 3V, &y 20, t1=1,...,01 and B = 32, &, w2,

&, 20, to=1,...,0, it can be found thatfx*,y*) is an

equilibrium solution of the scalarized gam@;A! +--- +

Ar, A'1,0:B + - +6,,B"2) if and only if (x*,y*,a*,B) is an

optimal solution to the following mathematical programmin

problem.

i game in extensive form is characterized by a game tree,
players, information sets, chance moves, and payoff functions.
A game tree is represented by a graph with nodes including the
root which is an initial node and directed edges. Particularly,
terminal node is called a leaf, and at each of leaves a vector
f payoffs is assigned to each player in multiobjective games.
An example of a multiobjective two-person nonzero-sum game
in extensive form is given in Figure 1, wheng i =1,...,31
denote nodesn, l;, i =1,...,6 denote choices of player &;

d rf1 m n
1y oK1y, . . .
max z z ZZ 5t1Vtk1X|aij Yj di, i = 1,2 denote choices of player 2; amg, i = 1,2 denote
tl:lqklzlr': =1 probabilities of the chance move.
2 2 mMm n
k
e, W2 X b2y —a— 19a
+t2;k22:1i;gl Y P = Player ] s mg {(L1).(1L-D)
i r1 n th K < ) [ n, o {(0,0), (1,-1)}
S. t. Z z 25& ajyj—a=0,i=1..,m (19b) | .
t1=1k;=1j=1 Plaver 1 ™ 18 > =2 L
@ r2 m } . e~ o {11,000
> > Zstz b —B=0, j=1...,n (19¢) My 12,1, (0,0)
to=1ko=1i=
m ny  {(-1,-2), (0,0)}
_ZXi—lZO, xz0 aed ny 1(1L2), (2, -4))
i= —~
n / ny  12.3).2. 4}
yj—1=0, y>0. (19e) \iy My ((0,0),(2,2))
=1 s G121, D}
It should be noted thab and & are not variables but given me 123,622}
parameters. ny (0,0, (1,-3)}
By comparison with the problem (17), while all the op- g 10,0). (1, 2);
timal solutions of the problem (17) correspond to the set , 22 L 1)
! > Pr : e {(-2,-2), (1, 1)}
of nondominated equilibrium solutions, those of the problem
. L g 4(1,2),(0,0)}
(19) correspond to only a subset of nondominated equilibrium :
{(1, 1), 0,0)}

solutions with respect to the given parameteende if o and 15 lg )

€ are in the given polar cones of the domination cones. _
Moreover, by the parameter transformations, assuminé:'g‘ L
Zrkizlvlt}lalkl >0,ty=1,...,00,i=1,....m, j=1,...,n and
ZLi:thébif >0,tb=1...,00,i=1....mj=1....nina There are two rgpresentatlpns of stra.tegles in an extgnswe
way similar to that of Corley [7], we can obtain the followingform game: behavior strategies and mixed strategies in the

a parametric linear complementarity problem. corresponding normal form game. An expected payoff as a
function of behavior strategies becomes a high-degree non-

A game tree of a multiobjective two-person nonzero-sum game

i & 2 linear function when the number of levels of the game tree
0 S Y epwzBeT 1 : - : :

L Ly t2 W, y g2 is large. When an extensive form game is transformed into a

@ am [x] - [El} =|:|, normal form game, the number of pure strategies increases
z z 6t1\fk11At1 0 1 exponentially with a size of game. On the assumption of
[h=1k; =1 perfect recall of players, von Stengel [23] and Koller et al. [11]

(20a) propose a game representation of the sequence form which

[y S g2 S y Tre2 does not cause the mentioned above difficulties. Namely, the
x] 20, [51] 20, M [El] =0. (20b) expected payoff as a function of realization plans is linear

even if the game tree becomes multistage, and the number of
Of course, a set of solutions to the problem (20) also correequences increases linearly with a size of game. Because the
sponds to only a subset of nondominated equilibrium solutiorgponential increase of the number of pure strategies in the
with respect to the given parametérande. normal form game results from extreme increase of the number



of pure strategies such that players’ choices are not consistentalization plan. A realization plape R'%! of player 1 is
with behaviors of perfect recall, it can be interpreted that subject to the following constraints.
set of pure strategies in sequence form corresponds to that of

normal form excluding not perfect recall pure strategies. ®0) =1 (22a)
A series of nodes and edges from the root to some node —@(oy) + Z @0y,C1) =0, up e Uy (22b)

is called a path, and a sequence is defined by a set of labels C1ebyy

of edges on the path to the node. For example, for made @s1) 20, 51 €85. (22¢)

of the game tree depicted in Figure 1, a sequence of player 1

is mp, that of player 2 isc;, and that of chance player . Player 2's realization plam € R%! is also subject to the
For nodenys which is a leaf, a sequence of player 1nisls, following constraints.

and those of player 2 and chance player are the same as the

sequences for node;,. p(©0) =1 (23a)
Let L be a set of leaves. Payoff functions in extensive form —Y(oy,) + W(0y,C2) =0, u €2 (23b)

are defined on the sét and a vector of payoffs is assigned C2€Cu,

to each of the players at any lebfe L; let H; : L — R Y() 20, €. (23c)

be the payoff function of player 1, and let, : L — R"2 be ] ) ]

that of player 2, where; andr are the numbers of payoffs BY using the(1+|Uy]) x |Sy| constraint matrix* and the
(objectives) of players 1 and 2, respectively. In contrast, paydf + Uz2l) x |S| constraint matrixE?, the above constraints
functions in sequence form are defined on a set of sequendég) and (23) can be simply expressed by

Let S, S, and S, be the sets of sequences of chance player, Elp— el (24)
player 1, and player 2, respectively, and |8&f|, |S;|, and|S| )
be the numbers of sequences of chance player, player 1, and Ey=¢, (25)

player 2, respectively. LeS=$ xS x  be the space of respectively, where! ande? are the(1+|Uy|)- and(1+|Uz|)-

sequences of aI_I the players, . . ' dimensional vectors such that the first element is 1 and the
A payoff function of player 1 in sequence form is defined as . T
) ; X . iy other elements are all 0, i.g1,0,...,0)". Then, the setsb
Gy:S—R™, andif a sequence= (s, 5, %) € Sis specified at and W of realization plans of players 1 and 2 are defined by
a leafl € L, the payoff function i$31(s) = Hi(I) and otherwise

?t is Gi(9) = 0. A_pa}yoff function of player 2G, : S— R"2 o= {LIJ RS Ely=¢!, p> O} (26)
is also defined similarly. For example, for nodg, of the
game tree depicted in Figure 1, a sequence vectat?is= W= {l]J c R | E2p=¢€, y> o}, (27)

(p2,M,c1), and payoffs of players 1 and 2 a®(s'?) =
(0,0), Gy(s*?) = (0,0), respectively. For nodeys which is respectively.
a leaf, a sequence vector $8° = (pp,mpls,c1), and payoffs  Letp=(py,... , Pis,|) be arealization plan of chance player.
of players 1 and 2 ar€;(s?°) = (—1,-2), G»(s*®) = (1,1), When players 1 and 2 choose sequerggesds,, respectively,
respectively. the expected payoffs of them are
A set of all nodes in a game tree is divided into information 1 " "
sets. LetU; andU, be the sets of information sets of players %1% = (Csis,»-++ 1 Csjs,) = 25061(30751’52) p(so) € R™* (28)
1 and 2, respectively, and léi);| and |Uz| be the numbers ) r o< r
of the information sets of players 1 and 2, respectively. Eacllsis = (d5;sy»- -+ 1 0sfs)) = %62(50751,32) P(so) € R2.
information setu exactly belongs to one playér All nodes € 29
in an information seu have the same choices, and the set (29)
of choices atu is denoted byC,. Let |Cy| be the number of Now, letC andD denotelS; | x |S;| matrices such that elements
choices at. of the sith row andsyth column are the above defined vectors
Because it is assumed that perfect recall holds for all thgs, anddss,, respectively. Then, for given realization plans
players in a sequence form game, all nodes in an informatigre ® and ) € W of players 1 and 2, the vectors of expected
setu have the same sequence. Let the sequence be dengiggbffs of them are represented by
by oy, and it leads the information set A choicec € C,

in u extends the sequenaw,, and the extended sequence is 1 . » 2l 2 1 2l 1= ]
expressed byc, i.e., PCU=| Y > BCygls,oy D D @aCisUs
s1=1s=1 s1=1s=1
(30)
oyc=oyU{c}, ceC,. 21

wo=auuich ) AT S
With this notation, a set of sequences of plajecan be @ DW=1{ > > &d5oWs,..., 3 3 @disls |,
represented by = {0} U {o,c|ueUj,ceCyl. s1=1e=1 si=ls=1 (31)

In sequence form, a strategy is represented by giving a
probability distribution to a set of sequences, and it is calledspectively.



B. Nondominated equilibrium solutions of a multiobjective A relation between the domination cones and the sets of
two-person nonzero-sum game in extensive form nondominated equilibrium solutions is shown in the following

First, in a multiobjective two-person nonzero-sum game Rroposition.
extensive form, we give a solution concept of Pareto equi- Proposition 4.1:Let A and AY denote domination cones
librium solutions, and then extend it to that of nondominateaf player 1, andA? and A?" denote domination cones of
equilibrium solutions by using domination cones. player 2 in a multiobjective two-person nonzero-sum game in
Definition 4.1: In a multiobjective two-person nonzero-sunextensive form. Then, ikl ¢ AL andA2 c A?', N(AY,A?) ¢
game in extensive form, a pair of realization plags, ") € N(AL,A?).
®x W is said to be a Pareto equilibrium solution if there does From the fact that there exists at least one Pareto equilibrium

not exist anothe(q, ) € ® x ¥ such that solution [12], we obtain the following theorem showing the
g Ccyr < g cy” (32a) existence of nondominated equilibrium solutions.
(p*TDqJ* < (p*TDqJ‘ (32b) Theorem 4.1:In a multiobjective two-person nonzero-sum

S _ game in extensive form, for any domination cones of players
A multiobjective two-person nonzero-sum game in exten- and 2, there exists at least one nondominated equilibrium

sive form can be reduced to a single-objective two-perseg|ytion.

nonzero-sum game by using a weighting coefficient vector

(wv) eRY, xR, whereR!, = {zeR' |z>0},i=12.

Furthermore, because th_e smgle—oij_ectlve game in eXtens’é’.eNecessary and sufficient condition for a nondominated

form can be transformed into a game in normal form and the

. . o . é‘ﬁuilibrium solution
exists at least one equilibrium solution in the game in norma

form, in general there exists at least one Pareto equilibrium, multiobjective two-person nonzero-sum game in ex-
solution in a multiobjective two-person nonzero-sum game {Qnsive form, given domination cones® and A2 of players
exlt:ensn{e fcIJ_rr_n [1|2]' Low) 2 g B R 1 and 2, respectively, the fact that a realization piginof

or simp |9|ty, etg (@ l.p) = ¢ Cy andg (W9 =@ qJ player 1 is a nondominated response for a realization glan
and we define nondominated equilibrium solutions in thgf player 2 corresponds to the fact thettis a nondominated
following. solution to a multiobjective mathematical programming prob-

Lo . 1 2 At
Definition 4.2:Let A~ and A denote d.om|nat|on. CONes,om (qb,gl((p; Lp*),/\l), and similarly the fact that a realization
of players 1 and 2, respectively. Then, in a mult|object|v8I

¢ . tensive f . f’:\n w* of player 2 is a nondominated response for a real-
WO-pErson nonzero-sum game in extensive form, a pair gt plang* of player 1 corresponds to the fact that
realization plans(¢*,*) € ® x ¥ is said to be a nondom-

inated equilibrium solution if there does not exist anoth is a nondominated solution to a multiobjective mathematical
rogramming problen{¥, g?(y; ¢"),A?). Assume thatb, W,
() € ® x W such that Brog Ing p MW, g (Y, ¢°),A\?) u

g (@, 0*) = @'Cy*, and g?(y;¢*) = @Dy are represented
gt (o u") e g p) + AL (33a) by (26), (27), (30), and (31), respectively, and andA? are
gz(llJ*;(p*) c gz(tlJ;cp*) A2, (33b) polyhed_ral domina_tion cones. Then, the fpllowing t_h_eorem can

] ] . " ) " be obtained by using the Tamura and Miura condition (10) to
In particular, by letting/A” = R and A" = R* where the two multiobjective mathematical programming problems

R ={ze R |z 0}, i=1,2, any nondominated equilibrium (@, g4 (@ p*),AL) and (W, 2(W; ¢), A2)

solution with respect to the domination corlgé andR'? is

also a Pareto equilibrium solution.

The above definition means thagt is a nondominated
response of player 1 for a strateqy of player 2, andy*
is a nondominated response of player 2 for a stratggpf

Theorem 4.2:In a multiobjective two-person nonzero-sum
game in extensive form, le¢! = {V1 |t; =1,...,q;} and
W2 = {w2 |t, = 1,...,q2} denote generators of polar cones
AY and A% of the domination coned! andA? of players 1

H * 2%
player 1. This can be explicitly expressed as follows. The s nd 2, respectively, wher'* and/\*" are represented as (15).

. : en, (¢, y*) is a nondominated equilibrium solution if and
of nondominated responses of players 1 and 2 are deflnedo%?y if there exista*, B*, 5°, ande* satisfying the following

N(w,A) = {@c ® | there does not exisf € ® such that condition, which are|U1]-, |Uz|-, q1-, and gx-dimensional
g (@ W) € gi(¢; W) + AL}, (34a) Vectors, respectively.
N2(q,A?) = {y € W | there does not exisp’ € ¥ such that
( )=t | a sl s ISt U

2(y; 2(W;9) + A2}, (34b VI gk fel o =
TP ETW9+AT (4) 5 5 T T FMad,uL - Y o6l =0
Then, by using the concept of nondominated responses, tfietki=1s=1%=1 S1=1u=0

setN(A,A?) of nondominated equilibrium solutions can be

represented by R 2 S S } 1S2| Vg
& \/\/[2 i gke w* _ B* l.IJ* -0
NN = (0 0) |9 €N A, o e N2 ), iy et 2, 2 e
(35) (36b)

(36a)
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@ oS Uy a oS Uy

Z Z Z 6;6 5182 - Z aﬁlegilsl S0, s=1,... 7|Sl| st z z Z 5{1\/}(11 ng zoauleﬁlsl =0,

1k1 1s=1 u;=0 t1:1k1:1$2:1 U=
(36¢) ss=1,...,|S (37b)
QR S y [Uz] QR S [Uz]
z > 3 WP 0%, — S Bl S0 =1,/ IPRPILE WE @52, — 3 Bu,elys, <0,
=1lky=15=1 u=0 to=1lkp=1s1=1 up=0
(36d) s=1,...,|% (37c)
& . s
qzleﬁlsl(pslfeﬁl =0, u1=0,...,|Uq (36€) z eﬁlsl(Psl eﬁ =0, uy=0,...,|Ug (37d)
1S . ‘52|
SQ;eﬁzsgtusg —€, =0, u=0,...,|Uy| (36) zleﬁszqJSQ —€,=0, U =0,...,|U| (37€)
SQ:
¢=z0 (369) ©>0 (379)
W20 (36) ¥=0 (379)
520 (361) 5>0 (37h)
£ >0 (36)) £>0. (37i)

If the domination cones of players 1 and 2 are the By specifying the generators of the polar cones of
negative quadrant, any nondominated equilibrium solutiane domination cone a®/! = {V! = (1,0,...,0)T,\? =
with respect to the domination cones is also a weak Parg®1,0,...,0)T,... vt = (0,...,0,1)T} and W? = {w! =
equilibrium solution and the generators of the poIar congs, 0, )T,WZ =(0,1,0,...,0)T,... . w2 = (0,...,0,1)},
of the domination cone ar¥'! = {V1 (1,0,...,00T V2 = for the strlctly positive multiplier vector$ > 0 ande > 0,
(0,1,0,...,0)T,... vt = (0,...,0,1)T} and W2 = {W = any nondominated equilibrium solution with respect to the
(1,0, ... ,O)T,W2 =(0,1,0,... ,O)T,--- W2 =(0,...,0,1)T}. domination cones is also a Pareto equilibrium solution, and
Furthermore, if the multiplier vectors are strictly positivethen we obtain the following corollary.

i.e.,, 8> 0, £ >0, any nondominated equilibrium solution is Corollary 4.1: For a multiobjective two-person nonzero-
also a Pareto equilibrium solution. From the above facts, wem game in extensive fornig*, *) is a Pareto equilibrium
straightforwardly obtain the necessary and sufficient conditiglution if and only if (¢, p*,a*,B*,8%,€*) is an optimal

for a Pareto equilibrium solution. solution to the following mathematical programming problem.
D. Nondominated equilibrium solutions and corresponding
mathematical programming problem ool 2 13l 1%
. . y max 3 3 Y FuiCogls+ Z > Y Selli,bs
Using the necessary and sufficient condition for a nondom-  k=1s=1s=1 —1s—=15=1
inated equilibrium solution, we formulate a mathematical pro- Uil |S1] Uz | \Szl
gramming problem whose optimal solutions are nondominated — — z z Oy, 151(951 z z Buzeﬁzszlpsz (38a)
equilibrium solutions. u=0s=1
Theorem 4.3:In a multiobjective two-person nonzero-sum rn 1Sl " \Ul\
game in extensive form, le¢1 = (Vi |t = L,...,qu} and St > > JaCiigWs— Y Oubhs SO0, s1=1...,|S]
={w2|t;=1,...,02} denote generators of polar cones ki=1%=1 u=0 (38b)
/\1* and A" of the domination conea! and A2 of players s "
1 and 2, respectively, wherd™* and A®* are represented as 2 K 2
(15). Then,(¢*,*) is a nondominated equilibrium solution if lezlskz%dsf@ UZ BUzeﬁzSz S0, 2=1...,/3
and only if (¢*, y*, a*, B*,5*,&*) is an optimal solution to the T 2 (380)
following mathematical programming problem. S|
w (S (S > €@~ =0, u1=0,...,[U] (38d)
max 55 Y Y 81, Vi s, Col, Ws, =1
ti=1lk =1s1=1sp=1 S| eﬁ %
R r2 1S % D EhsWs,—6, =0, u2=0,...,|Uz| (38e)
P IDID NP ILAVTC LR %=1
to=1ky=15=15=1 (PZO (38ﬂ
1| (S V2| ||
y=0 (380)
- Oy €, By — B Ws,  (372)
ulz:Oslzl e UZZ:OSQzl 2% (38h)
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[29]

5>0 (38) g,
£> 0. (38))

[21]

V. CONCLUSIONS [22]

In this paper, we outlined the development of multiobjective
noncooperative game theory. In particular, we focused on the
nondominated equilibrium solutions of multiobjective twot23]
person nonzero-sum games in normal and extensive forms,
showed the mathematical programming problems for deriving
the nondominated equilibrium solutions.
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