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Abstract 

Lamellar mesostructured calcium phosphates constructed by ionic bonds were prepared by using 

n-alkylamines (n-CnH2n+1NH2, n = 8−18) at room temperature in the mixed solvent systems of 

aliphatic alcohol (CnH2n+1OH, n = 1−4) and water, and the synthetic conditions were investigated 

in detail. The mixed solvent systems suppressed the formation of crystalline calcium phosphates 

like brushite (CaHPO4･2H2O), monetite (CaHPO4), and so on as discrete phases, successfully 

affording pure lamellar mesostructured calcium phosphates. Although the excess amount of water 

in the reaction systems allowed the formation of hydrated phases like brushite, the formation of 

brushite was suppressed by using the mixed solvent systems. Synthesis at low temperatures in the 

mixed solvent systems prevented calcium phosphate species from crystallizing to provide 

crystalline calcium phosphates like anhydrous monetite. Other crystalline phases such as 

hydroxyapatite (Ca10(PO4)6(OH)2) were not also formed in the conditions with the Ca/P molar 

ratios in the range of 0.7−1.0 in the starting mixtures. The Ca/P molar ratio of the lamellar 

mesostructured calcium phosphates was ca. 1.0, calculated by 31P MAS NMR and elemental 

analysis data.  Interestingly, the kind of alcohols strongly influenced the solubilities of calcium 

phosphate species and n-alkylamines, and then lamellar mesostructured phases were obtained with 

some morphological variation. 
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Introduction 
Calcium phosphate compounds with biocompatibility have been widely applied to biomaterials 

such as bone prosthesis and adsorbents for biomolecules [1-3]. Hydroxyapatite that is one of 

crystalline calcium phosphate compounds has actually used as artificial bone in practical clinic [4]. 

However, patients who need a medical treatment of their fractures with synthetic bones must bear 

his privation for a long time until the complete curing of the bone tissue because of the low 

physical strength between bionic and original bones [5]. Composites of inorganic calcium 

phosphate and organic collagen have drawn much attention as artificial bone and scaffold 

materials [6,7] because the presence of collagen promotes the crystallization of the calcium 

phosphate. Therefore, many research groups have investigated the potential applications of the 

inorganic-organic composite materials and their robust achievements have been already verified 

[8-10]. Such composite materials are applicable not only to bone prosthesis but also to a model 

system of inorganic-organic hybrid materials including precursors of porous materials prepared 

using some organic molecules and assemblies as structure directing agents.  

The preparation of ordered mesoporous materials has been conducted by using amphiphilic 

organic molecules which are self-organized in aqueous solutions and their hydrophilic headgroups 

are interacted with soluble inorganic species [11-14]. The mesoporous materials have some 

specific features such as high surface area and high adsorption capacity including uniformity and 

periodicity of tunable mesopores [15-17], which are widely applicable to adsorbents and catalytic 

supports [18-21]. Crystalline calcium phosphates used as adsorbents have showed relatively low 

surface areas (~100 m2 g−1) so far. The value is obviously inferior to those of surfactant-templated 

mesoporous materials [22-24]. Recently, bioactive mesoporous silica whose surfaces were covered 

with apatite layer grown in simulated body fluid was reported as a high capacity vessel for drug 

delivery and scaffold materials [25]. The paper also suggested the potential application of 

mesoporous calcium phosphate as biomaterials.  

Synthetic procedures of ordered mesoporous materials have been advanced by some 

strategies to control mesostructures [26,27], compositions [28-32], and so on mainly through the 

investigation on silica-based materials. Inorganic-organic mesostructured composites act as 

precursors of ordered mesoporous materials formed through self-assembly of surfactant molecules 

attached with inorganic species and condensation of the inorganic species [15-17]. The surfactant-

templating method has applied to the synthesis of other mesoporous solids, leading to the 
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successful preparation of a large number of mesoporous and mesostructured metal oxides and 

phosphates [28-46]. However, it is quite difficult to synthesize surfactant-templated mesoporous 

materials composed of pure calcium phosphates because the inorganic frameworks are connected 

through ionic bonds between Ca2+ and phosphate ions. Some research groups have commented 

only the possibility to form lamellar mesostructured calcium phosphates [47-52]. In general, it is 

recognized that calcium phosphate-based materials with ionic frameworks are more preferentially 

crystallized than other covalently bonded phosphate-based materials. Actually, in the previous 

reports on the synthesis of mesostructured calcium phosphates using surfactants, crystallization of 

calcium phosphate species could not be suppressed and then mesostructured precursors composed 

of calcium phosphates were not obtained except for lamellar phases. Even the formation of the 

lamellar phases is not proved by powerful analyses such as TEM so distinctly.  

Recently, we found the successful synthetic procedure of a lamellar mesostructured calcium 

phosphate by using n-hexadecylamine in the ethanol/water mixed solvent system, which could 

suppress the crystallization of calcium phosphate species and control the solubility of calcium 

phosphate species [53]. In the present study, we investigated the effects of the synthetic conditions 

such as alcohol/water molar ratio, Ca/P molar ratio, reaction temperature, the kind of alcohol, and 

the alkyl chain length of n-alkylamine in more detail on the formation of the lamellar 

mesostructured calcium phosphate. 

 

Experimental 
Materials  

All the n-alkylamines (n-CnH2n+1NH2, n = 8, 10, 12, 16, and 18) were obtained from Tokyo 

Kasei Kogyo Co. Phosphoric acid (85% H3PO4), aqueous solution of ammonia (25% NH3), and 

calcium acetate monohydrate (Ca(OAc)2･H2O) were obtained from Wako Chemical Co. Aliphatic 

alcohols such as methanol (MeOH), ethanol (EtOH), n-propanol (PrOH) and n-butanol (BuOH) 

were also purchased from Wako Chemical Co. and used without further purification. Calcium 

hydroxide (Ca(OH)2) was obtained from Kanto Chemical Co.  

Synthesis of mesostructured calcium phosphate  

Lamellar mesostructured calcium phosphate was prepared as follows. n-Alkylamine and 85% 

H3PO4 were added to a mixed solvent of alcohol and water. A white slurry mixture was obtained 

after stirring over 1 h. Ca(OAc)2 · H2O and 25% NH3 were added to the white slurry mixture under 
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vigorous stirring and the stirring was maintained for 15 min. The starting mixture (Ca(OAc)2 : 

H3PO4 : n-CnH2n+1NH2 : 0.5NH3 : 40n-CnH2n+1OH : 40H2O) was statically kept for another 5 days 

at room temperature. The product was filtered, washed with EtOH repeatedly, and air-dried.  

Characterization  

X-ray diffraction (XRD) patterns were obtained by using a Rigaku RINT 2000 with graphite 

monochromatized Cu Kα radiation (40 kV, 30 mA). The compositions were measured by 

inductively coupled plasma atomic emission spectroscopy (ICP-AES, Seiko SPS 7700). 

Thermogravimetric (TG) analyses were conducted by using a Seiko TG/DTA320 thermal analyser. 

Transmission electron microscopic (TEM) images were taken by a JEOL JEM-2010 microscope, 

operated at 200 kV. 31P MAS NMR spectra were obtained by using a Bruker DRX-400 

spectrometer with a 7 mm zirconia rotor at a resonance frequency of 161.9 MHz with a spinning 

rate of 6 kHz. The spectra were accumulated with 4.5 µs pulses and 40 s recycle delay. 85% 

H3PO4 aqueous solution was used as a chemical shift reference. 13C CP/MAS NMR spectra were 

also collected by using the same spectrometer at 100.7 MHz with a spinning rate of 4 kHz, 6.8 µs 

pulses, and 15 s recycle delay. Tetramethylsilane was used as a chemical shift reference. Scanning 

electron microscopic (SEM) images were taken by a JEOL JSM-6320FS to observe morphology 

of the products.  

 

Results and discussion 
The crystallization of calcium phosphate formed through rapid reaction between Ca2+ and 

phosphate ions is dramatically fast than other inorganic compounds constructed by covalent bond. 

Indeed, there are few reports on the preparation of amorphous calcium phosphate before its 

transformation into more stable crystalline phases [54]. Since interaction between surfactant 

molecules and phosphate ions is lost by the formation of discrete crystalline calcium phosphates, it 

is necessary to control mesostructures of calcium phosphates before rapid formation of crystalline 

calcium phosphates. Accordingly, we suggest a two-step reaction. Alkylammonium phosphates are 

utilized as intermediates [55] and reacted with calcium sources under conditions that keep ionic 

bonds between alkylammonium and phosphate ions during generation of mesostructured calcium 

phosphates.  

 

Effect of EtOH/H2O molar ratio 
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The synthesis of lamellar mesostructured calcium phosphate was carried out by using n-

C16H33NH2 in the mixed solvent of ethanol (EtOH) and water. The starting mixtures were prepared 

by mixing 85% H3PO4, Ca(OAc)2 · H2O, and 25% NH3 in the mixed solvent with the different 

molar ratios of EtOH and water. The composition of the starting mixtures was presented as 

Ca(OAc)2 : H3PO4 : n-C16H33NH2 : 0.5NH3 : 80(EtOH+H2O). The XRD patterns of the products 

prepared in the presence and absence of n-C16H33NH2 are shown in Fig. 1. Even when the 

synthesis was conducted in the presence of n-C16H33NH2, a hydrated product such as brushite 

(CaHPO4･2H2O) was mainly observed in the aqueous system (Fig. 1(A)(a)) [56]. Brushite was 

also obtained in the absence of the surfactant in the aqueous system (Fig. 1(B)(a)). With the 

increase in the amount of EtOH in the reaction systems containing n-C16H33NH2, the peaks due to 

brushite disappeared (Fig. 1(A)(b)-(d)), indicating that the formation of brushite is suppressed in 

the EtOH/H2O systems. The synthesis of crystalline calcium phosphates in the EtOH/H2O systems 

without surfactant was already reported and the preferential formation of brushite is suppressed by 

using EtOH as a co-solvent [57]. Therefore, similar synthesis was also conducted in the absence of 

the surfactant. Peaks due to brushite disappeared gradually by increasing the amount of EtOH in 

the reaction systems without n-C16H33NH2 (Fig. 1(B)(a)-(d)). Peaks due to monetite (CaHPO4) that 

is one of anhydrous calcium phosphate phases appeared by increasing the amount of EtOH (Fig. 

1(B)(c)-(e)). In contrast, a peak with the d-spacing of 4.5 nm and the higher order diffractions that 

are possibly assignable to lamellar phases appeared in low diffraction angles of the reaction 

systems with n-C16H33NH2 (Fig. 1(A)(b)-(d)). The formation of lamellar mesostructured calcium 

phosphate was confirmed further by TEM observation, showing clear striped patterns (Fig. 2). The 

results reveal that the lamellar mesostructured calcium phosphate can be obtained in the mixed 

solvent systems [53]. It is considered that further increase of the amount of EtOH was not useful 

for the reaction between Ca(OAc)2 and H3PO4 because Ca(OAc)2 · H2O could not be dissolved in 

the mixtures (Fig. 1(A)(e) and (B)(e)). Accordingly, only lamellar hexadecylammonium phosphate 

[(n-C16H33NH3
+)(H2PO4

−)] was formed in the ethanolic system containing n-C16H33NH2 (Fig. 

1(A)(e)).  

 

Effect of Ca/P molar ratio 

Lamellar mesostructured calcium phosphates were synthesized under the conditions with 

different Ca/P molar ratios in the starting mixtures. The composition of the starting mixture was 
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0.7−1.5Ca(OAc)2 : H3PO4 : n-C16H33NH2 : 0.5NH3 : 80(EtOH+H2O). The EtOH/H2O molar ratio 

was simultaneously changed with the variation in the Ca/P molar ratio under the condition with the 

fixed H2O/Ca molar ratio (40) in the reaction system. The XRD patterns of the products obtained 

at the Ca/P molar ratios of 0.7−1.5 in the starting mixtures are shown in Fig. 3. In the products 

obtained at the Ca/P molar ratios ranging from 0.7 to 1.0, the peaks observed at 2θ = 1.5−6.0° are 

corresponded to the formation of lamellar mesostructured calcium phosphate (d001 = 4.5 nm) (Fig. 

3(A)(a)-(c)). Several peaks, which are not assignable to crystalline calcium phosphates, were also 

observed in high diffraction angles (Fig. 3(B)(a)-(c)). Some of the peaks are considered to be due 

to the ordering in the calcium phosphate framework of the lamellar phase. However the 

assignment of these peaks has not been achieved yet because of the broadening of the peaks due to 

distortion of the layered structure. With the further increase in the Ca/P molar ratio from 1.2 to 1.5, 

the peaks at 2θ = 15−25° (Fig. 3(B)(d)-(e)) as well as the peaks assignable to the lamellar 

mesostructuted calcium phosphate disappeared (Fig. 3(A)(d)-(e)) although small broad peaks 

assignable to initial crystalline hydroxyapatite phase appeared at 2θ = 26 and 32º (Fig. 3(B)(d)-(e)) 

[54, 58]. The result indicates that the formation of the lamellar mesostructured calcium phosphate 

occurred at the Ca/P molar ratios from 0.7 to 1.0 because the hydroxyapatite phase was formed 

preferentially at higher Ca/P molar ratios than 1.0. Hydroxyapatite (Ca10(PO4)6(OH)2) known as 

anhydrate crystalline calcium phosphate was formed in the non-aqueous solvent system under the 

calcium-rich conditions. When the composition of the starting mixture was changed into 

0.7Ca(OAc)2 : H3PO4 : n-C16H33NH2 : 0.5NH3 : 40EtOH : 40H2O, however, lamellar 

mesostructured calcium phosphate was obtained with the slight formation of brushite. The result 

would be caused by the H2O-rich condition (H2O/Ca molar ratio of 40/0.7) because the presence of 

H2O in the reaction system is necessary for controlling the dissolution of the calcium source.  

The 31P MAS NMR measurements were applied to get further information on the calcium 

phosphate frameworks and the spectra of the products prepared by changing the Ca/P molar ratios 

in the range of 0.7−1.5 in the starting mixtures are shown in Fig. 4. In the 31P MAS NMR spectrum 

of the product obtained at Ca/P = 0.7, three peaks were observed at 2.1, 0.4, and −1.7 ppm (Fig. 

4(b)). In compared with the spectrum of (n-C16H33NH3
+)(H2PO4

−) (Fig. 4(a)), the small peak at 0.4 

ppm is considered to be assigned to P atoms in the similar salt. With the increase in the Ca/P molar 

ratio, the intensity of the shoulder peak at around −1.7 ppm decreased gradually while that of the 

peak at 2.1 ppm was enhanced (Fig. 4(b)-(e)). The 31P MAS NMR spectra were also measured 
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with 1H-31P cross-polarization (CP) technique (not shown here). The intensity of the peak at 2.1 

ppm was not enhanced in the 31P CP/MAS NMR spectrum, being consistent with the lack of 

protons neighboring to P atoms in the calcium phosphate framework. However, the CP 

enhancement was observed for the product obtained at Ca/P = 0.9, revealing the presence of two 

PO4 units, probably, [PO4]3− and [HPO4]2− or [H2PO4]−, are present in the framework of the 

lamellar mesostructured calcium phosphate [59, 60].  

 

Effect of the reaction temperature 

The synthesis was also conducted at different temperatures under the condition with the 

composition of Ca(OAc)2 : H3PO4 : n-C16H33NH2 : 0.5NH3 : 40EtOH : 40H2O. After the starting 

mixture was stirred for 15 min, the mixture was aged at room temperature, 50 or 70 ºC statically. 

The XRD patterns of the products prepared at room temperature, 50 and 70 ºC are shown in Fig. 5. 

Although all of the XRD patterns showed the formation of lamellar mesostructured calcium 

phosphates, the d001 values (4.0 nm) of the lamellar phases obtained by heating at 50 and 70 ºC 

were smaller than that of the lamellar phase (4.5 nm) at room temperature (Fig. 5(a)-(c)). In 

addition, the products obtained by heating contained monetite and the amount of that was 

increased by elevating the synthetic temperature [61]. None of typical striped patterns 

characteristic for lamellar mesostructured materials were found in the TEM images of the products 

obtained at 50 and 70 ºC. Additional experiment was carried out to get more information about this 

phase. After each product (0.5 g) was stirred at 60 ºC for 5 h in EtOH (150 g), filtered, and washed 

with EtOH at 60 ºC, only the peaks in the low diffraction angles disappeared completely. It is 

reasonable to be considered that this phase would not be lamellar but organic, probably a moiety 

of n-hexadecylamine and/or (n-C16H33NH3
+)(H2PO4

−). The crystallization of monetite would occur 

more preferentially than that of the lamellar mesostructured calcium phosphate at higher 

temperatures. The result exhibits that the control of the reaction temperature enables to suppress 

the crystallization of monetite under the condition, being strongly useful for the mesostructural 

control of calcium phosphates.  

The synthetic regions that several calcium phosphates could be obtained under synthetic 

conditions with various EtOH/H2O and Ca/P molar ratios at r.t. are schematized in Fig. 6. In the 

region of higher Ca/P molar ratio than 1.0, the predominant formation of hydroxyapatite occurred 

in the mixed solvent system regardless of the EtOH/H2O molar ratio. When the Ca/P molar ratio 
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was lower than 1.0, brushite was formed in the H2O-rich system. The reaction between (n-

C16H33NH3
+)(H2PO4

−) and calcium source did not occurred in pure EtOH system. At higher aging 

temperature than r.t., monetite was formed. In the synthetic region that the formations of 

crystalline calcium phosphates were suppressed by the control of synthetic conditions, the lamellar 

mesostructured calcium phosphate could be formed. This result strongly indicates that the 

interaction between hexadecylammonium and phosphate ions must be maintained to obtain the 

lamellar mesostructured calcium phosphate during the reaction of Ca2+ ions and 

hexadecylammonium phosphate (Fig. 7).  

 

Effect of alcohol as co-solvent 

Effect of co-solvents was investigated by using a series of aliphatic alcohols. The composition 

of the starting mixture was Ca(OAc)2 : H3PO4 : n-C16H33NH2 : 0.5NH3 : 80(ROH+H2O), R = CH3, 

C2H5, C3H7, and C4H9. The ROH/H2O molar ratio was changed from 0/100 to 96/4. The mixture of 

lamellar mesostructured calcium phosphate and brushite was obtained at the MeOH/H2O molar 

ratio of 25/75. The formation of brushite was suppressed with an increase in the amount of MeOH, 

leading to the successful preparation of pure lamellar phase in the range of MeOH/H2O molar ratio 

from 40/60 to 75/25. In the cases of the PrOH/H2O and BuOH/H2O systems, pure lamellar 

mesostructured calcium phosphate could be obtained at ROH/H2O of 75/25. Under the conditions 

in the range of ROH/H2O molar ratio from 50/50 to 25/75, only brushite was formed in both of the 

systems. The formation of brushite was also suppressed by increasing the amount of MeOH, PrOH 

and BuOH as well as EtOH. However, there is a difference in the range of the ROH/H2O molar 

ratio to afford lamellar mesostructured calcium phosphate. The results are schematically 

summarized in Fig. 8. Lamellar phases were formed under restricted ROH/H2O molar ratios in the 

reaction systems using aliphatic alcohols having longer alkyl chains. Actually, the range of the 

EtOH/H2O molar ratio affording pure lamellar mesostructured calcium phosphate was narrower 

than that of the MeOH/H2O molar ratio. As ROH with longer alkyl chains is not mixed with H2O 

because hydrophobicity of the alcohol becomes strong, the reaction system seems to be relatively 

analogous to aqueous systems, which has a tendency to provide hydrated crystalline calcium 

phosphate phase such as brushite. Therefore, the effective range of the ROH/H2O molar ratio 

becomes narrow with an increase in the alkyl chain length of alcohol, which prevent from the 

formation of lamellar mesostructured calcium phosphate. The results indicate that the kind of 
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alcohol is also important for controlling the solubility of the calcium source and the preferential 

formation of crystalline calcium phosphate phases.  

The TEM images of the mesostructured calcium phosphates obtained by using a series of 

ROH in the mixed solvent systems with ROH/H2O of 75/25 and 50/50 are shown in Fig. 9. Stripe 

patterns were clearly observed for all the products obtained at ROH/H2O of 75/25 (Fig. 9(a), (d)-

(f)). However, in addition to the stripe patterns (Fig. 9(b)), disordered stripe patterns were slightly 

observed for the product obtained at MeOH/H2O of 50/50 (Fig. 9(c)). The SEM observation of the 

products was also conducted and the images of the products obtained at ROH/H2O of 75/25 are 

shown in Fig. 10. Morphologies of the lamellar mesostructured calcium phosphates were plate-like 

and the size increased gradually by using ROH with longer alkyl chains, revealing that the particle 

size of the lamellar phases is controllable in the mixed solvent systems according to the alkyl chain 

length of alcohol.  

 

Possible structure of lamellar mesostructured calcium phosphate 

On the basis of the 31P MAS NMR results, it is considered that the framework structure of the 

lamellar mesostructured calcium phosphate contains two phosphate units. The elemental analysis 

showed that Ca/P molar ratios in the frameworks were almost consistent with those in the 

corresponding starting mixtures. Thermogravimetric curve of the lamellar mesostructured 

compound with the Ca/P molar ratio of 1.0 is shown in Fig. 11. Main mass losses of 23.0 and 28.7 

mass % were observed below 200 ºC and between 200 and 600 ºC, which correspond to 

dehydration and combustion of organic moiety, respectively. After the lamellar phase was 

calcinated at 600 ºC for 10 h, a white solid was obtained. The XRD peaks of the white solid were 

assigned to a calcium pyrophosphate (Ca2P2O7) (Fig. 12). On the basis of the mass loss below 600 

ºC, the formula could be presented as (C16H33NH3
+)0.6Ca2+(HPO4

2-)0.4(PO4
3-)0.6.  

Lamellar mesostructured calcium phosphates were prepared by using n-alkylamines with 

different alkyl chain lengths as structure-directing agents. Calcium hydroxide was used as a 

calcium source instead of calcium acetate monohydrate, because the products containing both of 

lamellar mesostructured calcium phosphate (main product) and alkylammonium phosphate salt 

(by-product) were obatined by using n-CnH2n+1NH2 except for using n-C16H33NH2 when calcium 

acetate monohydrate was used. The XRD patterns of the products obtained from a series of 

starting mixtures with Ca(OH)2 : H3PO4 : n-CnH2n+1NH2 (n = 8−18) : 40EtOH : 40H2O are shown 
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in Fig. 13. The patterns contained the peaks due to both unreacted calcium hydroxide and lamellar 

mesostructured calcium phosphate. The d001 values corresponding to the lamellar phases were 

changed in the range of 2.8−4.8 nm (2.8 nm for n = 8, 3.4 nm for n = 10, 3.7 nm for n = 12, 4.5 nm 

for n = 16, and 4.8 nm for n = 18). Conformation of the alkyl chains of the surfactant molecules 

(n-hexadecylamine) in the lamellar mesostructured calcium phosphate was investigated by 13C 

CP/MAS NMR. The 13C CP/MAS NMR spectrum of the lamellar mesostructured calcium 

phosphate obtained from the starting mixture with the composition of Ca(OAc)2 : H3PO4 : n-

C16H33NH2 : 0.5NH3 : 40EtOH : 40H2O are shown in Fig. 14. Several peaks due to carbon atoms 

in n-hexadecylamine were observed and the peak at 32 ppm can be assigned to carbon atoms in 

all-trans methylene (-CH2-) chains [62, 63]. Fig. 15 shows the relation between the d001 spacing 

and the number of carbon atoms in the alkyl chains of the n-alkylamines. In accordance with the 

correlation, a slope of the straight line was calculated to be 0.185 nm/CH2. Since the distance 

between two adjacent carbon atoms are expressed as 0.127 nm/CH2 in an all-trans alkyl chains 

[64], the alkyl chains are arranged in the lamellar phases as double layers with a tilt angle of ca. 

46°. Also, the wall thickness of the mesostructured calcium phosphates was estimated to be ca. 1.2 

nm. 

 

Conclusions 
Lamellar mesostructured calcium phosphates constructed through ionic bonds were successfully 

synthesized by using n-alkylamines as structure-directing agents under a wide variety of 

conditions. Morphology of lamellar mesostructured calcium phosphates was also controlled by 

changing the alkyl chain length of alcohol used as co-solvents. It was mainly important for 

synthesis of the lamellar mesostructured calcium phosphates to control both solubility of calcium 

source and crystallization of calcium phosphate species. The controlled synthesis is possible in the 

mixed solvent systems of alcohols and water that allows the interaction between the surfactant 

molecules and calcium phosphate species and the suppression of the discrete crystallization of 

calcium phosphate species. These materials are promising as biomaterials such as bone prosthesis 

and adsorbents for biomolecules, and the crystallization and solubility controlled synthesis will 

open the new route to obtain mesostructured materials whose frameworks are constructed by ionic 

bonds.  
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 Figure captions 

 

Fig. 1  XRD patterns of the products obtained (A) with and (B) without C16H33NH2. EtOH/H2O 

ratio: (a) 0/100, (b) 25/75, (c) 50/50, (d) 75/25 and (e) 96/4. 

 

Fig. 2  TEM image of lamellar mesostructured calcium phosphate obtained with EtOH/H2O 

(50/50). 

 

Fig. 3  XRD patterns at (A) low and (B) high angles of the products obtained at various Ca/P 

ratios: (a) 0.7, (b) 0.9, (c) 1.0, (d) 1.2 and (e) 1.5. 

 

Fig. 4  31P MAS NMR spectra of lamellar mesostructured calcium phosphates obtained at 

different Ca/P ratios: (a) [C16H33NH3
+][H2PO4

－], (b) 0.7, (c) 0.9, (d) 1.0 and (e)1.2.  

 

Fig. 5  XRD patterns of the products prepared at (a) room temperature, (b) 50 and (c) 70 ºC.  

 

Fig. 6  The synthetic region of lamellar mesostructured calcium phosphates at room temperature. 

 

Fig. 7  Proposed formation route of lamellar mesostructured calcium phosphate. 

 

Fig. 8  Effect of aliphatic alcohol on synthesis of lamellar mesostructured calcium phosphate 

with n-C16H33NH2.  

 

Fig. 9  TEM images of lamellar mesostructured calcium phosphates obtained in the ROH/H2O 

systems. (a) MeOH/H2O (75/25), (b) and (c) MeOH/H2O (50/50), (d) EtOH /H2O (75/25), (e) 

PrOH /H2O (75/25) and (f) BuOH /H2O (75/25). 

 

Fig. 10  SEM images of lamellar mesostructured calcium phosphates obtained in the ROH/H2O 

(75/25) systems: (a) MeOH, (b) EtOH, (c) PrOH and (d) BuOH. 

 

Fig. 11  Thermogravimetric curve of lamellar mesostructured calcium phosphate with Ca/P molar 

ratio of 1.0. 
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Fig. 12  XRD pattern of the calcined product of lamellar mesostructured calcium phosphate with 

the Ca/P molar ratio of 1.0 at 600 ºC. 

 

Fig. 13  XRD patterns of lamellar mesostructured calcium phosphates prepared using (a) n-

C8H17NH2, (b) n-C10H21NH2, (c) n-C12H25NH2, (d) n-C16H33NH2 and (e) n-C18H37NH2. 

 

Fig. 14  13C CP/MAS NMR spectrum of lamellar mesostructured calcium phosphate obtained 

from the starting mixture of Ca(OAc)2 : H3PO4 : n-C16H33NH2 : 0.5NH3 : 40EtOH : 40H2O.  

 

Fig. 15  Relationship between d-spacing and carbon number in the alkyl chain of n-alkylamine. 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 13 
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Fig. 14 
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