
Reversible computing and cellular automata
— a survey ∗

(Preliminary draft)

Kenichi Morita

Hiroshima University, Higashi-Hiroshima 739-8527, Japan

morita@iec.hiroshima-u.ac.jp

Abstract

Reversible computing is a paradigm where computing models are so defined
that they reflect physical reversibility, one of the fundamental microscopic physical
property of Nature. In this survey/tutorial paper, we discuss how computation can
be carried out in a reversible system, how a universal reversible computer can be
constructed by reversible logic elements, and how such logic elements are related to
reversible physical phenomena. We shall see that, in reversible systems, computation
can be often carried out very different manner from conventional (i.e., irreversible)
computing systems, and even very simple reversible systems or logic elements have
computation- or logical-universality. We discuss these problems based on reversible
logic elements/circuits, reversible Turing machines, reversible cellular automata,
and some other related models of reversible computing.

Key words: reversible logic element, reversible Turing machine, reversible cellular
automata, computation-universality

1 Introduction

Physical reversibility is one of the fundamental microscopic laws of Nature. Since future
computing devices will surely be implemented based on some physical phenomena of nano-
scale level, it is an important problem how such property of Nature can be effectively used
in computing. The definition of reversible computing systems is rather simple. They are
the ones such that each of their computational configurations has at most one previous
configuration. Hence, every computation process can be traced backward uniquely from
the end to the start. In other words, they are backward deterministic systems. Though
the definitions of them is thus rather simple, it is remarkable that they reflect physical
reversibility very well.

∗Supported by Grant-in-Aid for Scientific Research (C) No. 16500012 from JSPS.

1

Landauer [19] first argued the relation between logical reversibility and physical re-
versibility. He posed “Landauer’s principle” stating that an irreversible logical operation,
such as erasure of an unnecessary information, inevitably causes heat generation. Ben-
nett [4] studied reversible Turing machines from this viewpoint, and showed that for any
irreversible Turing machine we can construct a reversible one that simulates the former
and leaves no garbage information on its tape when it halts. He also pointed out a pos-
sibility of physically reversible computer where dissipation of energy is arbitrarily small.

Since then, several reversible computing models, such as reversible cellular automata,
and reversible logic elements and circuits, have been proposed and investigated from the
above viewpoint. Toffoli [47] showed that every irreversible k-dimensional cellular automa-
ton can be simulated by some k + 1-dimensional reversible one, hence two-dimensional
reversible cellular automata are computation-universal. Later, Morita and Harao [30]
proved computation-universality of one-dimensional reversible cellular automata. As for
reversible logic elements and circuits, Toffoli [48, 49] first studied them in the relation
to physical reversibility. Then, Fredkin and Toffoli [11] introduced “conservative logic,”
and showed that any logic function can be realized by a garbageless circuit composed
of the Fredkin gate, a reversible logic gate. They also proposed an interesting physical
model of reversible computing called the Billiard Ball Model (BBM), and showed that
any reversible logic circuit composed of Fredkin gates can be realized in BBM. After these
earlier works, various simple reversible models having computation-universality, as well
as other models of reversible computing, have been proposed and investigated.

In this survey/tutorial paper, we discuss how computation is performed in reversible
computing systems, and how different they are from conventional (i.e., irreversible) com-
puting systems. We shall see that even very simple reversible systems have computation-
universality, and there are also simple reversible primitives from which reversible com-
puters can be built. We can see, in these systems, computation is often carried out in
a very unique manner not used in conventional computing systems, thus they may give
new ways and concepts for future computing.

An outline of this paper is as follows. In Section 2, reversible logic elements and
circuits, and their realization in Billiard Ball Model are discussed. Section 3 deals with
reversible Turing machines (RTMs), their realization by reversible logic elements, and
small universal RTMs. In Section 4, reversible cellular automata (RCAs) are discussed.
In particular, we see how computation can be performed in simple RCAs. Section 5 gives
remarks and future directions.

2

2 Reversible logic elements and circuits

The concept of reversibility can be defined for several different levels of computing: from
an element level (i.e., a level of logic elements, or even a physical realization level) to a
system level (i.e., a level of computing systems, or a program level). We shall see later
that the notions of reversibility in these different levels are closely related to each other.
For example, reversible Turing machines can be composed of reversible logic elements,
and the latter are further realized in a reversible physical model. In this section we deal
with reversible logic elements and circuits. There are two types of logic elements: one
without memory, which is usually called a logic gate, and one with memory. As we shall
see, the latter one (i.e., an element with memory) is often useful in reversible computing.
Here, we also discuss the Billiard Ball Model, which is a reversible physical model of
computing introduced by Fredkin and Toffoli [11], and realization methods of reversible
logic elements in it.

2.1 Reversible logic gates

Computers of nowadays are composed of logic gates and memories. Among typical tra-
ditional logic gates, AND, OR, and NAND are “irreversible” in the sense that we cannot
retrieve their input only from the output, because these gates realize logic functions that
are not one-to-one. On the other hand, NOT is reversible since it realizes a one-to-one
function. A reversible logic gate is a one that realizes a one-to-one logic function, hence
it is, in general, a many-input many-output gate. Early study on such kinds of gates was
made by Petri [44]. Later, Toffoli [48, 49], and Fredkin and Toffoli [11] studied them in
connection with physical reversibility.

2.1.1 The Fredkin gate and the Toffoli gate

An m-input n-output logic gate that realizes a logic (i.e., Boolean) function f : {0, 1}m →
{0, 1}n (m ≤ n) is called reversible, if f is one-to-one. Though there are many reversible
logic gates, we discuss here a few typical ones, especially the Fredkin gate and the Toffoli
gate.

The Fredkin gate is a 3-input 3-output logic gate that realizes the following function
(Fig. 1).

fF : (c, p, q) �→ (c, c · p+ c̄ · q, c̄ · p+ c · q)

It is easy to see fF is one-to-one. Furthermore, we can see f−1
F = fF.

� �
� �
� �

c

p

q

x = c

y = c · p + c̄ · q
z = c̄ · p + c · q

Figure 1: The Fredkin gate.

3

The generalized AND/NAND gate was proposed by Toffoli [48, 49]. It realizes the
following logic function.

θ(n) : (x1, · · · , xn−1, xn) �→ (x1, · · · , xn−1, (x1 · · ·xn−1) ⊕ xn)

It is also easy to see that it is a reversible logic gate, and (θ(n))−1 = θ(n). The gate that
realizes θ(2) is sometimes called the controlled NOT (CNOT), and the gate for θ(3) is called
the Toffoli gate (Fig. 2).

�

�

�

x1

x2

x3

y1 = x1

y2 = x2

y3 = (x1 · x2) ⊕ x3

Figure 2: The generalized AND/NAND gate of order 3 called the Toffoli gate.

Besides reversibility, the Fredkin gate has bit-conserving property: the total number of
1’s is conserved between the input lines and the output lines. But, the Toffoli gate is not
so. This property is an analogue of the conservation law of mass, energy, or momentum
in physics. Fredkin and Toffoli [11] proposed a design theory of reversible logic circuits
called “conservative logic,” where the Fredkin gate is used as a logical primitive. There,
fan-out (i.e., branching) of an output is not allowed, because it violates the conservation
law (if it is implemented in a microscopic level). Hence, if fan-out is needed, we should
construct a circuit that realizes fan-out by using Fredkin gates.

A set of logic elements E is called logically universal, if any logic function can be
realized by a circuit using only the elements in E. As shown in Fig. 3, AND, NOT, and
fan-out can be realized by Fredkin gates [11], if we allow to supply constant inputs 0’s and
1’s, and allow to generate garbage (useless) outputs besides the true inputs and outputs.
Since any logic function can be composed of AND, NOT, and fan-out, logical universality
of the set {Fredkin gate} is concluded. Likewise, AND, NOT, and fan-out can be realized
by Toffoli gates as in Fig. 4.

� �

� �

� �

x

y

0

xy

x̄y x
AND

� �

� �

� �

x
0 1

x̄

x x
NOT

� �

� �

� �

x
0 1

x

x

x̄
Fan-out

Figure 3: Implementing AND, NOT, and fan-out by Fredkin gates.

4

�

�

�

x1

x2

0

x1

x2

x1 · x2

AND

�

�

�

1

1

x3

1

1

x̄3

NOT

�

�

�

x1

1

0

x1

1

x1

Fan-out

Figure 4: Implementing AND, NOT, and fan-out by Toffoli gates.

Theorem 2.1 (Fredkin, Toffoli [11], and Toffoli [48]) The sets {Fredkin gate} and
{Toffoli gate} are both logically universal.

It is well known that, if we can use delay elements (i.e., a memory elements) in addition
to a logically universal set of gates, we can construct any sequential machine. Therefore,
we can build a universal computer by using Fredkin gates or Toffoli gates, and delay
elements. It should be noted that it becomes an infinite circuit to construct a storage
unit like a tape of a Turing machine.

The Fredkin gate and the Toffoli gate are both 3-input 3-output gates. How are 2-
input 2-output gates? Toffoli [48] showed any 2-input 2-output reversible gate is composed
only of CNOTs and NOTs. Since it is easy to see that {CNOT, NOT} is not logically
universal, there is no logically universal gate in 2-input 2-output reversible gates.

2.1.2 Garbageless reversible logic circuits

From Theorem 2.1 (and Fig. 3), we can see any logic function f : {0, 1}m → {0, 1}n can
be realized by a circuit Φ composed of Fredkin gates, by allowing constant inputs c and
garbage outputs g besides true inputs x and true outputs y as shown in Fig. 5. However,
disposing the garbage g outside of the circuit is in fact an irreversible process. Though the
circuit Φ is reversible inside of it, we must show how to supply constants c, and how to
process garbage g. Otherwise, the story will not come to an end. Fredkin and Toffoli [11]
showed a method to do so. (This is a logic circuit version of the garbage-less reversible
Turing machine by Bennett [4] discussed in section 3.1.2.)

Φ

(constants)
c

(inputs)
x

(outputs)
y

g
(garbage)

Figure 5: Embedding a logic function f in a reversible logic circuit Φ.

5

To give a garbageless logic circuit, we need the notion of an inverse circuit of a given
reversible logic circuit Φ composed of Fredkin gates. Suppose Φ has no feedback loop.
The inverse circuit Φ−1 is obtained by first taking the mirror image of the original circuit,
and then exchange inputs and outputs of each element. Fig. 6 shows an example. It is
easy to see that Φ−1 computes the inverse function. If we connect Φ and Φ−1 in series,
garbage signals are erased reversibly, and we get again constants, which can be recycled.
However, before doing so, the true outputs y should be copied by fan-out circuits. By
this, we can obtain the outputs y without producing a large amount of garbage signals
g (Fig. 7). (But, besides the true outputs y, a small amount of signals x and ȳ are
produced, which are in fact garbage in some situation.)

�

�

�

�

�

�

�

�

(a)

�

�

�

�

�

�

�

�

(b)

Figure 6: (a) A reversible logic circuit, and (b) its inverse circuit.

c

x

Φ

g

y y

Φ−1

c

x

0

1

fan out

y

ȳ

Figure 7: A garbage-less reversible logic circuits that computes the logic function f .

2.2 Reversible logic elements with memory

The traditional design theory of logic circuits mainly uses “gates” (i.e., logic elements
without memory) as primitives that perform logical operations. However, as we shall see
later, logic elements with memory are often useful in reversible computing. Conceptually,
a gate (with two or more inputs) is an object at which “incoming” signals interact or
operate on each other. Its output is a result of the interaction of the incoming signals.

6

Hence, some synchronization mechanism (like a clock) is necessary to make incoming
signals to reach the gate at the same time. On the other hand, in the case of an element
with memory, its state can be regarded as a kind of stationary signal that is always at
the element’s position, and can interact with an incoming signal. Therefore, if a circuit
is appropriately designed, we can eliminate a clock from the circuit. Moreover, a specific
kind of reversible element with memory called a “rotary element” (RE) [35] is useful for
designing a circuit with a complex function. In particular, any reversible Turing machine
and reversible sequential machine can be built very simply only from REs as a completely
garbageless circuit.

2.2.1 Reversible logic elements with memory, and their classification

A reversible logic elements with memory (RLEM) is nothing but a reversible sequential
machine (RSM) with small numbers of states and symbols. So, we give here definitions
on a sequential machine of Mealy type (i.e., a finite automaton with an output), and its
reversibility.

Definition 2.1 A sequential machine (SM) M is defined by

M = (Q,Σ,Γ, q0, δ),

where Q is a finite non-empty set of states, Σ and Γ are finite non-empty sets of input
and output symbols, respectively, and q0 ∈ Q is an initial state. δ : Q × Σ → Q × Γ
is a mapping called a move function. An SM M = (Q,Σ,Γ, δ), where no initial state is
specified, is also called an SM for convenience.

M is called a reversible sequential machine (RSM) if δ is one-to-one (hence in this
case |Σ| ≤ |Γ|). In an RSM, the previous state and the input are determined uniquely
from the present state and the output of M .

Since there are infinitely many RSMs, we should restrict candidates of useful RLEMs
somehow. Here, we consider only RLEMs with 2 states (i.e., |Q| = 2) and with k in-
put/output symbols (i.e., |Σ| = |Γ| = k) for k = 2, 3, 4.

Let M = (Q,Σ,Γ, δ) be a 2-state 4-symbol RLEM. Here, we assume Q = {q0, q1},
Σ = {a, b, c, d}, and Γ = {w, x, y, z}. The move function δ is then as follows.

δ : {q0, q1} × {a, b, c, d} → {q0, q1} × {w, x, y, z}

Since δ is one-to-one, it is specified by a permutation from the set

{(q0, w), (q0, x), (q0, y), (q0, z), (q1, w), (q1, x), (q1, y), (q1, z)}.

Hence, there are 8! = 40320 RLEMs for k = 4. They are numbered by 0, · · · , 40319 in the
lexicographic order of permutations. There are 6! = 720 2-state 3-symbol RLEMS and
4! = 24 2-state 2-symbol RLEMs, which are also numbered in this way [38]. To indicate
k-symbol RLEM, the prefix “k-” is attached to the serial number.

7

Example 2.1 The move function of the RLEM No. 4-289 is defined by the following
permutation, and is given by Table 1.

((q0, w), (q0, x), (q1, w), (q1, x), (q0, y), (q0, z), (q1, z), (q1, y))

We also use a pictorial representation for a 2-state RLEM as shown in Fig. 8. Note that
in Fig. 8, an input signal (or a particle-like object) should be given at most one input
line, because each input/output line corresponds to an input/output symbol of an RSM.
Therefore, we should not confuse RLEMs with gates like the Fredkin gate where each
input/output line has a binary value.

Input
Present
state a b c d

q0 q0 w q0 x q1 w q1 x
q1 q0 y q0 z q1 z q1 y

Table 1: The move function of the 2-state 4-symbol RLEM No. 4-289.

a
b
c
d�
�
�
�

�
�
�
�

q0

w
x
y
z

a
b
c
d�
�
�
�

�
�
�
�

q1

w
x
y
z

Figure 8: Pictorial representation of the RLEM No. 4-289. Solid and dotted lines in a
box describe the input-output relation for each state. A solid line shows the state transits
to another, and a dotted line shows the state remains unchanged.

There are many kinds of 2-state RLEMs even if we limit k = 2, 3, 4, but we can
regard two RLEMs are “equivalent” if one can be obtained by renaming the states and
the input/output symbols of the other. We can see the number of essentially different
RLEMs is relatively small.

Definition 2.2 Let M1 = (Q1,Σ1,Γ1, δ1) and M2 = (Q2,Σ2,Γ2, δ2) be two LEMs. M1

and M2 are called equivalent, if there exist one-to-one onto mappings f : Q1 → Q2,
g : Σ1 → Σ2, and h : Γ1 → Γ2 that satisfy

∀q ∈ Q1, ∀s ∈ Σ1 [δ1(q, s) = ψ(δ2(f(q), g(s)))],

where ψ : Q2 × Γ2 → Q1 × Γ1 is defined as follows.

∀q ∈ Q2, ∀t ∈ Γ2 [ψ(q, t) = (f−1(q), h−1(t))]

The numbers of equivalence classes of 2-state 2-, 3- and 4-symbol RLEMs are 8, 24 and
82, respectively [38]. Figs. 9 and 10 show representatives of equivalence classes of 2- and
3-symbol RLEMs, where each representative is chosen as the one with the least serial
number in its equivalence class.

The quotient set of 2-state k-symbol RLEMs can be further classified into the following
three categories.

8

�
�

�
�

�
�

�
�

2-0 (eq. to wires)

�
�

�
�

�
�

�
�

2-1 (eq. to wires)

�
�

�
�

�
�

�
�

2-2

�
�

�
�

�
�

�
�

2-3

�
�

�
�

�
�

�
�

2-4

�
�

�
�

�
�

�
�

2-5 (eq. to wires)

�
�

�
�

�
�

�
�

2-16 (eq. to wires)

�
�

�
�

�
�

�
�

2-17

Figure 9: Representatives of 8 equivalence classes of 2-state 2-symbol RLEMs [38].

�
�
�

�
�
�

�
�
�

�
�
�

3-0 (eq. to wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-1 (eq. to wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-3 (eq. to wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-6 (eq. to 2-2)

�
�
�

�
�
�

�
�
�

�
�
�

3-7

�
�
�

�
�
�

�
�
�

�
�
�

3-9

�
�
�

�
�
�

�
�
�

�
�
�

3-10

�
�
�

�
�
�

�
�
�

�
�
�

3-11 (eq. to 2-3)

�
�
�

�
�
�

�
�
�

�
�
�

3-18

�
�
�

�
�
�

�
�
�

�
�
�

3-19 (eq. to 2-4)

�
�
�

�
�
�

�
�
�

�
�
�

3-21 (eq. to wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-23

�
�
�

�
�
�

�
�
�

�
�
�

3-60

�
�
�

�
�
�

�
�
�

�
�
�

3-61

�
�
�

�
�
�

�
�
�

�
�
�

3-63

�
�
�

�
�
�

�
�
�

�
�
�

3-64

�
�
�

�
�
�

�
�
�

�
�
�

3-65

�
�
�

�
�
�

�
�
�

�
�
�

3-90

�
�
�

�
�
�

�
�
�

�
�
�

3-91

�
�
�

�
�
�

�
�
�

�
�
�

3-94 (eq. to wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-95 (eq. to 2-17)

�
�
�

�
�
�

�
�
�

�
�
�

3-450 (eq. to wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-451

�
�
�

�
�
�

�
�
�

�
�
�

3-453

Figure 10: Representatives of 24 equivalence classes of 2-state 3-symbol RLEMs [38].

1. Elements equivalent to connecting wires:
This is a degenerate case. For example, the element No. 3-0 in Fig. 10 acts as three
wires that simply connect input and output lines. No. 3-1 is also the case, because
no input makes state-change.

2. Elements equivalent to a simpler element with fewer symbols:
This is also a degenerate case, and reducible to the elements with fewer input/output
symbols. For example, the element No. 3-6 is equivalent to the element No. 2-2 plus
a simple wire.

3. Proper (i.e., non-degenerate) k-symbol elements:
All the RLEMs other than the cases (1) and (2) are “proper” ones.

In Figs. 9 and 10, the cases (1) and (2) are indicated at the upper-right corner of each
box. Total numbers of equivalence classes of non-degenerate 2-state 2-, 3-, and 4-symbol
RLEMs are 4, 14, and 55, respectively [38].

9

2.2.2 The rotary element, and logical universality of RLEMs

The rotary element (RE) [35] is a 2-state 4-symbol RLEM, which is equivalent to the
RLEM No. 4-289 in Example 2.1, defined as follows.

RE = ({ � , � }, {n, e, s, w}, {n′, e′, s′, w′}, δRE)

The move function δRE is given in Table 2.

Input
Present state n e s w

H-state: � � w′ � w′ � e′ � e′

V-state: � � s′ � n′ � n′ � s′

Table 2: The move function δRE of a rotary element RE.

The RE has the following intuitive interpretation. It has two states called H-state (�

) and V-state (�), and four input lines {n, e, s, w} and four output lines {n′, e′, s′, w′}
corresponding to the input and output alphabets (Fig. 11). We can interpret that an RE
has a “rotating bar” to control the moving direction of an input signal (or a particle).
When no particle exists, nothing happens on the RE. If a particle comes from a direction
parallel to the rotating bar, then it goes out from the output line of the opposite side
(i.e., it goes straight ahead) without affecting the direction of the bar (Fig. 12 (a)). If
a particle comes from a direction orthogonal to the bar, then it makes a right turn, and
rotates the bar by 90 degrees counterclockwise (Fig. 12 (b)).

H-state V-state

� �
��

�

��

�

n n′

e

e′

s′ s

w′

w � �
��

�

��

�

n n′

e

e′

s′ s

w′

w

Figure 11: Two states of a rotary element (RE).

t = 0

� �
��

�

��

�

t = 1

� �
��

�

��

�

t = 0

� �
��

�

��

�

t = 1

� �
��

�

��

�
(a) (b)

Figure 12: Operations of an RE: (a) the parallel case, and (b) the orthogonal case.

10

Theorem 2.2 (Morita, et al. [35, 38]) The set {RE} is logically universal.

We can show this theorem by giving a circuit composed only of REs that simulates
a Fredkin gate. Fig. 13 shows one such circuit. In this figure, small triangles represent
delay elements, where the number written inside of them is its delay time. In this circuit,
we assume all the elements works synchronously.

�

�

3

�

�

3

�

�

3

�

�

3

�

�

�

�

�

�

�

�

10

�

1

�

1

�

�

� �

5

�

5 �

� � � � �

p

q

c

x

y

c

Figure 13: A realization of a Fredkin gate out of REs and delay elements [38].

It has been known that not only the RE but also each of “all” the 14 non-degenerate
2-state 3-symbol RLEMs is logically universal.

Theorem 2.3 (Ogiro, et al. [43]) The following 14 sets are logically universal: {No.3-7},
{No.3-9}, {No.3-10}, {No.3-18}, {No.3-23}, {No.3-60}, {No.3-61}, {No.3-63}, {No.3-
64}, {No.3-65}, {No.3-90}, {No.3-91}, {No.3-451}, and {No.3-453}.

For example, logical universality of {No.3-7} is shown by giving a circuit shown in
Fig. 14 composed of RLEM No. 3-7 which realizes a Fredkin gate. In this circuit, some
input/output ports of RLEMs are “open” (i.e., not connected to other ports). We assume
no signal is given to the open input ports. Then, we can see that the open output ports
will give no signal, by checking the operation of the circuit for each case of the inputs c, p,
and q.

On the other hand, it is an open problem whether a single non-degenerate 2-state
2-symbol RLEM is logically universal or not, though {No.2-3, No.2-4} is known to be
logically universal [21].

2.2.3 Building reversible sequential machines by reversible logic elements

As shown in Fig. 7, we can obtain an “almost” garbageless circuit made of Fredkin gates
that realizes a given logic function. But, in this circuit, a small amount of garbage signals
x and ȳ are produced at each step of operations. This causes a problem when we want to
implement sequential machines. However, if we restrict constructed sequential machines
to reversible ones, we can design completely garbageless circuits. Here, a “completely
garbageless” means that it has no extra input/output lines other than true input/output
lines, hence it is a “closed” circuit except the true input/output.

Theorem 2.4 (Morita [31]) For any RSM, there is a completely garbageless circuit com-
posed only of Fredkin gates that simulates the RSM.

11

c

p

q

c

x

y

2

6

4

10

4

2

6

2

Figure 14: A realization of a Fredkin gate out of RLEMs No. 3-7 and delay elements [43].

Since the Fredkin gate can be realized by REs as in Fig. 13, we can also construct
a completely garbageless circuit composed of REs. But, this is not a clever method,
because several REs are needed to simulate only one Fredkin gate. There is a very simple
construction method of a completely garbageless circuit composed of REs that simulates
an RSM.

Theorem 2.5 (Morita [37]) For any RSM, there is a completely garbageless circuit com-
posed only of REs that simulates the RSM.

We explain the method below. First consider a circuit composed of k + 1 REs shown
in Fig. 15, called an RE-column. In a resting state, each RE in the RE-column is in the
vertical state except the bottom one indicated by x. If x is in the horizontal state, the
RE-column is called in the marked state, otherwise unmarked state. It can be regarded as
if it is a 2-state RSM with 2k input symbols {l1, · · · , lk, r1, · · · , rk} and 2k output symbols
{l′1, · · · , l′k, r′1, · · · , r′k}, though it has many transient states. Its move function is shown
in Table 3.

x

···

···
�

�

�

�

�

�

�

�

��

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�l′1

l1

l′i
li

l′k
lk

r1
r′1

ri

r′i

rk

r′k

Figure 15: An RE-column.

If an RE-column is in the unmarked state and a signal is given to li, then the signal
goes out from r′i without changing the state. Hence, in this case, the signal goes rightward

12

Input
State x li ri

� (marked) � l′i � l′i
� (unmarked) � r′i � r′i

Table 3: The move function of the RE-column regarded as a 2-state RSM.

through the RE-column as if nothing happened. On the other hand, if the RE-column is
in the marked state, then the signal goes out from l′i changing the state into unmarked.
Therefore, if we connect many RE-columns in a row, and give a signal to li of the leftmost
RE-column, we can find the leftmost marked RE-column. This can be used as a kind of
decoder to find the combination of a state and an input of an RSM.

If an RE-column is in the unmarked state and a signal is given to ri, then the signal
goes out from r′i changing the state to the marked one. This property can be used as a
kind of encoder to set the next state of the RSM and to give an appropriate output.

Input
State a1 a2

q1 q2b1 q3b2
q2 q2b2 q1b1
q3 q1b2 q3b1

Table 4: A move function δ1 of an RSM M1.

We consider an example of an RSM M1 = ({q1, q2, q3}, {a1, a2}, {b1, b2}, δ1), and show
how to make a completely garbageless circuit that simulates M1. Its move function δ1
is given in Table 4. Prepare three RE-columns with k = 2, each of which corresponds
to each state of M1, and connect them as shown in Fig. 16. The leftmost input lines l1
and l2 correspond to the input symbols a1 and a2. The rightmost output lines r′1 and
r′2 correspond to the output symbols b1 and b2. The output line l′i of each column is
connected to an input line rj of an appropriately chosen RE-column according to δ1. If
M1 is in the state q1, then only the first RE-column is set to the marked state. If an
input signal comes from a1, then the signal first goes out from l′1 of the first RE-column,
setting this column to the unmarked state. Then, this signal enters the second column
from r1. This makes this column marked, and finally goes out from the output line b1,
which realizes δ1(q1, a1) = (q2, b1). Likewise, if M1 is in q1 and a signal is given to a2,
then it goes out from l′2 of the first column, setting this column unmarked. The signal
enters the third column from r2, making this column marked. Finally it goes out from b2,
which realizes δ1(q1, a2) = (q3, b2). Note that, even if each RE operates asynchronously,
the circuit works correctly, because only one signal exists when it is operating.

It is easily seen that the above method can be generalized to construct any RSM by
REs. In fact, any RSM can be realized by decoding, permuting, and encoding operations,
and the above circuit composed of REs simply does them.

13

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � �

� � � �
�

��

�

�

�

q1 q2 q3

a1

a2

b1

b2

q1a1

q1a2

q2a1

q2a2

q3a1

q3a2

Figure 16: A garbage-less circuit made of REs that simulates an RSM M1.

2.3 Realization by the Billiard Ball Model (BBM)

The Billiard Ball Model (BBM) is a reversible physical model of computing proposed
by Fredkin and Toffoli [11]. It is an idealized mechanical model consisting of balls and
reflectors (Fig. 17). Balls can collide with other balls or reflectors. It is assumed that
collisions are elastic, and there is no friction. Although it is impossible to realize BBM
as a real hardware, it is very insightful that a universal computer can be constructed
in such a manner. Margenstern [22] showed this realization requires an infinite initial
configuration.

� �

Figure 17: The Billiard Ball Model (BBM).

2.3.1 BBM realization of the Fredkin gate

The Fredkin gate is realizable in BBM in the following way [11]. Firstly, we need other
reversible logic gates called the switch gate and its inverse. It is a 2-input 3-output
gate shown in Fig. 18, which realizes the one-to-one logic function (c, x) �→ (c, cx, c̄x).
The inverse switch gate is a 3-input 2-output gate whose logic function is defined only
on {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)} (otherwise, it cannot be a reversible gate), and it
is the inverse function of the switch gate. The Fredkin gate can be built from switch
gates and inverse switch gates as in Fig. 19 (in [11] it is noted that this circuit is due
to R. Feynman and A. Ressler). Fig. 20 shows how the switch gate is realized in BBM.
Therefore, the Fredkin gate is also implemented in BBM.

14

c

x

�

�

�
�

�

c
cx

c̄x

Figure 18: The switch gate.

c

p

q

�

�

�

�

�

�

c

cp + c̄q

c̄p + cq

cp

c̄p c̄q

cq

c̄p c̄q

cp

Figure 19: The Fredkin gate made of two switch gates and two inverse switch gates.

2.3.2 BBM realization of the rotary element

Here, we show a new realization method of an RE in BBM, which is much simpler than
the case of the Fredkin gate. Fig. 21 gives a configuration of BBM that can simulate
an RE. It consists of one stationary ball, and many reflectors that are shown by small
rectangles. If a stationary ball is put at the position V (or H, respectively), then we
regard it is in the V-state (H-state). In Fig. 21, trajectories of balls for all the cases of
operations are written.

Fig. 22 shows the case that the RE is in the V-state and the input signal is given
to s (it corresponds to the case (a) in Fig. 12). In this case, incoming (i.e., dark) ball
simply goes straight ahead interacting neither with the stationary (i.e., white) ball nor
with reflectors, and finally comes out from the output line n′. This is the trivial case.

Fig. 23 shows the case that the RE is in the H-state and the input signal is given to
s (it corresponds to the case (b) in Fig. 12). The dark ball collides with the white ball,
and they travel along the trajectories s0 and s1. Then the balls again collide. By this, the
white one stops at the position V, while the dark one travels rightward and finally goes
out from e′. Note that the second collision is a reverse process of the first collision.

An advantage of this method is that, in a resting state, the ball in this configuration
is stationary. Therefore, the incoming ball can reach it at any moment and with any
velocity, hence there is no need to synchronize the two balls. Therefore, it can be used in
an “asynchronous” mode as discussed in section 2.2.3. In the case of the BBM realization
of the Fredkin gate shown in the previous section, a lot of balls must be synchronized
precisely, and have exactly the same velocity. It is indeed extremely difficult.

One may think it is still impossible to implement an RE by a real mechanical hardware
of BBM. However, considering the role of the stationary ball in this method, it need not
be a movable particle, but can be a state of some stationary object, such as a quantum
state of an atom or like that. The incoming ball can be a moving particle something
like a photon, and there may be no need to adjust the arrival timing. So, this method
suggests that there will be a possibility to implement an RE in a real physical system
with reversibility.

15

�

�
�

�

�

�

�

�

x

c

c

cx

cx

Figure 20: A BBM realization of the switch gate [11].

V

H

n n′

e

e′

ss′

w

w′

�

�

	

�

	

�

�

�

n1

�

�

�

	
�

	

�

	

n0

�

�

	

�

�

�

	

e1

�

�

�

�

e0

�

�

�

�

�

	

�

s1

�

	

�

	

�

�

s0

�

�

�

�

�

�

�

w1

�

�

�

�

w0

�

Figure 21: A rotary element (RE) realized in BBM.

�

�

�

��
n n′

e

e′

ss′

w

w′

V

⇒

�

�

�

��
n n′

e

e′

ss′

w

w′

V

Figure 22: Simulating the parallel case of the operation of an RE. It corresponds to the
case (a) in Fig. 12.

16

�

�

�

�
n n′

e

e′

ss′

w

w′

H

�

�

�

�

	

�

s1

�

	

�

	

�

�

s0

⇒

�

�

�

�
n n′

e

e′

ss′

w

w′

H

�

�

�

�

	

�

s1

�

	

�

	

�

�

s0

⇒

�

�

�

�
n n′

e

e′

ss′

w

w′

�

�

�

�

	

�

s1

�

	

�

	

�

�

s0

⇒

�

�

�

�
n n′

e

e′

ss′

w

w′

�

�

�

�

	

�

s1

�

	

�

	

�

�

s0

⇒

�

�

�

�
n n′

e

e′

ss′

w

w′

V

�

�

�

�

	

�

s1

�

	

�

	

�

�

s0

⇒

�

�

�

�
n n′

e

e′

ss′

w

w′

V

�

�

�

�

	

�

s1

�

	

�

	

�

�

s0

Figure 23: Simulating the orthogonal case of the operation of an RE. It corresponds to
the case (b) in Fig. 12.

17

3 Reversible Turing machines

In this section, we discuss reversibility in computing mainly from the system level rather
than the element level. Since a Turing machine is the standard model in the traditional
theory of computing, it is convenient to study first a reversible Turing machine (RTM)
among various reversible systems. Lecerf [20] first investigated RTMs, and showed un-
solvability of the halting problem and some related problems on them. Bennett [4, 5, 6]
studied them from the standpoint of thermodynamics of computing. He showed that every
irreversible Turing machine (TM) can be simulated by an RTM with three tapes without
leaving garbage information on the tapes when it halts. Hence, garbageless RTMs are
computation-universal. We shall also see that RTMs can be built from reversible logic
elements. In particular, Morita [35] showed that any RTM can be implemented very sim-
ply as a garbageless circuit made of REs. Finally, we show that there are rather small
universal RTMs [39].

3.1 Reversible Turing machines and their universality

3.1.1 Definitions on reversible Turing machines

When Bennett [4] introduced an RTM, a quadruple formulation was used, because an
“inverse” TM for a given RTM is easily defined. He used it to obtain an RTM that
performs garbageless computation.

Definition 3.1 A 1-tape Turing machine in the quadruple form is defined by

T4 = (Q,S, q0, qf , s0, δ),

where Q is a non-empty finite set of states, S is a non-empty finite set of symbols, q0 is
an initial state (q0 ∈ Q), qf is a final (halting) state (qf ∈ Q), s0 is a special blank symbol
(s0 ∈ S). δ is a move relation, which is a subset of (Q×S×S×Q)∪(Q×{/}×{−, 0,+}×
Q). Each element of δ is a quadruple of the form either [p, s, s′, q] ∈ (Q × S × S × Q)
or [p, /, d, q] ∈ (Q × {/} × {−, 0,+} × Q). The symbols “−”, “0”, and “+” stand for
“left-shift”, “zero-shift”, and “right-shift”, respectively. [p, s, s′, q] means if T4 reads the
symbol s in the state p, then write s′ and go to the state q. [p, /, d, q] means if T4 is in p,
then shift the head to the direction d and go to the state q.

T4 is called a deterministic Turing machine iff the following condition holds for any
pair of distinct quadruples [p1, b1, c1, q1] and [p2, b2, c2, q2] in δ. (Since we deal with only
deterministic TMs here, we omit the word “deterministic” hereafter.)

If p1 = p2, then b1 �= / ∧ b2 �= / ∧ b1 �= b2.

T4 is called a reversible Turing machine (RTM) iff the following condition holds for
any pair of distinct quadruples [p1, b1, c1, q1] and [p2, b2, c2, q2] in δ.

If q1 = q2, then b1 �= / ∧ b2 �= / ∧ c1 �= c2.

18

It is easy to see that, if a TM satisfies the above definition of reversibility, then every
computational configuration of the TM has at most one predecessor. On the other hand,
if there is a pair of distinct quadruples that does not satisfy the above condition, then we
can easily find a pair of distinct computational configurations that transit to the same
configuration at the next time step. Hence, the above definition exactly characterizes the
notion of an “injective” TM where every computational configuration has at most one
predecessor.

Definition 3.1 can be extended to multi-tape RTMs. For example, a 2-tape TM is
defined by

T = (Q, (S1, S2), q0, qf , (s1,0, s2,0), δ).

A quadruple in δ is either of the form [p, [s1, s2], [s
′
1, s

′
2], q] ∈ (Q×(S1×S2)×(S1×S2)×Q)

or of the form [p, /, [d1, d2], q] ∈ (Q × {/} × {−, 0,+}2 × Q). Reversibility is defined as
follows, which is similar as above. T is called reversible iff the following condition holds
for any pair of distinct quadruples [p1, X1, [b1, b2], q1] and [p2, X2, [c1, c2], q2] in δ.

If q1 = q2, then X1 �= / ∧ X2 �= / ∧ [b1, b2] �= [c1, c2].

Next, we give a quintuple formulation of RTMs compatible with the quadruple for-
mulation. Because, classical TMs are usually defined in the quintuple formulation, and
hence convenient to compare with them (e.g., comparing the sizes of universal TMs and
universal RTMs).

Definition 3.2 A 1-tape Turing machine in the quintuple form is defined by

T5 = (Q,S, q0, qf , s0, δ),

where Q,S, q0, qf , s0 are the same as in Definition 3.1. δ is a move relation, which is a
subset of (Q × S × S × {−, 0,+} × Q). Each element of δ is a quintuple of the form
[p, s, s′, d, q]. It means if T5 reads the symbol s in the state p, then write s′, shift the head
to the direction d, and go to the state q.

T5 is called deterministic iff the following condition holds for any pair of distinct
quintuples [p1, s1, s

′
1, d1, q1] and [p2, s2, s

′
2, d2, q2] in δ.

If p1 = p2, then s1 �= s2.

T5 is called reversible iff the following condition holds for any pair of distinct quintuples
[p1, s1, s

′
1, d1, q1] and [p2, s2, s

′
2, d2, q2] in δ.

If q1 = q2, then s′1 �= s′2 ∧ d1 = d2.

The above definition of reversibility says that, for any pair of quintuples, if the next
states are the same, then the shift directions should be the same and the written symbols
should be different. Therefore, also in the quintuple case, if the above condition holds,
then each computational configuration of the TM has at most one predecessor, and vice
versa. Thus, it exactly characterizes an injective TM. Furthermore, it is also easy to
show that any RTM in the quintuple form can be simulated by an RTM in the quadruple
form, and vice versa [39]. Hence, in this sense, these two definitions of reversibility are
equivalent.

19

3.1.2 Universality of garbageless reversible Turing machines

When given an irreversible TM, it is relatively easy to construct an RTM that simulates
the former. The RTM simply writes down all the history of the computation process
of the irreversible TM on an additional tape. By using this information the RTM can
go back its computing process at any time. But, it leaves a large amount of garbage
information besides the true output on the tape when it halts. Discarding the garbage is,
in fact, an irreversible operation, hence we should give a method of dealing with garbage
information.

Theorem 3.1 (Bennett [4]) For any irreversible 1-tape TM T , we can construct a garbage-
less 3-tape RTM T ′ that simulates the former and gives only an input string and an output
string on the tapes when it halts.

An outline of the RTM T ′ is as follows. The first tape is a working tape on which
the tape of T is simulated. The second tape is a history tape on which the number of
the executed quadruple (or quintuple) of T is written at each simulation step. The third
tape is an output tape on which the result of the computation by T is copied. T ′ first
simulates T recording the computation history on the history tape. If T halts, then T ′

copies the result on the working tape to the output tape. Then T ′ performs the “backward
computation” reversibly erasing the history tape.

Example 3.1 Let us consider the irreversible TM Terase.

Terase = ({q0, q1, q2, q3, q4, qf}, {0, 1, 2}, q0, qf , 0, δerase)
δerase = { 1 : [q0, /,+, q1], 2 : [q1, 0, 0, q4], 3 : [q1, 1, 1, q2], 4 : [q1, 2, 1, q2],

5 : [q2, /,+, q1], 6 : [q3, 0, 0, qf], 7 : [q3, 1, 1, q4], 8 : [q4, /,−, q3] }
If an input string consisting of 1’s and 2’s is given to Terase, it changes all 2’s into 1’s,
and halts as in Fig. 24). The RTM T ′

erase simulates Terase with the input 122 as shown in
Fig. 25.

�
q0

0 1 2 2 0 0

t = 0
�

qf

0 1 1 1 0 0

t = 16

Figure 24: The initial and the final configuration of Terase for the input 122.

The RTM in Theorem 3.1 uses large amount of space, which is proportional to the
time that the simulated TM uses. Bennett [7] showed a method for reducing space in the
following space-time trade-off theorem.

Theorem 3.2 (Bennett [7]) For any ε > 0, and for any irreversible TM using time T
and space S, we can construct an RTM that simulates the former in time O(T 1+ε) and
space O(S log T).

20

q0 t = 0

� Working tape
0 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� History tape
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� Output tape
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q1 t = 10

�
0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�
0 1 3 5 4 5 0 0 0 0 0 0 0 0 0 0 0 0

�
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

qf t = 32

�
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�
0 1 3 5 4 5 4 5 2 8 7 8 7 8 7 8 6 0

�
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pf t = 49

�
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�
0 1 3 5 4 5 4 5 2 8 7 8 7 8 7 8 6 0

�
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p1 t = 71

�
0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�
0 1 3 5 4 5 0 0 0 0 0 0 0 0 0 0 0 0

�
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p0 t = 81

� Working tape
0 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� History tape
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� Output tape
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25: Simulating Terase with the input 122 by the garbageless RTM T ′
erase: the forward

computation stage (from t = 0 to t = 32), the copying stage (from t = 33 to t = 48), and
the backward computation stage (from t = 49 to t = 81).

3.2 Building reversible Turing machines by rotary elements

We saw any RSM can be constructed by using REs as a completely garbageless circuit
(Theorem 2.5). Since a finite-state control and a tape cell of an RTM are formalized as
RSMs, it is possible to construct any RTM by REs. A detailed construction method is
shown in [35]. Here, we only give an example.

Example 3.2 Consider an RTM Tparity = (Q, {0, 1}, q0, qa, 0, δ), where Q = {q0, q1, q2, q3,
q4, qa, qr}, and δ is as below.

δ = { [q0, 0, 1, q1], [q1, /,+, q2], [q2, 0, 1, qa], [q2, 1, 0, q3],
[q3, /,+, q4], [q4, 0, 1, qr], [q4, 1, 0, q1] }.

Tparity checks if a given unary number n is even or odd. If it is even, Tparity halts in
the accepting state qa, otherwise halts in the state qr. All the symbols read by Tparity are
complemented as in Fig. 26. A garbageless reversible logic circuit composed only of REs
that simulates Tparity is shown in Fig. 27.

21

t = 0
�

q0

0 0 1 1 0 0 t = 7
�

qa

0 1 0 0 1 0

Figure 26: The initial and the final configuration of Tparity for a given unary input 11.

�����
� � � � �

�
���

� � �

��
� �

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �� � � �• �
Begin

�Accept

�Reject

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

� �

��

��

� �

� �

��

� �

��

� �

��

��

� �

� �

� �
��

�
�

�
�

�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

� �

��

��

� �

� �

��

� �

��

� �

��

��

� �

� �

� �
��

�
�

�
�

�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

� �

��

��

� �

� �

��

� �

��

� �

��

��

� �

� �

� �
��

�
�

�
�

�

�

�
�

�
�

�
�

�

�

�

• • •

Figure 27: A garbageless circuit composed only of REs that simulates the RTM Tparity

There is a finite-state control in the left part of Fig. 27 . To the right of it, infinitely
many copies of a tape cell module are connected. This circuit is closed except the Begin,
Accept, and Reject ports. Setting the initial states of tape cell modules, and then giving a
signal from Begin port, it starts to compute. If the RTM halts in the accepting state qa (or
rejecting state qr, respectively), a signal goes out from the Accept (Reject) port, leaving an
answer in the tape cell modules.

This circuit is further implemented in BBM by the method shown in section 2.3.2. In
this case, many stationary balls are put at appropriate positions in a circuit composed of
a lot of reflectors. Then, a moving ball is given to the Begin port at any time and in any
speed. When the computation terminates, the moving ball will go out from the Accept or
the Reject port.

22

3.3 A small universal reversible Turing machine

By Theorem 3.1, we know the existence of a universal RTM (URTM) that can compute
any recursive function. But, if we convert a classical (irreversible) UTM to a URTM,
its size becomes large. To obtain a small URTM, we need some additional framework.
In the classical case, most small UTMs simulates a 2-tag system [26], a kind of string
rewriting system with computation-universality. In the case of RTM, a 17-state 5-symbol
URTM is obtained by Morita and Yamaguchi [39] by simulating a cyclic tag system
(CTAG) defined by Cook [9], which is also a very simple string rewriting system with
computation-universality. Note that Woods and Neary [51] also use CTAGs to design
small semi-weakly UTMs.

3.3.1 Cyclic tag systems

In the original definition of a cyclic tag system by Cook [9], the notion of halting was not
defined explicitly. To deal with halting of a URTM, we use here a modified definition of
it that can simulate a 2-tag system with the halting property [39].

Definition 3.3 A cyclic tag system (CTAG) is defined by

C = (k, {Y,N}, (halt, p1, · · · , pk−1)),

where k (k = 1, 2, · · ·) is the length of a cycle (i.e., period), {Y,N} is the (fixed) alphabet,
and (p1, · · · , pk−1) ∈ ({Y,N}∗)k−1 is a (k − 1)-tuple of production rules. A pair (v,m) is
called an instantaneous description (ID) of C, where v ∈ {Y,N}∗ and m ∈ {0, · · · , k−1}.
m is called a phase of the ID. A halting ID is an ID of the form (Y v, 0) (v ∈ {Y,N}∗).
The transition relation ⇒ is defined as follows. For any (v,m), (v′, m′) ∈ {Y,N}∗ ×
{0, · · · , k − 1},

(Y v,m) ⇒ (v′, m′) iff [m �= 0] ∧ [m′ = m+ 1 mod k] ∧ [v′ = vpm],
(Nv,m) ⇒ (v′, m′) iff [m′ = m+ 1 mod k] ∧ [v′ = v].

A sequence of IDs ((v0, m0), · · · , (vn, mn)) is called a complete computation starting from
v ∈ {Y,N}∗ iff (v0, m0) = (v, 0), (vi, mi) ⇒ (vi+1, mi+1) (i = 0, 1, · · · , n−1), and (vn, mn)
is a halting ID.

In a CTAG, rewriting of a string is performed as follows. Assume the present phase is
m(�= 0). If the first symbol of the string is Y , then remove it, and attach pm at the end
of the string. If it is N , then simply remove it. If m = 0 and the first symbol is Y , then
halt.

Example 3.3 Consider the CTAG C1 = (3, {Y,N}, (halt, Y N, Y Y N)). The complete
computation starting from NY Y is (NY Y, 0) ⇒ (Y Y, 1) ⇒ (Y Y N, 2) ⇒ (Y NY Y N, 0).

23

3.3.2 Simulating cyclic tag systems by a reversible Turing machine

The history of the study of universal Turing machines (UTMs) is long. So far the follow-
ing (irreversible) UTMs have been found, where UTM(m,n) denotes an m-state n-symbol
UTM: a UTM(7,4) by Minsky [26], a UTM(24,2), a UTM(10,3), a UTM(7,4), a UTM(5,5),
a UTM(4,6), a UTM(3,10) and a UTM(2,18) by Rogozhin [46], a UTM(19,2) by Baioc-
chi [3], a UTM(3,9) by Kudlek and Rogozhin [18], a UTM(5,5), a UTM(6,4), a UTM(9,3),
and a UTM(18,2) by Neary and Woods [42], etc.

As for URTMs, Morita and Yamaguchi [39] showed that there is a 17-state 5-symbol
URTM (URTM(17,5)) with 67 quintuples. Here, we newly show a URTM(15,6) with 62
quintuples that is constructed by a similar technique as in the URTM(17,5).

Theorem 3.3 There is a 15-state 6-symbol URTM (URTM(15,6)) with 62 quintuples
that can simulate any CTAG.

A URTM(15,6) T15,6 that simulates any CTAG is as follows.

T15,6 = ({q0, · · · , q14}, {b, Y,N, ∗, $, 1}, q0, b, δ),
where the set δ of quintuples is shown in Table 5. (Note that, generally, the final state is
usually omitted from the state set in the construction of a UTM.) If a CTAG halts with
a halting ID, then T15,6 halts in the state q1. If the string becomes an empty string, then
it halts in the state q2. In Table 5, it is indicated by “null”.

b Y N ∗ $ 1
q0 $− q2 $− q1 b− q11

q1 halt Y − q1 N − q1 ∗+ q0 b− q1
q2 ∗− q3 Y − q2 N − q2 ∗− q2 null
q3 b+ q10 1 + q4 b+ q5 b+ q8
q4 Y + q6 Y + q4 N + q4 ∗+ q4 $ + q4
q5 N + q6 Y + q5 N + q5 ∗+ q5 $ + q5
q6 b− q7
q7 N − q3 Y − q7 N − q7 ∗− q7 $− q7 Y − q3
q8 Y + q8 N + q8 ∗+ q8 $ + q9
q9 Y + q9 N + q9 ∗+ q9 Y + q0
q10 Y + q10 N + q10 ∗+ q10 $− q3
q11 ∗− q12 Y − q11 N − q11 ∗− q11 $− q11

q12 b+ q14 Y − q12 N − q12 b+ q13

q13 N + q0 Y + q13 N + q13 ∗+ q13 $ + q13

q14 Y + q14 N + q14 ∗+ q14 $− q12

Table 5: The set of quintuples of the URTM T15,6.

Fig. 28 shows how the CTAG C1 with the initial string NY Y in Example 3.3 is simu-
lated by the URTM T15,6. On the tape of the URTM, the production rules (halt, NY, Y Y N)
of C1 are expressed by the reversal sequence over {Y,N, ∗}, i.e., NY Y ∗ Y N ∗ ∗, where ∗

24

q0

�

t = 0
The rules of the CTAG C1 A given string

b N Y Y * N Y * b $ N Y Y b b b b b b

q13

�

t = 6

b N Y Y * N Y b * $ b Y Y b b b b b b

q9

�

t = 59

b N Y Y b N Y * * $ N $ Y Y N b b b b

q9

�

t = 178

b N Y Y * N Y * b $ N Y $ Y N Y Y N b

q1

�

t = 184 The final string

b N Y Y * N Y * b b N Y Y $ N Y Y N b

Figure 28: Simulating the CTAG C1 in Example 3.3 by the URTM T15,6.

is used as a delimiter between rules, and “halt” is represented by the empty string. Note
that in the initial tape of T15,6 (t = 0), the rightmost ∗ is replaced by b. This indicates
that the phase is 0. In general, if the phase is i − 1, then the i-th ∗ from the right is
replaced by b. This symbol b is called a “phase marker.” On the other hand, the given
initial string for C1 is placed to the right of the rules, where $ is used as a delimiter.

The IDs in the complete computation (NY Y, 0) ⇒ (Y Y, 1) ⇒ (Y Y N, 2) ⇒
(Y NY Y N, 0) of C1 appear in the computational configurations of T15,6 at t = 0, 6, 59
and 178, respectively. The symbol $ in the final string (t = 184) should be regarded as
Y .

It is easy to see that T15,6 is reversible by checking the set of quintuples shown in Table 5
according to the definition of an RTM. Intuitively, its reversibility is guaranteed from the
fact that no information is erased in the whole simulation process. Furthermore, every
branch of the program caused by reading the symbol Y or N is “merged reversibly” by
writing the original symbol. For example, the states q9 and q13 transit to the same state q0
by writing Y and N , respectively, using the quintuples [q9, $, Y,+, q0] and [q13, b, N,+, q0].
Although there are many open boxes in Table 5, it is in general difficult to compress the
table while keeping the machine reversible.

25

4 Reversible cellular automata

Historically, Moore [27] and Myhill [41] first studied a problem having a relation to re-
versible cellular automata (RCAs). In particular, they studied the Garden-of-Eden prob-
lem that is closely related to injectivity and surjectivity of global functions of CAs. Since
then, problems on injectivity and surjectivity have been studied more generally by many
researchers [1, 24, 25, 45].

From the viewpoint of reversible computing RCAs are important, because they can be
regarded as abstract spatio-temporal models of reversible physical space. It is especially
interesting to see how complex functions such as computation-universality emerges from
simple reversible local transition rules.

4.1 Definitions and basic properties

4.1.1 Cellular automata and reversibility

Definition 4.1 A deterministic k-dimensional m-neighbor cellular automaton (CA) is a
system defined by

A = (Zk, Q, (n1, · · · , nm), f,#),

where Z is the set of all integers (hence Z
k is the set of all k-dimensional points with integer

coordinates at which cells are placed), Q is a non-empty finite set of states of each cell,
(n1, · · · , nm) is an element of (Zk)m called a neighborhood (m = 1, 2, · · ·), f : Qm → Q
is a local function, and # ∈ Q is a quiescent state satisfying f(#, · · · ,#) = #.

A k-dimensional configuration over the set Q is a mapping α : Z
k → Q. Let Confk(Q)

denote the set of all k-dimensional configurations over Q, i.e., Confk(Q) = {α |α : Z
k →

Q}. If k is understood, we write it by Conf(Q). We say that a configuration α is finite
iff the set {x | x ∈ Z

k ∧ α(x) �= #} is finite. Otherwise, it is called infinite.
The global function F : Conf(Q) → Conf(Q) of A is defined as the one that satisfies

the following formula.

∀α ∈ Conf(Q), x ∈ Z
k : F (α)(x) = f(α(x+ n1), · · · , α(x+ nm))

We then give notions of injectivity and invertibility of a CA.

Definition 4.2 Let A = (Zk, Q, (n1, · · · , nm), f,#) be a CA. (1) A is called an in-
jective CA iff F is one-to-one. (2) A is called an invertible CA iff there is a CA
A′ = (Zk, Q,N ′, f ′,#) that satisfies the following condition.

∀α, β ∈ Conf(Q) : F (α) = β iff F ′(β) = α,

where F and F ′ are the global functions of A and A′, respectively.

We can derive the following theorem from the results independently shown by Hed-
lund [12], and Richardson [45].

Theorem 4.1 (Hedlund [12] and Richardson [45]) Let A be a CA. A is injective iff it is
invertible.

26

By this theorem, we can see injectivity and invertibility in CAs are equivalent. Here-
after, we use the terminology “reversible CA” (RCA) rather than injective or invertible
CA.

Note that in the case of reversible logic elements or RTMs, reversibility implies in-
vertibility almost trivially from their definitions (where “invertibility” means there is an
inverse logic element or an inverse RTM that undoes a computation by the original one).
Therefore, the notion of reversibility can be directly defined for these models without
introducing invertibility. On the other hand, since injectivity of a CA is defined on its
global function, which is a mapping from configurations to configurations, it is not a trivial
problem whether there is an inverse CA. Hence there was a need to introduce invertibility.

4.1.2 Block cellular automata and partitioned cellular automata

Since we want to find interesting RCAs here, we need design methods for RCAs. But, it
is difficult to construct an RCA with a desired property. This is because the following
reason. Kari [16] showed that it is undecidable whether a given two-dimensional CA is
reversible or not (it also holds for the higher dimensional case). Therefore, we have to
find some decidable subclass of RCAs. Otherwise, designing two-dimensional RCAs will
be extremely difficult.

For the case of one-dimensional CA, Amoroso and Patt [2] showed that reversibility is
decidable for one-dimensional CAs, and gave a decision algorithm. There are also several
studies on enumerating all reversible one-dimensional CAs (e.g., [8, 28]). But, it is still
impractical to use the decision algorithm for the design of RCAs, since it is not so easy
to test reversibility of a given CA.

So far, several special frameworks are proposed for designing RCAs. They are, for
example, CAs with block rules [23, 50], partitioned CAs [30], CAs with second order rules
[23, 50].

Margolus [23] proposed a “block CA,” which is often called a CA with Margolus
neighborhood. In his original model, cells are grouped into blocks of size 2 × 2 as shown
in Fig. 29. He proposed a specific set of local transformation rules, i.e., “block rules,”
shown in Fig. 30. This CA evolves as follows: At time 0 the local transformation is applied
to every solid line block, then at time 1 to every dotted line block, and so on, alternatively.
Since this transformation is one-to-one, we can uniquely retrieve the previous configuration
provided that the parity of time is given. In this way, one can obtain reversible CAs,
by giving one-to-one block rules. However, CAs with Margolus neighborhood are not
conventional CAs, because each cell should know the relative position in a block and the
parity of time besides its own state.

Figure 29: A cellular space with the Margolus neighborhood.

27

→ →

→ →

→ →

Figure 30: Block rules for the Margolus RCA [23]. (Rotation-symmetry is assumed here.
Hence, rules obtained by rotating both sides of a rule are also included.)

Partitioned cellular automata (PCA) has some similarity to block CAs. But, resulting
reversible CAs are in the framework of conventional CA (in other words, a PCA is a special
subclass of a CA). In addition, flexibility of neighborhood is rather high. Shortcomings
of PCA is that the number of states per cell becomes large.

Definition 4.3 A deterministic k-dimensional m-neighbor partitioned cellular automa-
ton (PCA) is a system defined by

P = (Zk, (Q1, · · · , Qm), (n1, · · · , nm), f, (#, · · · ,#)),

where Z is the set of all integers, Qi (i = 1, · · · , m) is a non-empty finite set of states
of the i-th part of each cell (thus the state set of each cell is Q = Q1 × · · · × Qm),
(n1, · · · , nm) ∈ (Zk)m is a neighborhood, f : Q→ Q is a local function, and (#, · · · ,#) ∈
Q is a quiescent state satisfying f(#, · · · ,#) = (#, · · · ,#).

The notion of a (finite or infinite) configuration is defined similarly as in CA. Let pi :
Q → Qi be the projection function such that pi(q1, · · · , qm) = qi for all (q1, · · · , qm) ∈ Q.
The global function F : Conf(Q) → Conf(Q) of P is defined as the one that satisfies the
following formula.

∀α ∈ Conf(Q), x ∈ Z
k : F (α)(x) = f(p1(α(x+ n1)), · · · , pm(α(x+ nm)))

By the above definition, a one-dimensional radius 1 (3-neighbor) PCA P1d can be
defined as follows.

P1d = (Z, (L,C,R), (1, 0,−1), f, (#,#,#))

Each cell is divided into three parts, i.e., left, center, and right parts, and their state
sets are L,C, and R. The next state of a cell is determined by the present states of the
left part of the right-neighbor cell, the center part of this cell, and the right part of the
left-neighbor cell (not depending on the whole three parts of the three cells). Fig. 31
shows its cellular space, and how the local function f works.

Let (l, c, r), (l′, c′, r′) ∈ L×C ×R. If f(l, c, r) = (l′, c′, r′), then this equation is called
a local rule (or simply a rule) of the PCA P1d, and it is sometimes written in a pictorial
form as shown in Fig. 32. Note that, in the pictorial representation, the arguments of the
lefthand side of f(l, c, r) = (l′, c′, r′) appear in a reverse order.

28

L L LC C CR R R

t

t + 1

i − 1 i i + 1

︸ ︷︷ ︸

︷ ︸︸ ︷
�f

Figure 31: Cellular space of a one-dimensional 3-neighbor PCA P1d, and its local function
f .

r c l � l′ c′ r′

Figure 32: A pictorial representation of a local rule f(l, c, r) = (l′, c′, r′) of a one-
dimensional 3-neighbor PCA P1d.

A k-dimensional PCA is also defined similarly. Let

P = (Zk, (Q1, · · · , Qm), (n1, · · · , nm), f, (#1, · · · ,#m))

be a k-dimensional PCA, and F be its global function. Then, it is easy to show the
following proposition (a proof for the one-dimensional case given in [30] can be extended
to higher dimensions).

Proposition 4.1 Let P be a PCA, and f and F be its local and global functions. Then,
f is one-to-one iff F is one-to-one.

It is also easy to see that the class of PCAs is a subclass of CAs. More precisely, for
any k-dimensional m-neighbor PCA P , we can obtain a k-dimensional m-neighbor CA A
whose global function is identical with that of P , by extending the domain of the local
function of P . By above, if we want to construct an RCA, it is sufficient to give a PCA
whose local function f is one-to-one. This makes a design of an RCA feasible.

4.1.3 Simulating irreversible CAs by reversible ones

Toffoli [47] first showed that for every irreversible CA there exists a reversible one that
simulates the former by increasing the dimension by one.

Theorem 4.2 (Toffoli [47]) For any k-dimensional (irreversible) CA A, we can construct
a k + 1-dimensional RCA A′ that simulates A.

From this result, computation-universality of two-dimensional RCA is derived, since
it is easy to embed a Turing machine in an (irreversible) one-dimensional CA. In the next
section, we shall see this result is improved, i.e., one-dimensional RCA is computation-
universal.

29

4.2 1-D universal reversible cellular automata

4.2.1 Simulating reversible Turing machines

It is possible to show computation-universality of one-dimensional (1-D) RCAs by con-
structing RCAs that can simulate reversible Turing machines directly.

It is shown in [29] that for any irreversible one-tape TM, there is a reversible one-tape
two-symbol TM which simulates the former. In fact, to prove computation-universality
of a 1-D PCA, it is convenient to simulate a reversible one-tape TM.

Theorem 4.3 (Morita and Harao [30]) For any reversible one-tape Turing machine
T , there is a 1-D reversible PCA P that simulates the former. Hence, 1-D RCA is
computation-universal.

In [30] T is given in the quadruple form, but here we assume the quintuple form.
Hence, the method of constructing P is slightly modified. Let T = (Q,S, q0, qf , s0, δ) be
a reversible one-tape TM in the quintuple form. We assume that q0 does not appear as
the fifth element in any quintuple in δ (because we can always construct such a reversible
TM from an irreversible one [29]). We can also assume there is no quintuple of the
form [p, s, t, 0, q] in δ. A reversible PCA P = (Z, (L,C,R), (1, 0,−1), f, (#, s0,#)) that
simulates T is as follows. The state sets L,C, and R are:

L = R = Q ∪ {#}, C = S ∪ Ŝ,
where Ŝ = {ŝ | s ∈ S}. Let Q+ = {q | ∃p ∈ Q ∃s, t ∈ S ([p, s, t,+, q] ∈ δ)}, Q− =
{q | ∃p ∈ Q ∃s, t ∈ S ([p, s, t,−, q] ∈ δ)}, and QH = {p | ¬ (∃q ∈ Q ∃s, t ∈ S ∃d ∈
{−,+} ([p, s, t, d, q] ∈ δ))}. Since T is an RTM, Q+ ∩ Q− = ∅. Also note that qf ∈ QH .
The local function f is as below.

(1) For every s, t ∈ S, and q ∈ Q− {q0},
f(#, s,#) = (#, s,#),
f(#, ŝ,#) = (#, ŝ,#),
f(#, s, q0) = (#, s, q0),
f(#, ŝ, q0) = (#, t, q) if [q0, s, t,+, q] ∈ δ,
f(#, ŝ, q0) = (q, t,#) if [q0, s, t,−, q] ∈ δ,

(2) For every p ∈ Q− (QH ∪ {q0}), q ∈ Q− {q0}, and s, t ∈ S,

f(#, s, p) = (#, t, q) if p ∈ Q+ and [p, s, t,+, q] ∈ δ,
f(p, s,#) = (#, t, q) if p ∈ Q− and [p, s, t,+, q] ∈ δ,
f(#, s, p) = (q, t,#) if p ∈ Q+ and [p, s, t,−, q] ∈ δ,
f(p, s,#) = (q, t,#) if p ∈ Q− and [p, s, t,−, q] ∈ δ.

(3) For every q ∈ QH and s ∈ S,

f(#, s, q) = (#, ŝ, q) if q ∈ Q+,
f(q, s,#) = (q, ŝ,#) if q ∈ Q−.

30

We can verify that the right-hand side of each rule differs from that of any other rule,
because T is deterministic and reversible. If the initial computational configuration of T
is

· · · s0t1 · · · q0ti · · · tns0 · · ·

then set P to the following configuration.

· · · , (#, s0, q0), (#, t1,#), · · · , (#, t̂i,#), · · · , (#, tn,#), (#, s0,#), · · ·

The simulation process starts when a right-moving signal q0 meets the center state t̂i. It
is easily seen that, from this configuration, P can correctly simulates T by the rules in
(2). If T becomes a halting state q (∈ QH), then the signal q travels leftward or rightward
changing each center state s into ŝ. Note that P itself cannot halt, because P is reversible,
but the final result is kept unchanged.

Example 4.1 Consider a reversible TM Tmod3 = (Q, {b, 0, 1, 2}, q0, qf , b, δ), where Q =
{q0, · · · , q6, qf}, and δ is as below.

δ = { [q0, b, b,+, q3],
[q1, b, b,+, q4], [q1, 0, 0,+, q2], [q1, 1, 1,+, q3],
[q2, b, b,+, q5], [q2, 0, 0,+, q1], [q2, 1, 1,+, q2],
[q3, b, b,+, q6], [q3, 0, 0,+, q3], [q3, 1, 1,+, q1],
[q4, b, 1,−, qf], [q5, b, 2,−, qf], [q6, b, 0,−, qf] }.

For a given binary number n on the tape, Tmod3 computes (n mod 3) and writes it on
the tape as in Fig. 33. A simulation process of Tmod3 by a reversible PCA Pmod3, which
is constructed by the method described above, is in Fig. 34.

t = 0
�

q0

b b 1 1 1 0 b b t = 7
�

qf

b b 1 1 1 0 b 2

Figure 33: The initial and the final computational configuration of Tmod3 for a given
binary input 1110.

4.2.2 Simulating cyclic tag systems

From Theorems 3.3 and 4.3, we see there is a universal RCA in which any recursive func-
tion can be computed. But, if we use the construction method employed in Theorem 4.3,
the number of states of the universal RCA becomes rather large, i.e., 16×12×16 = 3072.
However, simulating CTAGs by a reversible PCA directly, a relatively small universal
RCA is obtained. In [40], a 36-state reversible PCA is given, but we show here an im-
proved version.

31

t = 0 b q0 b̂ 1 1 1 0 b b

t = 1 b b q3 1 1 1 0 b b

t = 2 b b 1 q1 1 1 0 b b

t = 3 b b 1 1 q3 1 0 b b

t = 4 b b 1 1 1 q1 0 b b

t = 5 b b 1 1 1 0 q2 b b

t = 6 b b 1 1 1 0 b q5 b

t = 7 b b 1 1 1 0 b qf 2

t = 8 b b 1 1 1 0 qf b̂ 2

t = 9 b b 1 1 1 qf 0̂ b̂ 2

t = 10 b b 1 1 qf 1̂ 0̂ b̂ 2

t = 11 b b 1 qf 1̂ 1̂ 0̂ b̂ 2

t = 12 b b qf 1̂ 1̂ 1̂ 0̂ b̂ 2

t = 13 b qf b̂ 1̂ 1̂ 1̂ 0̂ b̂ 2

t = 14 qf b̂ b̂ 1̂ 1̂ 1̂ 0̂ b̂ 2

Figure 34: Simulating Tmod3 by a 1-D reversible PCA Pmod3. The state # is indicated by
a blank.

Theorem 4.4 There is a 30-state 1-D reversible PCA P30 that can simulate any CTAG
on infinite (leftward-periodic) configurations.

The PCA P30 that has 30 states and operates on an infinite (but leftward- and
rightward-periodic) configuration.

P30 = (Z, ({#}, {#, Y,N,+,−, · }, {#, y, n,+,−}), g30, (#,#,#)).

The state set of each cell is therefore L × C × R, and thus it has 30 states. The local
function g30 : L× C × R → L× C × R is defined as follows.

g30(#,#,#) = (#,#,#)
g30(#, Y,#) = (#,#,+)
g30(#, N,#) = (#,#,−)
g30(#, c, r) = (#, c, r) for c ∈ {Y,N, ·}, and r ∈ {y, n,+,−}
g30(#, c, r) = (#, c, r) for c ∈ {#,−}, and r ∈ {y, n}
g30(#, c, r) = (#, r, c) for c, r ∈ {+,−}
g30(#,+, y) = (#, Y,#)
g30(#,+, n) = (#, N,#)
g30(#, ·,#) = (#,+, n)

Note that P30 is in fact a two neighbor PCA, since the state set of the left part is
L = {#}. Since there is no pair of distinct local rules whose right-hand sides are the
same, P30 is an RCA.

32

Consider the following example of a CTAG C2 = (3, {Y,N}, (halt, NY,NN)). If we
give NYN to C2 as an initial string, then

(NY N, 0) ⇒ (Y N, 1) ⇒ (NNY, 2) ⇒ (NY, 0) ⇒ (Y, 1) ⇒ · · ·
is a computation starting from NY N .

The initial configuration of P30 for C2 is set as follows (see the first row of Fig. 35). The
initial string NYN is given in the center parts of some three consecutive cells. Production
rules are expressed by a sequence of the right-part states y, n, and # in a reverse order,
where # is a delimiter indicating the beginning of a rule. Hence, one cycle of the rules
(halt, NY,NN) is represented by the sequence nn#yn##, where “halt” is expressed by
an empty string. Since the rules (halt, NY,NN) are applied cyclically, infinite copies of
the sequence nn#yn## should be given in the initial configuration of P30.

n n y n N− Y − N− −− . − . − . −
n n y n − Y − N− −− . − . − . −

n n n y n Y − N− −− . − . − . −
y n n n y n + N− −− . − . − . −

y n n n y n N+ −− . − . − . −
n y n n n y Nn +− . − . − . −
n n y n n n N y N . − . − . −

n n y n n n − N y +n . − . −
n n y n n n N− Y . n . −

n n n y n n Nn Y − +n . n
y n n n y n Nn Y n −+ . n

y n n n y n − Y n −n . +
n y n n n y n Y − −n . n

Figure 35: Simulating the CTAG C2 by the reversible PCA P30.

A rewriting process of a CTAG is simulated as in Fig. 35. If the signal # meets
the state Y (or N , respectively), which is the head symbol of a rewritten string, then it
changes Y (N) to the state #, and the signal itself becomes + (−). This signal + (−,
respectively) goes rightward through the string consisting of Y ’s and N ’s. If it meets the
center state + or −, then the latter is replaced by + (−) indicating the head symbol was
Y (N). Signals y and n travel rightward until it meets + or −. If y (n, respectively)
meets +, then the signal becomes Y (N) and is fixed at this position, and + is shifted
to the right by one cell. If y or n meets −, then the signal simply continues to travel
rightward without being fixed. By this, the rewriting process is simulated.

Note that the reversible PCA P30 does not deal with halting of a CTAG. Since the
result of a computing will be destroyed after the CTAG halts, the evolution of the P30

should be always watched from the outside whether the CTAG halts. Of course, it can be
handled inside of the PCA by increasing the number of states. The following result shows
there is a 98-state reversible PCA that can deal with halting of a CTAG, and operates on
finite configurations.

Theorem 4.5 (Morita [40]) There is a 98-state 1-D reversible PCA P98 that can simulate
any CTAG on finite configurations. It also deals with halting of a CTAG, i.e., it keeps
the final result of the CTAG undestroyed.

33

4.3 2-D universal reversible cellular automata

As it is shown in section 4.2, even in the 1-D case, there are universal RCAs with relatively
small number of states. On the other hand, in the 2-D case, several universal RCAs with
much simpler local functions exist.

4.3.1 Simulating a Fredkin gate

Here, we discuss several models of 2-D RCAs in which a Fredkin gate (as well as signal
routing mechanisms) can be embedded. By Theorem 2.5, any RSM can be embedded in
such RCAs as a completely garbageless circuit. Hence, any RTM (including a URTM)
can be realized as an infinite configuration in them.

Margolus [23] first proposed such a type of an RCA. It was shown that in his RCA
with the block rules given in Fig. 30 the BBM can be realized. Fig. 36 shows a reflection of
a ball by a mirror, where a ball is represented by two cells in black states. Collision of two
balls is also simulated in this cellular space. Hence, the Fredkin gate can be constructed
by the method discussed in section 2.3.1.

t = 0

↘

t = 1 t = 2

t = 3 t = 4 t = 5

↗

Figure 36: Reflection of a ball by a reflector in the Margolus’ RCA [23].

Morita and Ueno [32] used the framework of PCA, and gave two models S1 and S2 of
24-state RCAs in which a Fredkin gate can be realized. Here we show the second model
S2 that has the set of transition rules shown in Fig. 37. It is rotation-symmetric but not
reflection-symmetric. Fig. 38 shows a configuration of a switch gate, where each ball is
represented by two black dots.

Imai and Morita [14] proposed a 23-state reversible PCA model T1 on the triangular
lattice. It is rotation-symmetric but not reflection-symmetric. Its local function is ex-
tremely simple as shown in Fig. 39. Signal routing, crossing, and delay are very complex
to realize, because a kind of “wall” is necessary to make a signal go straight ahead. Thus
the size of the configuration of a Fredkin gate is very large (26 × 220) as in Fig. 40.

34

→

•
→ •

•
• → ••

•

•
→ ••

•
•• → •

••

•
•

•
• → ••••

Figure 37: The local rules of the 16-state rotation-symmetric reversible PCA S2 [32].

•• •• •• •••• •• •• ••
•• •••• •• •• •• •• •••• •• •• ••
•• •• •• •• •• •••• •• •• •• •• ••

•• •• •• •••• •• •• ••
• • •• ••

•• •• •• •• ••
••••

••
• •• •• •• •• •• ••

•• •••• •• •

→c

↑
x

c
↑

c · x→

c · x→

Figure 38: A switch gate realized in the reversible PCA S1 [32].

We summarize the above as follows.

Theorem 4.6 Any RTM can be simulated in any of the following 2-D RCAs with infinite
configurations.
1. The 2-state RCA with Margolus neighborhood (Margolus [23]).
2. The 16-state reversible PCAs S1 and S2 (Morita and Ueno [32]).
3. The 8-state reversible triangular PCA T1 (Imai and Morita [14]).

→

•
→ •

•• → ••

•
•

• → •••

Figure 39: The local rules of the 8-state rotation-symmetric reversible triangular PCA T1

[14].

35

Figure 40: A Fredkin gate realized in the 8-state reversible triangular PCA T1 [14].

36

4.3.2 Simulating the rotary element and reversible counter machines

If we try to design an RCA in which a reversible computer can be realized as a finite
and compact configuration, it is convenient to use a reversible counter machine (RCM)
rather than an RTM. As we shall see in this section, an RCM can be implemented simply
in a cellular space by using REs and some additional elements as reversible devices of
an intermediate level. A counter machine is a system made of a finite-state control and
counters each of which can store a non-negative integer. It can be formalized as a kind
of multi-tape Turing machine with read-only heads, where each tape has the symbol Z
(it stands for “zero”) in the leftmost square, and the symbol P (“positive”) in all other
squares (Fig. 41). A reversible CM (RCM) is defined in a similar manner as in RTM, (for
its precise definition see [33]).

�2

Z P P P P P P P · · ·

�0

Z P P P P P P P · · ·

Finite-state
control

Figure 41: A counter machine with two counters.

It is known that a CM with two counters is computation-universal [26]. This result
also holds even if the reversibility constraint is added.

Theorem 4.7 (Morita [33]) For any Turing machine T , there is a deterministic re-
versible CM with two counters M that simulates T .

In [36], a model of a 34-state reversible PCA P3 is shown, in which any RCM can be
embedded.

Theorem 4.8 (Morita, Tojima, Imai and Ogiro [36]) There is a 81-state reversible PCA
P3 with finite configurations in which any reversible CM with two counters can be simu-
lated.

P3 has the local transition rules shown in Fig. 42. In P3, five kinds of signal processing
elements shown in Fig. 43 can be realized as intermediate level reversible devices. An LR-
turn element, an R-turn element, and a reflector are used for signal routing. A position
marker is a device to keep a head position of a CM, and realized by a single ◦, which
rotates clockwise at a certain position by the rule (a) in Fig. 42, and can be pushed or
pulled by one cell by giving an appropriate signal.

Fig. 44 shows an example of a configuration for a 2-counter RCM in P3. The left half of
it is the finite-state control of the RCM, while the right half simulates two counters. Since
head positions of an RCM is represented by position markers, the whole configuration is

37

◦
→ ◦ (a)

•
→ • (b)

•
• → •• (c)

•
•• → •

•• (d)

◦

•
→ •◦ (e)

◦
•

•
→ ••◦ (f)

◦

•
• → ◦•◦◦ (g)

•
◦◦ → ◦•◦ (h)

•
◦

◦
→ ◦◦• (i)

•

◦
◦ → •◦◦ (j)

◦
•

•
• → •••◦ (k)

•
◦

◦
◦ → ◦•• (l)

w

x

y

z → w
x

y
z (m)

Figure 42: The local rules of the 34-state rotation-symmetric reversible PCA P3 [36].
The rule scheme (m) represents 33 rules not specified by (a)–(l), where w, x, y, z ∈
{blank,◦,•}.

Element Name Pattern Symbolic Notation

LR-turn element ◦◦ ◦◦◦◦ ◦◦

R-turn element

◦◦ ◦◦ ◦◦ ◦◦◦◦ ◦•◦ •• ◦◦• ◦◦
•• •••• ••

◦◦ •◦◦ •• ◦◦• ◦◦◦◦ ◦◦ ◦◦ ◦◦

�

�

�
�

Reflector

◦◦ ◦◦ ◦◦ ◦◦◦◦ ◦•◦ • ◦◦• ◦◦
◦◦ •◦◦ • •◦◦ ◦◦◦◦ ◦◦ ◦◦ ◦◦

Rotary element

◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦ ••◦◦ ◦•
◦◦ ◦◦ ◦◦

•◦ ◦◦•• ◦◦ ◦••◦ ◦•◦◦ •◦ •◦ ◦◦

Position Marker ◦ �

Figure 43: Basic elements realized in the reversible PCA P3.

38

�
��
�

�
��
� �

��
�

�
��
�

�
��
� �

��
�

�
��
�

�
��
�

�
��
� �

��
�

�

�

�
��
� �

��
�

�
��
�

�
��
�

�
��
� �

��
�

�

�

�

�
�
�
�

�
�

�

�

�

�

��

� � �

�

�

��

� �

�

�

��

�

� � �

� � � ��

�

�

�

�

� �

�

� �

� �

�� � �

�

�

�

�

�
�

� � � �

�

� �

� � � � � � �

�

�������

�
�
�
�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�
�

�
� �

�
� �

��

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�� �

�

�
�

�

�

�

�
�

�

�

�� �

�

�
�

�

�

�

�
�

�

�

�
�

� �

�

�
�

�

�
� �

�

�
�

��

��

�
�

�
��

�
� �

�
� �

��

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�� �

�

�
�

�

�

�

�
�

�

�

�� �

�

�
�

�

�

�

�
�

�

�

�
�

� �

�

�
�

�

�
� �

�

�
�

��

��

�
�

�
��

begin→•

end←

Figure 44: A configuration (represented by a diagram notation) of an example of an RCM,
which computes the function 2x + 2, in the reversible PCA P3.

finite. In this construction, computation is carried out by a single signal that interacts
with REs and position markers. Setting the position markers appropriately, and giving a
single black dot to the “begin” port, it starts to compute. If the computation terminates,
then the signal goes out from the “end” port leaving the answer in some counter.

39

4.4 Other issues on reversible cellular automata

There are still many other topics on RCAs not dealt with in the previous sections. In
fact, RCAs have rich abilities of information processing besides the ability of computing
recursive functions. For example, RCAs can solve the firing squad synchronization prob-
lem (FSSP). Imai and Morita [13] showed a 3n-step solution by using 99-state reversible
PCA for synchronizing n cells. Self-reproduction is also possible in RCAs. There are
a 2-D reversible PCA [34] and even 3-D reversible PCA [15] in which various shapes of
objects can self-reproduce. Finally, we note that the papers [17, 50] are good surveys on
RCAs and CAs with different viewpoints.

5 Concluding remarks

In this paper, we investigated and discussed how computing can be performed in re-
versible systems. We used several models of reversible computing chosen from variety of
levels: reversible Turing machines, reversible cellular automata, reversible logic elements,
reversible physical models, and a few others. Though these models have different fea-
tures, they are closely related each other: some models are embeddable in other models
relatively simply. In particular, any reversible model of a macroscopic level such as a
reversible Turing machine can be implemented in a model of microscopic level like the
Billiard Ball Model as a closed system.

In reversible systems, computation can be often carried out in a very different manner
from conventional computer. For example, reversible Turing machines can be constructed
very simply by using only rotary elements, where classical notions of gates like AND, OR,
and NOT are not explicitly used at all. Such a fact suggests that there will be still other
novel and unique methods of computing in reversible systems.

Since this paper is not an exhaustive survey on reversible computing, many important
topic are missing: e.g., relations to thermodynamics of computing [5, 6], and to quantum
computing [10]. We also omitted a topic on hardware realization of reversible computing
systems, because we discussed them from the standpoint of the computation theory. But,
it is an interesting and challenging problem, though very hard to solve.

40

References

[1] Amoroso, S. and Cooper, G., The Garden of Eden theorem for finite configurations,
Proc. Amer. Math. Soc., 26, 158–164 (1970).

[2] Amoroso, S. and Patt, Y.N., Decision procedures for surjectivity and injectivity of
parallel maps for tessellation structures, J. Comput. Syst. Sci., 6, 448–464 (1972).

[3] Baiocchi, C., Three small universal Turing machines, 3rd Int. Conference on Ma-
chines, Computations, and Universality, LNCS 2055, Springer-Verlag, 1–10 (2001).

[4] Bennett, C.H., Logical reversibility of computation, IBM J. Res. Dev., 17, 525–532
(1973).

[5] Bennett, C.H., The thermodynamics of computation, Int. J. Theoret. Phys., 21,
905–940 (1982).

[6] Bennett, C.H., Notes on the history of reversible computation, IBM J. Res. Dev.,
32, 16–23 (1988).

[7] Bennett, C.H., Time/space trade-offs for reversible computation, SIAM J. Comput.,
18, 766–776 (1989).

[8] Boykett, T., Efficient exhaustive listings of reversible one dimensional cellular au-
tomata, Theoret. Comput. Sci., 325, 215–247 (2004).

[9] Cook, M., Universality in elementary cellular automata, Complex Systems, 15, 1–40
(2004).

[10] Feynman, R.P., Feynman lectures on computation (eds., A.J.G. Hey and R.W. Allen),
Perseus Books, Reading, Massachusetts (1996).

[11] Fredkin, E., and Toffoli, T., Conservative logic, Int. J. Theoret. Phys., 21, 219–253
(1982).

[12] Hedlund, G.A., Endomorphisms and automorphisms of the shift dynamical system,
Math. Systems Theory, 3, 320-375 (1969).

[13] Imai, K., and Morita, K., Firing squad synchronization problem in reversible cellular
automata, Theoret. Comput. Sci., 165, 475–482 (1996).

[14] Imai, K., and Morita, K., A computation-universal two-dimensional 8-state triangular
reversible cellular automaton, Theoret. Comput. Sci., 231, 181–191 (2000).

[15] Imai, K., Hori, T., and Morita, K., Self-reproduction in three-dimensional reversible
cellular space, Artificial Life, 8, 155–174 (2002).

[16] Kari, J., Reversibility and surjectivity problems of cellular automata, J. Comput.
Syst. Sci., 48, 149–182 (1994).

41

[17] Kari, J., Theory of cellular automata: A survey, Theoret. Comput. Sci., 334, 3–33
(2005).

[18] Kudlek, M., and Rogozhin, Y., A universal Turing machine with 3 states and 9 sym-
bols, Developments in Language Theory (DLT 2001), LNCS 2295, Springer-Verlag,
311–318 (2002).

[19] Landauer, R., Irreversibility and heat generation in the computing process, IBM J.
Res. Dev., 5, 183–191 (1961).

[20] Lecerf, Y., Machines de Turing réversibles — Recursive insolubilité en n ∈ N de
l’équation u = θnu, où θ est un isomorphisme de codes, Comptes Rendus Hebdo-
madaires des Séances de L’académie des Sciences, 257, 2597–2600 (1963).

[21] Lee, J., Peper, F., Adachi, S. and Morita, K., An asynchronous cellular automaton
implementing 2-state 2-input 2-output reversed-twin reversible elements, Proc. Eighth
Int. Conf. on Cellular Automata for Research and Industry (ACRI 2008), Yokohama
(to appear).

[22] Margenstern, M., Surprising areas in the quest for small universal devices, MFCSIT,
Cork, Electronic Notes in Theoret. Comput. Sci. (to appear).

[23] Margolus, N., Physics-like model of computation, Physica, 10D, 81–95 (1984).

[24] Maruoka, A. and Kimura, M., Condition for injectivity of global maps for tessellation
automata, Inf. Control, 32,158–162 (1976).

[25] Maruoka, A. and Kimura, M., Injectivity and surjectivity of parallel maps for cellular
automata, J. Comput. Syst. Sci., 18, 47–64 (1979).

[26] Minsky, M.L., Computation: Finite and Infinite Machines, Prentice-Hall, Englewood
Cliffs, NJ (1967).

[27] Moore, E.F., Machine models of self-reproduction, in Essays on Cellular Automata
(ed. A.W.Burks), University of Illinois Press, Urbana, pp.187–203 (1970).

[28] Mora, J.C.S.T, Vergara, S.V.C, Martinez, G.J., McIntosh, H.V., Procedures for
calculating reversible one-dimensional cellular automata, Physica D, 202, 134–141
(2005).

[29] Morita, K., Shirasaki, A., and Gono, Y., A 1-tape 2-symbol reversible Turing ma-
chine, Trans. IEICE Japan, E-72, 223–228 (1989).

[30] Morita, K., and Harao, M., Computation universality of one-dimensional reversible
(injective) cellular automata, Trans. IEICE Japan, E-72, 758–762 (1989).

[31] Morita, K., A simple construction method of a reversible finite automaton out of
Fredkin gates, and its related problem, Trans. IEICE Japan, E-73, 978–984 (1990).

42

[32] Morita, K., and Ueno, S., Computation-universal models of two-dimensional 16-state
reversible cellular automata, IEICE Trans. Inf. & Syst., E75-D, 141–147 (1992).

[33] Morita, K., Universality of a reversible two-counter machine, Theoret. Comput. Sci.,
168, 303–320 (1996).

[34] Morita, K., and Imai, K., Self-reproduction in a reversible cellular space, Theoret.
Comput. Sci., 168, 337–366 (1996).

[35] Morita, K., A simple reversible logic element and cellular automata for reversible
computing, in Proc. 3rd Int. Conf. on Machines, Computations, and Universality,
LNCS-2055, Springer-Verlag, 102–113 (2001).

[36] Morita, K., Tojima, Y., Imai, K., and Ogiro, T., Universal computing in reversible
and number-conserving two-dimensional cellular spaces, in Collision-based Comput-
ing (ed. A. Adamatzky), 161–199, Springer-Verlag (2002).

[37] Morita, K., A new universal logic element for reversible computing, Grammars and
Automata for String Processing (C. Martin-Vide, and V. Mitrana, eds.), Taylor &
Francis, London, 285–294 (2003).

[38] Morita, K., Ogiro, T., Tanaka, K., and Kato, H., Classification and universality of
reversible logic elements with one-bit memory, Proc. 4th Int. Conf. on Machines,
Computations, and Universality, LNCS-3354, Springer-Verlag, 245–256 (2005).

[39] Morita, K., and Yamaguchi, Y., A universal reversible Turing machine, Proc. 5th Int.
Conf. on Machines, Computations, and Universality, LNCS-4664, Springer-Verlag,
90–98 (2007).

[40] Morita, K., Simple universal one-dimensional reversible cellular automata, J. Cellular
Automata, 2, 159–165 (2007).

[41] Myhill, J., The converse of Moore’s Garden-of-Eden theorem, in Essays on Cellular
Automata (ed. A.W. Burks), University of Illinois Press, Urbana, 204–205 (1970).

[42] Neary, T., and Woods, D., Four small universal Turing machines, Proc. 5th Int.
Conf. on Machines, Computations, and Universality, LNCS-4664, Springer-Verlag,
242–254 (2007).

[43] Ogiro, T., Kanno, A., Tanaka, K., Kato, H.. and Morita, K., Nondegenerate 2-state
3-symbol reversible logic elements are all universal, Int. Journ. of Unconventional
Computing, 1, 47–67 (2005).

[44] Petri, C.A., Grundsätzliches zur Beschreibung diskreter Prozesse, Proc. 3rd Collo-
quium über Automatentheorie, Birkhäuser Verlag, 121–140 (1967).

[45] Richardson, D., Tessellations with local transformations, J. Comput. Syst. Sci., 6,
373–388 (1972).

43

[46] Rogozhin, Y., Small universal Turing machines, Theoretical Computer Science, 168,
215–240 (1996).

[47] Toffoli, T., Computation and construction universality of reversible cellular au-
tomata, J. Comput. Syst. Sci., 15, 213–231 (1977).

[48] Toffoli, T., Reversible computing, Automata, Languages and Programming (eds. J.W.
de Bakker and J. van Leeuwen), LNCS-85, Springer-Verlag, 632–644 (1980).

[49] Toffoli, T., Bicontinuous extensions of invertible combinatorial functions, Mathemat-
ical Systems Theory, 14, 12–23 (1981).

[50] Toffoli, T., and Margolus, N., Invertible cellular automata: a review, Physica D, 45,
229–253 (1990).

[51] Woods, D., and Neary, T., Small semi-weakly universal Turing machines, Proc.
5th Int. Conf. on Machines, Computations, and Universality, LNCS-4664, Springer-
Verlag, 303–315 (2007).

44

