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Abstract—In this paper, we review the development of studies
on multiobjective noncooperative games, and particularly we
focus on nondominated equilibrium solutions in multiobjective
two-person nonzero-sum games in normal and extensive forms.
After outlining studies related to multiobjective noncooperative
games, we treat multiobjective two-person nonzero-sum games in
normal form, and a mathematical programming problem yielding
nondominated equilibrium solutions is shown. As for extensive
form games, we first provide a game representation of the
sequence form, and then formulate a mathematical programming
problem for obtaining nondominated equilibrium solutions.

I. I NTRODUCTION

An equilibrium solution based on the principle of rational
responses is an important solution concept in a conventional
noncooperative games. As an extension of the equilibrium so-
lution, Pareto equilibrium solutions in multiobjective noncoop-
erative games are defined on the basis of the concept of Pareto
optimality from multiobjective optimization. The concept of
Pareto optimal solutions is extended to nondominated solutions
by using dominance cones [29], [22]. This review paper
outlines the development of multiobjective noncooperative
games and focuses on nondominated equilibrium solutions to
multiobjective two-person nonzero-sum games in normal and
extensive forms. Employing the concept of nondominated so-
lutions, Nishizaki and Notsu define nondominated equilibrium
solutions in multiobjective two-person nonzero-sum games in
normal and extensive forms [15], [16], and give the necessary
and sufficient conditions for a pair of mixed strategies to be a
nondominated equilibrium solution. Moreover, they formulate
mathematical programming problems yielding nondominated
equilibrium solutions by using the necessary and sufficient
conditions.

II. D EVELOPMENT OF STUDIES ON MULTIOBJECTIVE

NONCOOPERATIVE GAMES

Blackwell [1] investigates the properties of the set in which
the payoffs of players converge through successive long-run
plays in a multiobjective two-person zero-sum game. For
a multiobjective two-person game, either zero-sum games
or nonzero-sum, Shapley [21] defines a Pareto equilibrium
solution by introducing the concept of Pareto optimality
from multiobjective optimization. He proves the existence of

the Pareto equilibrium solution from the scalarization via a
weighting coefficient vector.

In multiobjective two-person zero-sum games, assuming
that one player is the nature, Contini et al. [5] consider a mul-
tiobjective expected payoff maximization problem for a given
probability distribution of strategies of the nature. Moreover,
specifying a goal for each of the objectives, they formulate a
joint probability maximization problem with respect to goal
achievement. Zeleny [30] scalarizes a multiobjective two-
person zero-sum game by using a weighting coefficient vector
and obtains a minimax solution to the corresponding scalarized
single-objective two-person zero-sum game. Especially, he
shows that the formulated problem can be reduced to a linear
programming problem when one player of the pair is the
nature. Moreover, he points out that, because the set of Pareto
equilibrium solutions is generally large, it is difficult to select
a certain solution among the set and proposes a compromise
strategy such that the distance from the ideal point, which
is a vector of the maxima of the objectives, is minimized.
Introducing a goal for each of the objectives in a multiobjective
two-person zero-sum game, Cook [6] formulates the problem
minimizing a weighted sum of the differences between the
expected payoff vector and the corresponding goals; he shows
that the formulated problem can be reduced to a linear
programming problem.

Corley [7] provides the necessary and sufficient condition
that a pair of mixed strategies is a Pareto equilibrium solution
in a multiobjective two-person nonzero-sum game by using
the Kuhn-Tucker condition [13] for optimality of the multi-
objective mathematical programming problems. Moreover, he
shows that a Pareto equilibrium solution is a solution of a
parametric linear complementarity problem with parameters
being the elements of the weighting coefficient vector.

Ghose and Prasad [9] propose a solution concept of Pareto
optimal security strategies which is an extension of a minimax
solution of a single-objective two-person zero-sum game. They
give a necessary condition and a sufficient condition for a
Pareto optimal security strategy from the relationship between
a multiobjective game and the corresponding scalarized single-
objective game. In a conventional single-objective two-person
zero-sum game, a minimax solution is a saddle point, i.e.,
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an equilibrium solution; but in a multiobjective two-person
zero-sum game, there does not always exist a solution which
is not only a Pareto optimal security strategy but also a
Pareto equilibrium solution. Ghose [10] proves that all the
Pareto optimal security strategies can be obtained through a
finite number of scalarizations of a multiobjective games by
showing that an extension set of vectors of security levels is
polyhedral. Fernandez and Puerto [8] show that the necessary
and sufficient condition that a pair of mixed strategies is a
Pareto optimal security strategy in multiobjective two-person
zero-sum games is that it is a Pareto optimal solution to a
certain multiobjective linear programming problem; from this
fact, they demonstrate that all the Pareto optimal security
strategies can be obtained by finding all the Pareto optimal
extreme solutions. Voorneveld [24] newly define a Pareto
optimal security strategy from a different viewpoint. Without
assuming that the opponent chooses a mixed strategy for each
of the objectives separately, he considers a multiobjective
two-person zero-sum game where the opponent is allowed to
choose only one mixed strategy. By doing so, he constructs
a standard matrix game arising from the multiobjective two-
person zero-sum games.

Wierzbicki [28] investigates the relationship between the
Pareto equilibrium solutions of a multiobjectiven-person non-
cooperative game and the equilibrium solutions of the corre-
sponding single-objective game scalerized by the generalized
scalarizing functions including the scalarization by a weighting
coefficient vector. For multiobjectiven-person noncooperative
games with cross-constrained continuum strategy sets, Charnes
et al. [4] define a nondominated equilibrium solution and its
extension by using the concept of nondominated solutions
based on dominance cones in multiobjective mathematical
programming problems; they give necessary conditions and
sufficient conditions for ann-tuple of strategies to be a
nondominated equilibrium solution. However, they do not deal
with a multiobjectiven-person noncooperative game with a
discrete set of pure strategies and its probability mixture. Zhao
[31] define a hybrid solution and a quasi-hybrid solution on
the basis of a Pareto equilibrium solution of a multiobjective
n-person noncooperative game and the core of ann-person co-
operative game; he shows the existence of the solutions. Wang
[27] investigate the existence of Pareto equilibrium solutions
in a multiobjectiven-person noncooperative game; he presents
sufficient conditions to guarantee the existence of a Pareto
equilibrium solution. Voorneveld et al. [26] study axiomatic
properties of the Pareto equilibrium solutions by extending
the axiomatization of the equilibrium solution of a single-
objective n-person noncooperative game [19]. Voorneveld et
al. [25] define ideal equilibrium solutions which maximize all
the objectives for all players and examine some properties of
the solutions.

Sakawa and Nishizaki [20] incorporate a fuzzy goal with
respect to each of the objectives in a multiobjective two-person
zero-sum game with fuzzy payoffs and examine a minimax
strategy for degrees of attainment of the fuzzy goals. Nishizaki
and Sakawa [17], [18] extend the results by Sakawa and

Nishizaki to a multiobjective two-person nonzero-sum game
without and with fuzzy payoffs; they formulate a mathematical
programming problem yielding the equilibrium solutions.

Borm et al. [3] study the structure of a set of Pareto
equilibrium solutions of a multiobjective two-person nonzero-
sum game; they show that a set of Pareto equilibrium solutions
is not always a union of polytopes if at least one player has
two or more objectives and both players have three or more
pure strategies. Moreover, defining a set of mixed strategies
of the opponent in which a subset of pure strategies are
optimal responses, they investigate the characteristics of Pareto
equilibrium solutions.

Using the concept of nondominated solutions which is an
extension of that of Pareto optimal solutions to multiobjective
mathematical programming problems [29], [22], Nishizaki and
Notsu [15] consider nondominated equilibrium solutions in
multiobjective two-person nonzero-sum game in normal form.

Extension of games in extensive form under a multiobjective
environment is made by Krieger [12], and existence of Pareto
equilibrium solutions is considered. For multiobjective two-
person nonzero-sum game in extensive form, Nishizaki and
Notsu [15] define a nondominated equilibrium solution based
on dominance cones by employing the sequence form [23],
[11] which is a representation with compact mathematical
formulation for games in extensive form.

III. N ONDOMINATED EQUILIBRIUM SOLUTIONS OF

MULTIOBJECTIVE TWO-PERSON NONZERO-SUM GAMES IN

NORMAL FORM

A. Multiobjective two-person nonzero-sum game

A multiobjective two-person nonzero-sum game can be
represented by the following multiplem�n matrices:

Ak1 = 264 ak1
11 � � � ak1

1n
...

. . .
...

ak1
m1 � � � ak1

mn

375 ; k1 = 1; : : : ; r1; (1a)

Bk2 = 264 bk2
11 � � � bk2

1n
...

. . .
...

bk2
m1 � � � bk2

mn

375 ; k2 = 1; : : : ; r2: (1b)

In the game(A;B), A , (A1; : : : ;Ar1)T , B , (B1; : : : ;Br2)T ,
player 1 hasm pure strategies andr1 objectives, and player 2
hasn pure strategies andr2 objectives, where a superscription
T means the transposition of a vector or a matrix. Then, when
player 1 chooses a pure strategyi 2 f1; : : : ;mg and player
2 choosesj 2 f1; : : : ;ng, player 1 obtains a payoff vector(a1

i j ; : : : ;ar1
i j ) and player 2 obtains a payoff vector(b1

i j ; : : : ;br2
i j ).

We define the following setsX andY of mixed strategies
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of players 1 and 2, respectively:

X , nx= (x1; : : : ;xm)T
�� m

∑
i=1

xi = 1; xi = 0; i = 1; : : : ;mo;
(2a)

Y , ny= (y1; : : : ;yn)T
�� n

∑
j=1

y j = 1; y j = 0; j = 1; : : : ;no:
(2b)

When player 1 chooses a mixed strategyx2 X and player 2
choosesy 2 Y, expected payoff vectors of both players are
expressed as follows:

xTAy, (xTA1y; : : : ;xTAr1y)T ; (3a)

xTBy, (xTB1y; : : : ;xTBr2y)T : (3b)

B. Nondominated solutions to a multiobjective mathematical
programming problem

Before examining nondominated equilibrium solutions in
multiobjective two-person nonzero-sum games, we first review
solutions concepts and related matters in multiobjective math-
ematical programming. For convenience, let us introduce the
following notation: for any two vectorsz;z0 2 RN , z= z0, zi =
zi
0, i = 1; : : : ;N; z5 z0, zi 5 zi

0, i = 1; : : : ;N; z< z0, zi < zi
0,

i = 1; : : : ;N; z� z0 , z5 z0 andz 6= z0.
Let z be anN-dimension real decision variable. Consider a

multiobjective mathematical programming problem minimiz-
ing K objective functionsf (z) = ( f1(z), : : : ; fK(z))T subject
to M1 inequality constraintsg(z) = (g1(z); : : : ;gM1(z))T 5 0
and M2 equality constraintsh(z) = (h1(z); : : : ;hM2(z))T = 0,
where 0 is an appropriate dimensional zero vector(0; : : : ;0)T

corresponding to a dimension of the left hand side. Then,
a multiobjective mathematical programming problem can be
written as:

min f (z) (4a)

s. t. z2 Z, fz2 RN j g(z)5 0; h(z) = 0g: (4b)

Let O= f f (z)2 RK j z2 Zg be a feasible area of the multiple
objective values in an objective space.

There does not generally exist a solution minimizing all the
objectives simultaneously. Then, Pareto optimal solutions such
that any improvement of one objective can be achieved only
at the expense of another are introduced, and they are defined
as follows.

Definition 3.1: z� 2Z is said to be a Pareto optimal solution
if there does not exist anotherz2 Z such thatf (z)� f (z�).

As a slightly weaker solution concept than Pareto optimality,
weak Pareto optimal solutions are defined by replacing� with< in the above definition.

Next, we present a definition of a nondominated solution
proposed by Yu [29] which is a solution concept generalized
from a Pareto optimal solution. To begin with, we give
definitions of a cone and related concepts. A setΛ � R K is
said to be a cone if, for any vectoru 2 Λ and nonnegative
scalarη = 0, ηu 2 Λ holds. Λ is a convex cone if, for any

two vectoru1;u2 2 Λ and two nonnegative scalarsη1;η2= 0,
η1u1+η2u2 2 Λ holds. A polar cone ofΛ is given as

Λ� = fγ 2 RK j γTu5 0; 8u2 Λg: (5)

We define a domination cone prescribing a preference
relation. For o;o0 2 O � RK , when o is preferred too0, it
is denoted byo� o0. Then, a domination cone is defined as
follows.

Definition 3.2: Giveno2O� RK , a nonzero vectord2 RK

is a domination factor foro if o� o+ρd for all ρ > 0. Then,
a domination coneD(o) of o is a set of all domination factors
for o.

Throughout this paper, we use only a constant domination
coneΛ,D(o) for all o2O, and simply callΛ a domination
cone. Furthermore, we restrict a domination cone to a poly-
hedral cone with nonempty interior which can be represented
in the following by using its generator̂V = fv̂t j t = 1; : : : ; pg:

Λ =(π 2 RK

���� π = p

∑
t=1

τt v̂
t ;τt = 0; t = 1; : : : ; p) : (6)

Then, a multiobjective mathematical programming problem
can be defined by the three tuple(Z; f (z);Λ), whereZ = fz2RN j g(z)5 0;h(z) = 0g is a feasible region,f (z) is a vector
of the multiple objectives, andΛ� RK is a domination cone.
A nondominated solution to a multiobjective mathematical
programming problem(Z; f (z);Λ) is defined as follows.

Definition 3.3: Given a multiobjective mathematical pro-
gramming problem(Z; f (z); Λ), z� 2 Z is said to be a
nondominated solution if there does not exist anotherz2 Z
such that

f (z�) 2 f (z)+Λ and f (z) 6= f (z�): (7)

If a domination coneΛ is the negative quadrant, any
nondominated solution is also a Pareto optimal solution.

A condition that a point is a nondominated solution is given
by Yu [29] and Tamura and Miura [22]. Because we restrict a
domination cone to a polyhedral cone and the Tamura and
Miura condition is a more natural extension of the Kuhn
and Tucker condition [13] of optimality for a multiobjective
mathematical programming problem, we employ the Tamura
and Miura condition to develop a condition that a pair of mixed
strategies is a nondominated equilibrium solution.

A polar coneΛ� for a domination cone can be represented
in the following by using its generatorV = fvt j t = 1; : : : ;qg:

Λ� =(ω 2 RK

���� ω = q

∑
t=1

ζtv
t ; ζt = 0; t = 1; : : : ;q) : (8)

Let

F(z) = [∇ f (z)Tv1; : : : ;∇ f (z)Tvq℄; (9a)

∇ f (z)Tvt = 2664 ∂ f1(z)
∂z1

� � � ∂ fK (z)
∂z1

...
. . .

...
∂ f1(z)

∂zN
� � � ∂ fK (z)

∂zN

3775264vt
1
...

vt
K

375 ; t 2 f1; : : : ;qg:
(9b)
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For a multiobjective mathematical programming problem(Z; f (z);Λ), assume thatg(z) and h(z) satisfy the Slater
constraint qualification,vt T f (z), t = 1; : : : ;q are concave, and
Z is a convex set. Then, the following necessary and sufficient
condition is given by Tamura and Miura [22].z 2 Z is a
nondominated solution if and only if there exist vectorsµ� 0,
λ= 0 andψ such that

F(z)µ�∇g(z)Tλ�∇h(z)Tψ = 0 (10a)

g(z)Tλ = 0 (10b)

g(z)5 0 (10c)

h(z) = 0: (10d)

If the generator of the polar cone of the domination cone is
specified byV0 = fv1 =(1;0; : : : ;0)T ; : : : ;vK =(0; : : : ;0;1)Tg,
the Tamura and Miura condition corresponds to the Kuhn and
Tucker condition [13] for Pareto optimality to a multiobjective
mathematical programming problem.

C. Nondominated equilibrium solutions of a multiobjective
game

First, we show a definition of Pareto equilibrium solutions
given by Shapley [21], which can be considered as a special
case of nondominated equilibrium solutions.

Definition 3.4: In a multiobjective two-person nonzero-sum
game(A;B), a pair of strategies(x�;y�) 2 X�Y is said to be
a Pareto equilibrium solution if there does not exist another(x;y) 2 X�Y such that

x�TAy� � xTAy�; x�TBy� � x�TBy: (11)

A multiobjective two-person nonzero-sum game(A;B) can
be reduced to a single-objective two-person nonzero-sum game
by using a weighting coefficient vector(w;v) 2 R r1++ �R r2++ ,
whereR t++ = fz2 R t j z> 0g. Because there exists at least one
equilibrium solution in a single-objective two-person nonzero-
sum game, it is known that there also exists at least one Pareto
equilibrium solution [21], [7].

Let f 1(x;y) , xTAy and f 2(y;x) , xTBy, and we define
nondominated equilibrium solutions in the following.

Definition 3.5: Let Λ1 andΛ2 denote domination cones of
players 1 and 2, respectively. Then, in a multiobjective two-
person nonzero-sum game(A;B), a pair of strategies(x�;y�)2
X�Y is said to be a nondominated equilibrium solution if
there does not exist another(x;y) 2 X�Y such that

f 1(x�;y�) 2 f 1(x;y�)+Λ1; f 2(y�;x�) 2 f 2(y;x�)+Λ2:
(12)

In particular, by lettingΛ1 = R r1� and Λ2 = R r1� , any non-
dominated equilibrium solution is also a Pareto equilibrium
solution, whereR t� = fz2 R t j z5 0g.

The above definition means thatx� is a nondominated
response of player 1 for a strategyy� of player 2, andy�
is a nondominated response of player 2 for a strategyx� of

player 1. This can be explicitly expressed as follows. Sets of
nondominated responses of players 1 and 2 are defined as

N1(y;Λ1) = fx2 X j there does not existx0 2 X such that

f 1(x;y) 2 f 1(x0;y)+Λ1g; (13a)

N2(x;Λ2) = fy2Y j there does not existy0 2Y such that

f 2(y;x) 2 f 2(y0;x)+Λ2g: (13b)

Then, by using the concept of nondominated responses, a
set N(Λ1;Λ2) of nondominated equilibrium solutions can be
represented by

N(Λ1;Λ2) = f(x�;y�) j x� 2 N1(y�;Λ1); y� 2 N2(x�;Λ2)g:
(14)

A relation between the domination cones and the sets of
nondominated equilibrium solutions is shown in the following
proposition.

Proposition 3.1:Let Λ1 and Λ10 denote domination cones
of player 1, andΛ2 andΛ20 denote domination cones of player
2 in a multiobjective two-person nonzero-sum game(A;B).
Then, if Λ1 � Λ10 andΛ2 � Λ20, N(Λ10;Λ20)� N(Λ1;Λ2).

From the fact that there exists at least one Pareto equilibrium
solution [21], we obtain the following theorem showing the
existence of nondominated equilibrium solutions.

Theorem 3.1:In a multiobjective two-person nonzero-sum
game (A;B) in normal form, for any domination cones of
players 1 and 2, there exists at least one nondominated
equilibrium solution.

D. Necessary and sufficient condition for a nondominated
equilibrium solution

In a multiobjective two-person nonzero-sum game(A;B) in
normal form, given domination conesΛ1 and Λ2 of players
1 and 2, respectively, the fact that a strategyx� of player
1 is a nondominated response for a strategyy� of player
2 corresponds to the fact thatx� is a nondominated solu-
tion to a multiobjective mathematical programming problem(X; f 1(x;y�);Λ1), and similarly the fact that a strategyy� of
player 2 is a nondominated response for a strategyx� of
player 1 corresponds to the fact thaty� is a nondominated
solution to a multiobjective mathematical programming prob-
lem (Y; f 2(y;x�);Λ2). Then, the following theorem can be
obtained by using the Tamura and Miura condition (10) to
the two multiobjective mathematical programming problems(X; f 1(x;y�);Λ1) and (Y; f 2(y;x�);Λ2).

Theorem 3.2:In a multiobjective two-person nonzero-sum
game(A;B) in normal form, letV1 = fvt1 j t1 = 1; : : : ;q1g and
W2 = fwt2 j t2 = 1; : : : ;q2g denote generators of polar cones
Λ1� andΛ2� of the domination conesΛ1 andΛ2 of players 1
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and 2, respectively, whereΛ1� andΛ2� are represented as

Λ1� =(ω1 2 R r1

���� ω1 = q1

∑
t1=1

δt1vt1;δt1 = 0; t1 = 1; : : : ;q1

) ;
(15a)

Λ2� =(ω2 2 R r2

���� ω2 = q2

∑
t2=1

εt2wt2;εt2 = 0; t2 = 1; : : : ;q2

) :
(15b)

Then, (x�;y�) is a nondominated equilibrium solution if and
only if there existα�, β�, δ�, andε� satisfying the following
condition, whereα� andβ� are scalars andδ� andε� areq1-
andq2-dimensional vectors, respectively.

q1

∑
t1=1

r1

∑
k1=1

m

∑
i=1

n

∑
j=1

δ�t1vt1
k1

x�i ak1
i j y�j �α� = 0; (16a)

q2

∑
t2=1

r2

∑
k2=1

m

∑
i=1

n

∑
j=1

ε�t2wt2
k2

x�i bk2
i j y�j �β� = 0; (16b)

q1

∑
t1=1

r1

∑
k1=1

n

∑
j=1

δ�t1vt1
k1

ak1
i j y�j �α� 5 0; i = 1; : : : ;m; (16c)

q2

∑
t2=1

r2

∑
k2=1

m

∑
i=1

ε�t2wt2
k2

x�i bk2
i j �β� 5 0; j = 1; : : : ;n; (16d)

m

∑
i=1

x�i �1= 0; x� = 0; (16e)

n

∑
j=1

y�j �1= 0; y� = 0; (16f)

δ� � 0; ε� � 0: (16g)

If the domination cones of players 1 and 2 are the neg-
ative quadrant, any nondominated equilibrium solution is
also a weak Pareto equilibrium solution and the generators
of the polar cones of the domination cone isV1 = fv1 =(1;0; : : : ;0)T , : : : , vr1 = (0; : : : ;0;1)Tg andW2 = fw1 = (1;0;: : : ;0)T ; : : : ;wr2 = (0; : : : ;0;1)Tg. Furthermore, if the mul-
tiplier vectors are strictly positive, i.e.,δ > 0, ε > 0, any
nondominated equilibrium solution is also a Pareto equilibrium
solution. From the above facts, we straightforwardly obtain
the necessary and sufficient condition for a Pareto equilibrium
solution.

E. Mathematical programming problem for obtaining non-
dominated equilibrium solutions

Using the necessary and sufficient condition for a nondom-
inated equilibrium solution, we formulate a mathematical pro-
gramming problem whose optimal solutions are nondominated
equilibrium solutions.

Theorem 3.3:In a multiobjective two-person nonzero-sum
game(A;B) in normal form, letV1 = fvt1 j t1 = 1; : : : ;q1g and
W2 = fwt2 j t2 = 1; : : : ;q2g denote generators of polar cones
Λ1� and Λ2� of the domination conesΛ1 and Λ2 of players
1 and 2, respectively, whereΛ1� and Λ2� are represented as
(15). Then,(x�;y�) is a nondominated equilibrium solution if

and only if (x�;y�;α�;β�;δ�;ε�) is an optimal solution to the
following mathematical programming problem.

max
q1

∑
t1=1

r1

∑
k1=1

m

∑
i=1

n

∑
j=1

δt1vt1
k1

xia
k1
i j y j+ q2

∑
t2=1

r2

∑
k2=1

m

∑
i=1

n

∑
j=1

εt2wt2
k2

xib
k2
i j y j �α�β (17a)

s. t.
q1

∑
t1=1

r1

∑
k1=1

n

∑
j=1

δt1vt1
k1

ak1
i j y j �α5 0; i = 1; : : : ;m (17b)

q2

∑
t2=1

r2

∑
k2=1

m

∑
i=1

εt2wt2
k2

xib
k2
i j �β5 0; j = 1; : : : ;n (17c)

m

∑
i=1

xi �1= 0; x= 0 (17d)

n

∑
j=1

y j �1= 0; y= 0 (17e)

δ� 0; ε� 0: (17f)

By specifying the generators of the polar cones of
the domination cone asV1 = fv1 = (1;0; : : : ;0)T ; : : : ;vr1 =(0; : : : ;0;1)Tg and W2 = fw1 = (1;0; : : : ;0)T ; : : : ;wr2 =(0; : : : ;0;1)Tg, for the strictly positive multiplier vectorsδ> 0
and ε > 0, any nondominated equilibrium solution is also a
Pareto equilibrium solution, and then we obtain the following
corollary.

Corollary 3.1: For a multiobjective two-person nonzero-
sum game(A;B) in normal form,(x�;y�) is a Pareto equilib-
rium solution if and only if(x�;y�;α�;β�;δ�;ε�) is an optimal
solution to the following mathematical programming problem.

max
r1

∑
k1=1

m

∑
i=1

n

∑
j=1

δk1xia
k1
i j y j + r2

∑
k2=1

m

∑
i=1

n

∑
j=1

εk2xib
k2
i j y j �α�β

(18a)

s. t.
r1

∑
k1=1

n

∑
j=1

δk1ak1
i j y j �α5 0; i = 1; : : : ;m (18b)

r2

∑
k2=1

m

∑
i=1

εk2xib
k2
i j �β5 0; j = 1; : : : ;n (18c)

m

∑
i=1

xi �1= 0; x= 0 (18d)

n

∑
j=1

y j �1= 0; y= 0 (18e)

δ > 0; ε > 0: (18f)

F. Scalarized Two-Person Nonzero-Sum Games

By using weighting coefficient vectorsλ2 R r1+ andθ2 R r2+ ,
where R t+ = fz 2 R t j z= 0g, a multiobjective two-person
nonzero-sum game(A;B) = ((A1; : : : ;Ar1)T ;(B1; : : : ;Br2)T)
can be reduced to a single-objective two-person nonzero-
sum game(λ1A1 + � � � + λr1Ar1;θ1B1 + � � � + θr2Br2). In a
multiobjective two-person nonzero-sum game(A;B), let V1 =fvt1 j t1 = 1; : : : ;q1g and W2 = fwt2 j t2 = 1; : : : ;q2g denote
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generators of polar conesΛ1� and Λ2� of the domination
conesΛ1 and Λ2 of players 1 and 2, respectively, whereΛ1�
and Λ2� are represented as (15). Then, we consider a single-
objective two-person nonzero-sum game scalarized by weight-
ing coefficient vectorsλ2Λ1� andθ2Λ2�. From the result by
Mangasarian and Stone [14] and the parameter transformations
λ = ∑q1

t1=1 δt1vt1, δt1 = 0, t1 = 1; : : : ;q1 and θ = ∑q2
t2=1 εt2wt2,

εt2 = 0, t2 = 1; : : : ;q2, it can be found that(x�;y�) is an
equilibrium solution of the scalarized game(λ1A1 + � � �+
λr1Ar1;θ1B1+ � � �+θr2Br2) if and only if (x�;y�;α�;β�) is an
optimal solution to the following mathematical programming
problem.

max
q1

∑
t1=1

r1

∑
k1=1

m

∑
i=1

n

∑
j=1

δt1vt1
k1

xia
k1
i j y j+ q2

∑
t2=1

r2

∑
k2=1

m

∑
i=1

n

∑
j=1

εt2wt2
k2

xib
k2
i j y j �α�β (19a)

s. t.
q1

∑
t1=1

r1

∑
k1=1

n

∑
j=1

δt1vt1
k1

ak1
i j y j �α5 0; i = 1; : : : ;m (19b)

q2

∑
t2=1

r2

∑
k2=1

m

∑
i=1

εt2wt2
k2

xib
k2
i j �β5 0; j = 1; : : : ;n (19c)

m

∑
i=1

xi �1= 0; x= 0 (19d)

n

∑
j=1

y j �1= 0; y= 0: (19e)

It should be noted thatδ and ε are not variables but given
parameters.

By comparison with the problem (17), while all the op-
timal solutions of the problem (17) correspond to the set
of nondominated equilibrium solutions, those of the problem
(19) correspond to only a subset of nondominated equilibrium
solutions with respect to the given parametersδ andε if δ and
ε are in the given polar cones of the domination cones.

Moreover, by the parameter transformations, assuming
∑r1

k1=1vt1
k1

ak1
i j > 0, t1 = 1; : : : ;q1, i = 1; : : : ;m, j = 1; : : : ;n and

∑r2
k2=1wt2

k2
bk2

i j > 0, t2 = 1; : : : ;q2, i = 1; : : : ;m, j = 1; : : : ;n, in a
way similar to that of Corley [7], we can obtain the following
a parametric linear complementarity problem.26664 0

q2

∑
t2=1

r2

∑
k2=1

εt2wt2
k2

Bk2T

q1

∑
t1=1

r1

∑
k1=1

δt1vt1
k1

At1 0

37775�yx���ξ2

ξ1

�= 2641
...
1

375 ;
(20a)�

y
x

�= 0; �ξ2

ξ1

�= 0; �y
x

�T �ξ2

ξ1

�= 0: (20b)

Of course, a set of solutions to the problem (20) also corre-
sponds to only a subset of nondominated equilibrium solutions
with respect to the given parametersδ andε.

IV. N ONDOMINATED EQUILIBRIUM SOLUTIONS OF A

MULTIOBJECTIVE TWO-PERSON NONZERO-SUM GAME IN

EXTENSIVE FORM

A. A multiobjective two-person nonzero-sum game and se-
quences in the extensive form game

A game in extensive form is characterized by a game tree,
players, information sets, chance moves, and payoff functions.
A game tree is represented by a graph with nodes including the
root which is an initial node and directed edges. Particularly,
a terminal node is called a leaf, and at each of leaves a vector
of payoffs is assigned to each player in multiobjective games.
An example of a multiobjective two-person nonzero-sum game
in extensive form is given in Figure 1, whereni , i = 1; : : : ;31
denote nodes;mi , l i , i = 1; : : : ;6 denote choices of player 1;ci ,
di , i = 1;2 denote choices of player 2; andpi , i = 1;2 denote
probabilities of the chance move.
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Fig. 1. A game tree of a multiobjective two-person nonzero-sum game

There are two representations of strategies in an extensive
form game: behavior strategies and mixed strategies in the
corresponding normal form game. An expected payoff as a
function of behavior strategies becomes a high-degree non-
linear function when the number of levels of the game tree
is large. When an extensive form game is transformed into a
normal form game, the number of pure strategies increases
exponentially with a size of game. On the assumption of
perfect recall of players, von Stengel [23] and Koller et al. [11]
propose a game representation of the sequence form which
does not cause the mentioned above difficulties. Namely, the
expected payoff as a function of realization plans is linear
even if the game tree becomes multistage, and the number of
sequences increases linearly with a size of game. Because the
exponential increase of the number of pure strategies in the
normal form game results from extreme increase of the number
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of pure strategies such that players’ choices are not consistent
with behaviors of perfect recall, it can be interpreted that a
set of pure strategies in sequence form corresponds to that of
normal form excluding not perfect recall pure strategies.

A series of nodes and edges from the root to some node
is called a path, and a sequence is defined by a set of labels
of edges on the path to the node. For example, for noden12

of the game tree depicted in Figure 1, a sequence of player 1
is m2, that of player 2 isc1, and that of chance player isp2.
For noden25 which is a leaf, a sequence of player 1 ism2l5,
and those of player 2 and chance player are the same as the
sequences for noden12.

Let L be a set of leaves. Payoff functions in extensive form
are defined on the setL, and a vector of payoffs is assigned
to each of the players at any leafl 2 L; let H1 : L ! R r1

be the payoff function of player 1, and letH2 : L ! R r2 be
that of player 2, wherer1 and r2 are the numbers of payoffs
(objectives) of players 1 and 2, respectively. In contrast, payoff
functions in sequence form are defined on a set of sequences.
Let S0, S1, andS2 be the sets of sequences of chance player,
player 1, and player 2, respectively, and letjS0j, jS1j, andjS2j
be the numbers of sequences of chance player, player 1, and
player 2, respectively. LetS= S0�S1�S2 be the space of
sequences of all the players.

A payoff function of player 1 in sequence form is defined as
G1 : S! R r1 , and if a sequences=(s0;s1;s2)2S is specified at
a leafl 2 L, the payoff function isG1(s)=H1(l) and otherwise
it is G1(s) = 0. A payoff function of player 2G2 : S! R r2

is also defined similarly. For example, for noden12 of the
game tree depicted in Figure 1, a sequence vector iss12 =(p2;m2;c1), and payoffs of players 1 and 2 areG1(s12) =(0;0), G2(s12) = (0;0), respectively. For noden25 which is
a leaf, a sequence vector iss25 = (p2;m2l5;c1), and payoffs
of players 1 and 2 areG1(s25) = (�1;�2), G2(s25) = (1;1),
respectively.

A set of all nodes in a game tree is divided into information
sets. LetU1 andU2 be the sets of information sets of players
1 and 2, respectively, and letjU1j and jU2j be the numbers
of the information sets of players 1 and 2, respectively. Each
information setu exactly belongs to one playeri. All nodes
in an information setu have the same choices, and the set
of choices atu is denoted byCu. Let jCuj be the number of
choices atu.

Because it is assumed that perfect recall holds for all the
players in a sequence form game, all nodes in an information
set u have the same sequence. Let the sequence be denoted
by σu, and it leads the information setu. A choice c 2 Cu

in u extends the sequenceσu, and the extended sequence is
expressed byσuc, i.e.,

σuc= σu[fcg; c2Cu: (21)

With this notation, a set of sequences of playeri can be
represented bySi = f /0g[fσuc j u2Ui ;c2Cug.

In sequence form, a strategy is represented by giving a
probability distribution to a set of sequences, and it is called

a realization plan. A realization planφ 2 R jS1 j of player 1 is
subject to the following constraints.

φ( /0) = 1 (22a)�φ(σu1)+ ∑
c12Cu1

φ(σu1c1) = 0; u1 2U1 (22b)

φ(s1)= 0; s1 2 S1: (22c)

Player 2’s realization planψ 2 R jS2 j is also subject to the
following constraints.

ψ( /0) = 1 (23a)�ψ(σu2)+ ∑
c22Cu2

ψ(σu2c2) = 0; u2 2U2 (23b)

ψ(s2)= 0; s2 2 S2: (23c)

By using the(1+ jU1j)� jS1j constraint matrixE1 and the(1+ jU2j)� jS2j constraint matrixE2, the above constraints
(22) and (23) can be simply expressed by

E1φ = e1 (24)

E2ψ = e2; (25)

respectively, wheree1 ande2 are the(1+ jU1j)- and(1+ jU2j)-
dimensional vectors such that the first element is 1 and the
other elements are all 0, i.e.,(1;0; : : : ;0)T . Then, the setsΦ
andΨ of realization plans of players 1 and 2 are defined by

Φ = nψ 2 R jS1 j j E1ψ = e1; ψ= 0
o

(26)

Ψ = nψ 2 R jS2 j j E2ψ = e2; ψ= 0
o ; (27)

respectively.
Let p=(p1; : : : ; pjS0j) be a realization plan of chance player.

When players 1 and 2 choose sequencess1 ands2, respectively,
the expected payoffs of them are

cs1s2 = (c1
s1s2

; : : : ;cr1
s1s2

) = ∑
s02S0

G1(s0;s1;s2)p(s0) 2 R r1 (28)

ds1s2 = (d1
s1s2

; : : : ;dr2
s1s2

) = ∑
s02S0

G2(s0;s1;s2)p(s0) 2 R r2 :
(29)

Now, letC andD denotejS1j�jS2j matrices such that elements
of thes1th row ands2th column are the above defined vectors
cs1s2 and ds1s2, respectively. Then, for given realization plans
φ 2Φ andψ 2Ψ of players 1 and 2, the vectors of expected
payoffs of them are represented by

φTCψ, jS1j
∑

s1=1

jS2j
∑

s2=1
φs1c1

s1s2
ψs2; : : : ; jS1j

∑
s1=1

jS2j
∑

s2=1
φs1cr1

s1s2
ψs2

!
(30)

φTDψ, jS1j
∑

s1=1

jS2j
∑

s2=1
φs1d1

s1s2
ψs2; : : : ; jS1j

∑
s1=1

jS2j
∑

s2=1
φs1dr2

s1s2
ψs2

! ;
(31)

respectively.
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B. Nondominated equilibrium solutions of a multiobjective
two-person nonzero-sum game in extensive form

First, in a multiobjective two-person nonzero-sum game in
extensive form, we give a solution concept of Pareto equi-
librium solutions, and then extend it to that of nondominated
equilibrium solutions by using domination cones.

Definition 4.1: In a multiobjective two-person nonzero-sum
game in extensive form, a pair of realization plans(φ�;ψ�) 2
Φ�Ψ is said to be a Pareto equilibrium solution if there does
not exist another(φ;ψ) 2Φ�Ψ such that

φ�TCψ� � φTCψ� (32a)

φ�TDψ� � φ�TDψ: (32b)

A multiobjective two-person nonzero-sum game in exten-
sive form can be reduced to a single-objective two-person
nonzero-sum game by using a weighting coefficient vector(w;v) 2 R r1++ �R r2++ , whereR r i++ = fz2 R r i j z> 0g, i = 1;2.
Furthermore, because the single-objective game in extensive
form can be transformed into a game in normal form and there
exists at least one equilibrium solution in the game in normal
form, in general there exists at least one Pareto equilibrium
solution in a multiobjective two-person nonzero-sum game in
extensive form [12].

For simplicity, let g1(φ;ψ) , φTCψ and g2(ψ;φ) , φTDψ,
and we define nondominated equilibrium solutions in the
following.

Definition 4.2: Let Λ1 and Λ2 denote domination cones
of players 1 and 2, respectively. Then, in a multiobjective
two-person nonzero-sum game in extensive form, a pair of
realization plans(φ�;ψ�) 2 Φ�Ψ is said to be a nondom-
inated equilibrium solution if there does not exist another(φ;ψ) 2Φ�Ψ such that

g1(φ�;ψ�) 2 g1(φ;ψ�)+Λ1; (33a)

g2(ψ�;φ�) 2 g2(ψ;φ�)+Λ2: (33b)

In particular, by lettingΛ1 = R r1� and Λ2 = R r2� whereR r i� = fz2 R r i j z5 0g, i = 1;2, any nondominated equilibrium
solution with respect to the domination conesR r1� andR r2� is
also a Pareto equilibrium solution.

The above definition means thatφ� is a nondominated
response of player 1 for a strategyψ� of player 2, andψ�
is a nondominated response of player 2 for a strategyφ� of
player 1. This can be explicitly expressed as follows. The sets
of nondominated responses of players 1 and 2 are defined as

N1(ψ;Λ1) = fφ 2Φ j there does not existφ0 2Φ such that

g1(φ;ψ) 2 g1(φ0;ψ)+Λ1g; (34a)

N2(φ;Λ2) = fψ 2Ψ j there does not existψ0 2Ψ such that

g2(ψ;φ) 2 g2(ψ0;φ)+Λ2g: (34b)

Then, by using the concept of nondominated responses, the
set N(Λ1;Λ2) of nondominated equilibrium solutions can be
represented by

N(Λ1;Λ2) = f(φ�;ψ�) j φ� 2 N1(ψ�;Λ1); ψ� 2 N2(φ�;Λ2)g:
(35)

A relation between the domination cones and the sets of
nondominated equilibrium solutions is shown in the following
proposition.

Proposition 4.1:Let Λ1 and Λ10 denote domination cones
of player 1, andΛ2 and Λ20 denote domination cones of
player 2 in a multiobjective two-person nonzero-sum game in
extensive form. Then, ifΛ1�Λ10 andΛ2�Λ20, N(Λ10;Λ20)�
N(Λ1;Λ2).

From the fact that there exists at least one Pareto equilibrium
solution [12], we obtain the following theorem showing the
existence of nondominated equilibrium solutions.

Theorem 4.1:In a multiobjective two-person nonzero-sum
game in extensive form, for any domination cones of players
1 and 2, there exists at least one nondominated equilibrium
solution.

C. Necessary and sufficient condition for a nondominated
equilibrium solution

In a multiobjective two-person nonzero-sum game in ex-
tensive form, given domination conesΛ1 and Λ2 of players
1 and 2, respectively, the fact that a realization planφ� of
player 1 is a nondominated response for a realization planψ�
of player 2 corresponds to the fact thatφ� is a nondominated
solution to a multiobjective mathematical programming prob-
lem (Φ;g1(φ;ψ�);Λ1), and similarly the fact that a realization
plan ψ� of player 2 is a nondominated response for a real-
ization planφ� of player 1 corresponds to the fact thatψ�
is a nondominated solution to a multiobjective mathematical
programming problem(Ψ;g2(ψ;φ�);Λ2). Assume thatΦ, Ψ,
g1(φ;ψ�) = φTCψ�, and g2(ψ;φ�) = φ�TDψ are represented
by (26), (27), (30), and (31), respectively, andΛ1 andΛ2 are
polyhedral domination cones. Then, the following theorem can
be obtained by using the Tamura and Miura condition (10) to
the two multiobjective mathematical programming problems(Φ;g1(φ;ψ�);Λ1) and (Ψ;g2(ψ;φ�);Λ2).

Theorem 4.2:In a multiobjective two-person nonzero-sum
game in extensive form, letV1 = fvt1 j t1 = 1; : : : ;q1g and
W2 = fwt2 j t2 = 1; : : : ;q2g denote generators of polar cones
Λ1� andΛ2� of the domination conesΛ1 andΛ2 of players 1
and 2, respectively, whereΛ1� andΛ2� are represented as (15).
Then,(φ�;ψ�) is a nondominated equilibrium solution if and
only if there existα�, β�, δ�, andε� satisfying the following
condition, which arejU1j-, jU2j-, q1-, and q2-dimensional
vectors, respectively.

q1

∑
t1=1

r1

∑
k1=1

jS1j
∑

s1=1

jS2j
∑

s2=1
δ�t1vt1

k1
φ�s1

ck1
s1s2

ψ�
s2
� jS1j

∑
s1=1

jU1j
∑

u1=0
α�

u1
e1

u1s1
φ�s1

= 0

(36a)
q2

∑
t2=1

r2

∑
k2=1

jS1j
∑

s1=1

jS2j
∑

s2=1
ε�t2wt2

k2
φ�s1

dk2
s1s2

ψ�
s2
� jS2j

∑
s2=1

jU2j
∑

u2=0
β�

u2
e2

u2s2
ψ�

s2
= 0

(36b)
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q1

∑
t1=1

r1

∑
k1=1

jS2j
∑

s2=1
δ�t1vt1

k1
ck1

s1s2
ψ�

s2
� jU1j

∑
u1=0

α�
u1

e1
u1s1

5 0; s1 = 1; : : : ; jS1j
(36c)

q2

∑
t2=1

r2

∑
k2=1

jS1j
∑

s1=1
ε�t2wt2

k2
φ�s1

dk2
s1s2

� jU2j
∑

u2=0
β�

u2
e2

u2s2
5 0; s2 = 1; : : : ; jS2j

(36d)jS1j
∑

s1=1
e1

u1s1
φ�s1

�e1
u1

= 0; u1 = 0; : : : ; jU1j (36e)jS2j
∑

s2=1
e2

u2s2
ψ�

s2
�e2

u2
= 0; u2 = 0; : : : ; jU2j (36f)

φ� = 0 (36g)

ψ� = 0 (36h)

δ� � 0 (36i)

ε� � 0 (36j)

If the domination cones of players 1 and 2 are the
negative quadrant, any nondominated equilibrium solution
with respect to the domination cones is also a weak Pareto
equilibrium solution and the generators of the polar cones
of the domination cone areV1 = fv1 = (1;0; : : : ;0)T ;v2 =(0;1;0; : : : ;0)T ; : : : ;vr1 = (0; : : : ;0;1)Tg and W2 = fw1 =(1;0; : : : ;0)T ;w2 = (0;1;0; : : : ;0)T ; : : : ;wr2 = (0; : : : ;0;1)Tg.
Furthermore, if the multiplier vectors are strictly positive,
i.e., δ > 0, ε > 0, any nondominated equilibrium solution is
also a Pareto equilibrium solution. From the above facts, we
straightforwardly obtain the necessary and sufficient condition
for a Pareto equilibrium solution.

D. Nondominated equilibrium solutions and corresponding
mathematical programming problem

Using the necessary and sufficient condition for a nondom-
inated equilibrium solution, we formulate a mathematical pro-
gramming problem whose optimal solutions are nondominated
equilibrium solutions.

Theorem 4.3:In a multiobjective two-person nonzero-sum
game in extensive form, letV1 = fvt1 j t1 = 1; : : : ;q1g and
W2 = fwt2 j t2 = 1; : : : ;q2g denote generators of polar cones
Λ1� and Λ2� of the domination conesΛ1 and Λ2 of players
1 and 2, respectively, whereΛ1� and Λ2� are represented as
(15). Then,(φ�;ψ�) is a nondominated equilibrium solution if
and only if (φ�;ψ�;α�;β�;δ�;ε�) is an optimal solution to the
following mathematical programming problem.

max
q1

∑
t1=1

r1

∑
k1=1

jS1j
∑

s1=1

jS2j
∑

s2=1
δt1vt1

k1
φs1ck1

s1s2
ψs2

+ q2

∑
t2=1

r2

∑
k2=1

jS1j
∑

s1=1

jS2j
∑

s2=1
εt2wt2

k2
φs1dk2

s1s2
ψs2

� jU1j
∑

u1=0

jS1j
∑

s1=1
αu1e1

u1s1
φs1� jU2j

∑
u2=0

jS2j
∑

s2=1
βu2e2

u2s2
ψs2 (37a)

s. t.
q1

∑
t1=1

r1

∑
k1=1

jS2j
∑

s2=1
δt1vt1

k1
ck1

s1s2
ψs2� jU1j

∑
u1=0

αu1e1
u1s1

5 0;
s1 = 1; : : : ; jS1j (37b)

q2

∑
t2=1

r2

∑
k2=1

jS1j
∑

s1=1
εt2wt2

k2
φs1dk2

s1s2
� jU2j

∑
u2=0

βu2e2
u2s2

5 0;
s2 = 1; : : : ; jS2j (37c)jS1j

∑
s1=1

e1
u1s1

φs1�e1
u1

= 0; u1 = 0; : : : ; jU1j (37d)jS2j
∑

s2=1
e2

u2s2
ψs2�e2

u2
= 0; u2 = 0; : : : ; jU2j (37e)

φ= 0 (37f)

ψ= 0 (37g)

δ� 0 (37h)

ε� 0: (37i)

By specifying the generators of the polar cones of
the domination cone asV1 = fv1 = (1;0; : : : ;0)T ;v2 =(0;1;0; : : : ;0)T ; : : : ;vr1 = (0; : : : ;0;1)Tg and W2 = fw1 =(1;0; : : : ;0)T ;w2 = (0;1;0; : : : ;0)T ; : : : ;wr2 = (0; : : : ;0;1)Tg,
for the strictly positive multiplier vectorsδ > 0 and ε > 0,
any nondominated equilibrium solution with respect to the
domination cones is also a Pareto equilibrium solution, and
then we obtain the following corollary.

Corollary 4.1: For a multiobjective two-person nonzero-
sum game in extensive form,(φ�;ψ�) is a Pareto equilibrium
solution if and only if (φ�;ψ�;α�;β�;δ�;ε�) is an optimal
solution to the following mathematical programming problem.

max
r1

∑
k1=1

jS1j
∑

s1=1

jS2j
∑

s2=1
δk1φs1ck1

s1s2
ψs2 + r2

∑
k2=1

jS1j
∑

s1=1

jS2j
∑

s2=1
εk2φs1dk2

s1s2
ψs2

� jU1j
∑

u1=0

jS1j
∑

s1=1
αu1e1

u1s1
φs1� jU2j

∑
u2=0

jS2j
∑

s2=1
βu2e2

u2s2
ψs2 (38a)

s. t.
r1

∑
k1=1

jS2j
∑

s2=1

δk1ck1
s1s2

ψs2� jU1j
∑

u1=0

αu1e1
u1s1

5 0; s1 = 1; : : : ; jS1j
(38b)

r2

∑
k2=1

jS1j
∑

s1=1
εk2φs1dk2

s1s2
� jU2j

∑
u2=0

βu2e2
u2s2

5 0; s2 = 1; : : : ; jS2j
(38c)jS1j

∑
s1=1

e1
u1s1

φs1�e1
u1

= 0; u1 = 0; : : : ; jU1j (38d)jS2j
∑

s2=1
e2

u2s2
ψs2�e2

s2
= 0; u2 = 0; : : : ; jU2j (38e)

φ= 0 (38f)

ψ= 0 (38g)

(38h)
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δ > 0 (38i)

ε > 0: (38j)

V. CONCLUSIONS

In this paper, we outlined the development of multiobjective
noncooperative game theory. In particular, we focused on the
nondominated equilibrium solutions of multiobjective two-
person nonzero-sum games in normal and extensive forms, and
showed the mathematical programming problems for deriving
the nondominated equilibrium solutions.
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