極厚フランジを有するプレートガーダーの曲げ耐荷力実験

藤枝洋二*,藤井堅**,入川充夫***,川見周平**,小川靖之****

Collapse Mode and Ductility of Plate Girder with Thick Flange under Bending

Youji FUJIEDA, Mitsuo IRIKAWA, Katashi FUJII, Shuhei KAWAMI, Yasuyuki OGAWA

Recently, there have been constructed a lot of plate girder bridges with a few main girders, which have usually thicker flanges. In this kind of bridge, flange vertical buckling of compressive flange indicated by Basler may occur, because the web cannot support thick flange enough. Therefore, bending tests and FEM analyses were conducted in this paper. And the following conclusions were obtained: 1) plate girder with thick flanges collapsed according to flange vertical buckling after yielding of cpmpressive flange, even though the width-thickness ratio of web satisfied the limit of JSHB. 2) After flange vertical buckling, bending strength decrease significantly. 3) If the web has reasonable width-thickness ratio, plate girder with thick flange will have enough plastic rotation capacity.

Key Words: Plate girder, Thick Flange, Flange vertical buckling, Autostress design, Ductility

1. はじめに

近年,架設されている少数主桁橋では 50mm を超える極厚フ ランジが多く用いられている. Basler¹によるとプレートガーダ ーの曲げ崩壊は、3 つの座屈形式によって決定すると考えられ ており、このうちフランジ垂直座屈はウェブ幅厚比が非常に薄 い場合にのみ起こる崩壊で、通常のプレートガーダーでは起き ないと考えられていた.しかし極厚フランジを用いた場合、フ ランジに対するウェブの曲げ剛性が相対的に小さくなるため、 ウェブがフランジを十分に支持できなくなりフランジ垂直座屈 崩壊が発生することが懸念される.そこで筆者らは、極厚フラ ンジを有するプレートガーダーの曲げ載荷試験²⁰を行って、曲 げ崩壊形式を調べた.その結果、フランジ垂直座屈変形が現れ たが、明確な崩壊を確認するまでには至らなかった.また実験 に対応させた複合非線形有限要素法解析では、フランジ降伏後 一定の耐力を保持しながら変形が進み、その後急激な耐力低下 を伴い、フランジ垂直座屈崩壊が現れた. 変形を認め,モーメントの再分配を認める ASD 法(オートスト レス設計法)を提案している. ASD 法では,中間支承部上で局 部的な降伏を認めるので,降伏後も一定の耐荷力を保ちながら, 大きな回転変形(以降,回転容量と呼ぶ)が要求される. AASHTO の LRFD³⁾でもこれを採用している. AISI では過去に行われた 実験⁴⁻⁸⁾に基づいて ASD 法の適用可能な断面をフランジ,ウェ ブの幅厚比によって制限している. しかし過去の研究では,極 厚フランジを用いたプレートガーダーの回転容量については十 分には検討されていない. 筆者らの行った研究²⁾では,極厚フ ランジを用いた場合,ウェブが比較的薄肉でも大きな変形能が あることを確認できている.

以上の議論から、本研究では、極厚フランジを有するプレー トガーダーの曲げ載荷実験を行い、その終局挙動を調べ、道路 橋示方書⁹のウェブ幅厚比規定内でもフランジ垂直座屈が発生 することを検証する.また、実験に対応させた複合非線形有限 要素解析を行い、実験および解析結果から、極厚フランジを有 するプレートガーダーの変形能についても検討する.

ところで、AISI では、連続桁の中間支承部での局部的な塑性

* 広島大学技術センター

**** 三井造船株式会社

^{**} 広島大学大学院工学研究科社会環境システム専攻

^{***} 広島大学大学院工学研究科社会環境システム専攻(現,西日本旅客鉄道株式会社)

2. 曲げ載荷実験

2.1 実験概要

実験概要を Fig.1 に示す.実験では試験桁を2点単純支持,2 点載荷とし、中央パネル(試験パネル)に純曲げを作用させる. なお横倒れ座屈を防止するために、Photo.1 に示すような横倒れ 防止装置を設置した.

供試体概要を Fig.2 に示す.供試体は 2 軸対称直線 I 型桁で, 断面形状を変化させて 3 体製作した.なお,鋼種は SS400 であ る.供試体試験パネル部の断面寸法を Table1 に示す.表中,供 試体 PG163-13 は従来のプレートガーダーの断面を想定し,そ の他の 2 体は極厚フランジを用いた場合を想定した.供試体 NC161-4 はウェブ幅厚比を道路橋示方書⁹の規定値(h_w/t_w=152) 程度,供試体 C87-4 は ASD 法のウェブ幅厚比を満たすように 製作しており,それぞれ AASHTO の LRFD³のコンパクト,ノ ンコンパクト断面の基準を満足している.

曲げ載荷試験における計測項目は、上下フランジおよびウェ ブのひずみ、ウェブの面外方向変位、桁のたわみ、上下のフラ ンジ間隔の変化量(以下,桁の縮みと呼ぶ)、圧縮フランジのね じれ角、そして着目パネルの両端における垂直補剛材位置での 断面の回転角である. ひずみは, 鋼板の両表面で測定し, その 平均値を膜ひずみとした. 圧縮フランジのねじれ角については, フランジの両端およびウェブ接合線上の面外たわみ(鉛直方向 変位)を測定して,着目断面のフランジ半幅のねじれ角とした. 桁の縮みについては, Fig.3 に示すような測定装置を用いて測定 した. この測定装置は,図中Aでピン結合された棒で供試体の 上下のフランジを挟み込み,棒の端をバネで締結して他端に取 り付けた変位計の変化量δv を計測するようになっている. こ のとき,桁の縮みvは,図に示す距離を用いて,式(1)によって 求められる

$$\nu = \delta \nu \frac{L}{L'} \tag{1}$$

着目パネル両端の桁の回転角は、供試体 NC161-4, C87-4 に ついて測定した. Fig.4 に示すように、等辺山形鋼を供試体の中 立軸に取り付け、左右それぞれに取り付けた2基のダイアルゲ ージの変位から桁の回転角を求めた.

供試体に用いた鋼材の材料試験結果をTable2 に示す.引張試験は、JIS5 号試験片を用い、25tf オートグラフによる載荷速度0.1mm/minの定ひずみ試験である.

Fig.1. Outline of loading.

Photo.1. Rig of torsional restraint.

Table 1. Parameter of test specimens.

Specimens	t_{f} (mm)	b _f (mm)	t _w (mm)	a (mm)	h _w (mm)	$b_f/2t_f$	h_w/t_w	A_w/A_f	a/h_w
PG163-13	5.9	160	3.2	750	520	13.6	163	1.8	1.5
NC161-4	15.7	120	3.1	750	516	3.8	161	0.8	1.5
C87-4	21.5	165	5.7	750	522	3.8	87	0.8	1.5

 t_f : Thickness of the flange, b_f : Width of the flange, t_w : Thickness of web, a: Width of the web, h_w : Depth of the web

Table 2. Materials property.

	PG163	3-13	NC16	51-4	C87	7-4	
	Flange	Web	Flange	Web	Flange	Web	
Thickness (mm)	5.9	3.2	15.7	3.1	21.5	5.8	
Yield stress (MPa)	280	289	246	347	265	364	
Tensile stress (MPa)	347	371	397	425	420	434	
Elastic coefficient (Gpa)	198	198	190	200	198	207	
Poisson's ratio	0.26	0.25	0.27	0.26	0.27	0.26	

Fig.3. The measuring method of the shrinkage.

Fig.4.The measuring Method of rotational angle.

	x	у	z	$\boldsymbol{\theta} \boldsymbol{x}$	θy	θz		x	у	z	$\boldsymbol{\theta}_x$	$\boldsymbol{\theta}_y$	$\boldsymbol{\theta}_z$
Α	1	1	1	1	1	0	Line a	0	1	0	1	1	0
В	0	1	1	1	1	0	Line b	0	1	0	1	1	0
С	0	1	1	1	1	0	Line c	0	0	0	1	1	0
D	0	0	1	1	1	0	Line d	0	0	0	1	1	0
						Line e	0	0	1	1	0	0	
							Line f	0	0	1	1	0	0
0:free 1:fixed													

2.2 解析概要

汎用構造解析コード ABAQUS を用いて、曲げ載荷実験に対応する弾塑性大変形解析を行った.供試体のエンドプレートの間を解析領域とし、要素には、4節点アイソパラメトリックシェル要素を用いた.鋼材の材料特性は、引張試験で得られた公称応カー公称ひずみ曲線を、真応カー真ひずみ曲線に変換して与えた.なお、降伏判定は、Misesの降伏条件を用いた.

初期不整については、載荷前のウェブの面外たわみの実測結 果を初期たわみとして与え、残留応力は、フランジのみに Fig.5 のような応力分布を仮定して与えた.

解析モデルと境界条件を, Fig.6 にまとめて示す. 解析領域 (Fig.2 の薄墨斜線部)の要素分割は,1辺10mmの等間隔メッ シュとした.また,境界条件については,両端に剛体要素を配 置し,フランジおよびウェブの端辺では,面外方向の変位に対 して単純支持とした.なお,Fig.6の表で,6自由度のそれぞれ の節点変位に対して,1は拘束,0は自由を示している.

荷重は、曲げモーメントに対応するはり理論の応力分布を等 価節点力に置き換えて、辺 a~f上に節点荷重として与えた.

2.3 実験結果

(1) 崩壊性状

各供試体の曲げ耐荷力M_uを表-3 にまとめて示す.表では, Table2 に示す降伏応力を用いてはり理論から求めたフランジ降 伏モーメント My および全塑性モーメント Mp, そしてこれら の値で曲げ耐荷力を無次元化した値の他に,無次元化した回転 容量もあわせて示す.

また,載荷後の変形を Photo.2 に,崩壊後の解析モデル変形 図を Fig.7 に比較して示す.

Fig.8,9は、それぞれ各供試体の荷重-たわみ曲線および荷 重-回転角曲線である.これらの図には、解析結果もあわせて 示す.Fig.8,9の縦軸は曲げモーメントをフランジ降伏モーメ ント M_y で無次元化し、横軸のたわみvおよび回転角 θ は、弾 性はり理論から得られるフランジ降伏曲げモーメント M_y に対 するたわみ v_y および回転角 θ_y で無次元化して表している.

これらの図表から、以下のことがわかる.

従来型のプレートガーダー断面を想定した供試体 PG163-13 は、表-3 に示すように、フランジ降伏モーメントまで達してお らず、Fig.8(a)に示すように、最高荷重後急な耐力低下を起こし ていることが実験および解析結果からわかる.また Photo.2(a)、 Fig.7(a)から、供試体 PG163-13 は、圧縮フランジのねじれ座屈 によって崩壊していると判断できる. 一方,極厚フランジを有する供試体 NC161-4 は, Fig.8(b)に示 すように,フランジ降伏曲げモーメント付近までほぼ線形的に 荷重が増加し,その後一定の荷重を保持しながら変形が進行し ている.崩壊後の Photo.2(b), Fig.7(b)の変形状態から,この供 試体は,圧縮フランジが鉛直方向に変形をしており,フランジ 垂直座屈によって崩壊したと判断できる.

Fig.8(c)に示す供試体 C87-4 (極厚フランジと板厚の大きいウ ェブを有する)は、NC161-4 と同様にフランジ降伏モーメントに 達した後、一定の耐力を保持して変形が進むが、その後さらに 荷重が増加し、全塑性曲げモーメントを越えて最高荷重に達し、 その後は緩やかに耐力が低下している. Photo.2(c)、Fig.7(c)から 判断して、この場合はフランジ垂直座屈は起こらず、最終的に 圧縮フランジの水平座屈崩壊形式と考えられる.

以上のように極厚フランジを持つプレートガーダーでは、道路橋示方書⁹のウェブ幅厚比制限を満たしていても圧縮フランジの垂直座屈崩壊が起こり得ることがわかった.ただし、このフランジ垂直座屈は、圧縮フランジが全降伏した後に発生し、ウェブが面外に変形することによる応力欠損が起きなければ、フランジ降伏曲げモーメント My に達することができると考えられる.一方、ウェブ幅厚比が小さく、極厚フランジを支持することができれば、C87-4 供試体のように、フランジ垂直座屈崩壊は全降伏モーメントまで起こらず、最終的にフランジ水平座屈による崩壊形式が発生することがわかる.

Specimen	M _y	M _p		Т	est result	S		Analytical results				
			M_{u}	M_u/M_y	M_u/M_p	θ_{AVy}/θ_y	$\theta_{AVp}\!/\!\theta_p$	M _u	M_u/M_y	M_u/M_p	θ_{AVy}/θ_y	$\theta_{AVp}\!/\theta_p$
PG163-13	179	199	158	0.88	0.79			160	0.89	0.80		-
NC161-4	335	365	359	1.07	0.98	I	11.7	347	1.04	0.95		9
C87-4	568	638	745	1.31	1.17	21.8	24.8	703	1.24	1.10	25.1	33.2

Table 3 The ultimate bending strength.

 M_u : The ultimate bending moment (kN·m), M_y : The flange-yeilding moment (kN·m), M_p : The full plastic moment (kN·m) θ_{AVy}/θ_y : The rotation capacity of the flange-yield moment, θ_{AVp}/θ_p : The rotation capacity of the full plastic moment

(a) PG163 - 13

(b) NC161 - 4 Photo.2. The specimen after loading test.

(c) C87 - 4

(2) ひずみ性状

各供試体の膜ひずみ分布を Fig.10 に示す. 図中の M/M,は曲 げモーメントをフランジ降伏モーメントM,で無次元化した値, v/v,はたわみvを弾性はり理論から得られる M,に対するたわみ v,で無次元化した値を示す. Fig.10 からわかるように,今回の 全ての供試体は,最高荷重時には圧縮フランジが降伏している のがわかる.しかし,供試体 PG163-13 の曲げ耐荷力は,Table3 に示すように,フランジ降伏モーメントよりも小さい.これは, 最高荷重時のフランジのひずみは降伏ひずみの2 倍程度であり, Fig.10(a)からわかるように,ウェブ面外変位にともなってウェ ブ圧縮側の膜ひずみがはり理論のような直線分布にならず,ウ ェブの負担応力が欠損するためである.一方,Fig.10(b)の供試 体 NC161-4 でも,ウェブの応力欠損が見られるが,この場合に は,極厚フランジが降伏した後もさらにひずみが増加しひずみ 硬化域まで達することができるために,フランジ降伏曲げモー メントを越えて全塑性曲げモーメントまで耐力が上昇したと考 えられる. これに対して, Fig.10 (c)に示す供試体 C87-4 のウェ ブのひずみは, フランジ降伏後幾分応力欠損が認められるもの のはり理論から得られるひずみ分布に近ひずみ分布形状となっ ており,全塑性曲げモーメントを越えて耐力上昇したと考えら れる.以上の考察をまとめる.

(1)供試体PG163-13はフランジが降伏後すぐにフランジねじれ 座屈が発生し耐力を失ったと考えられる.このとき、ウェブが 比較的薄いためにウェブに応力欠損が起こり、曲げ耐荷力はフ ランジ降伏モーメントに達しなかったと考えられる.(2)供試体 NC161-4 はフランジ降伏後もひずみ硬化域までフランジねじれ 座屈は起こらず、最終的にウェブが薄肉であるためにフランジ 間を十分に支持することができず、フランジ垂直座屈が発生し たと考えられる.(3)供試体 C87-4 はウェブが厚肉で上下のフラ ンジ間隔を十分に支持するためにフランジ垂直座屈は発生せず、 フランジ全断面が降伏した後も、フランジ水平座屈が発生する まで曲げ耐荷力が上昇したと判断できる.

AISIでは、Fig.11に示す曲げモーメント - 回転角曲線におい て、弾性はり理論に全塑性モーメントが作用したときに生じる 回転角を弾性限界回転角 θ_p とし、塑性回転容量 θ_{AVp} を最高荷重 後に再び全塑性モーメントなるときの全回転角 θ_{p2} から θ_p を引 いたものとして、両者の比 θ_{AVp}/θ_p を変形能の指標としている. また AASHTO の LRFD³では、塑性設計にはフランジ降伏モー メントに対する弾性限界回転角 θ_p の3倍以上の回転容量を要求 している.本研究でも、この考えに基づいて、塑性回転容量が 弾性限界回転角 θ_p の3倍以上の場合に塑性設計が可能として変 形能について考察する.

(3) 回転容量

Fig.12に AISI, LRFD³のコンパクト断面区分と,供試体断面区 分を比較して示す.なお AISI の規定は全塑性モーメント以上の 曲げ耐荷力と十分な回転容量を保証しており,LRFD³では塑性 回転は保証していない.図の縦軸はフランジ突出脚幅厚比,横 軸はウェブ幅厚比である.Fig.12から,供試体 NC161-4, C87-4 ともにフランジ突出脚幅厚比はコンパクト断面の規定を満たし ているものの,ウェブ幅厚比規定は満足していないことがわか る.各供試体の塑性回転容量の結果は Table3 のようになるが,

供試体 C87-4 は、AISI のウェブ幅厚比制限を満足していないも のの、曲げ耐荷力は全塑性モーメント以上に達し、塑性設計に 必要とされる十分な回転容量も有していることがわかる.この ことから、極厚フランジを有するプレートガーダーの場合、AISI のウェブ幅厚比制限を緩和できる可能性があると推察される.

(4) 桁の縮み

本研究ではフランジ垂直座屈を確認するために桁の縮み(上下フランジ間隔の変化量)を測定した.各供試体の曲げモーメント - 桁の縮みの関係を Fig.13 に示す.

供試体 PG163-13 は、最高荷重に達するまでほとんど変化は なく、終局状態になると桁の縮み量が急増する.

供試体 NC161-4, C87-4 は、フランジ降伏モーメント付近か ら急激に増加することがわかる.

Fig.13 より,実験結果および解析結果はほとんど一致しているが,フランジ水平座屈,フランジねじれ座屈崩壊が現れても,桁の縮みは急増していることがわかる.したがって,桁の縮みを測定するだけでは,フランジ垂直座屈崩壊の判断は難しいといえる.

Fig.12. Width-thickness ratio limited by AISI and LRFD.

Fig.13. The shrinkage of the girder height.

Mp/My Test result 6 8 The shrinkage of the girder height (mm)

4. 結論

本研究では、曲げを受ける極厚フランジを有するプレートガ ーダーについて、実験および解析的に終局挙動と崩壊形式を明 らかにした. さらに、極厚フランジのプレートガーダーでは、 フランジ降伏後の変形能も期待できることから, ASD 法の観点 から桁の変形能についても調べた.実験および解析結果から得 られた知見をまとめれば、以下のようになる.

1. 極厚フランジを有するプレートガーダーでは、道路橋示方書 のウェブ幅厚比規定を満足していても, 圧縮フランジの降伏後, フランジ垂直座屈崩壊が起こることを実験的に確認した. さら にウェブが上下フランジの間隔保持するに十分な板厚を持って いれば、フランジ垂直座屈は起きず、フランジ水平座屈による 崩壊が支配的となることを示した.

2. 極厚フランジを用いたプレートガーダーの場合、ウェブが薄 肉であってもフランジ降伏モーメント程度の曲げ耐荷力が期待 できる.また、変形能も期待できる.

3. 極厚フランジを用いた場合, AISIのASD法におけ るウェブ幅厚比制限を緩和できる可能性を示した.

参考文献

- 1) Basler, K. Thurllimann, B : Strength of Plate girders in bending, Proc. of ASCE, Vol.87, No.ST6, pp.153-181, 1961.
- 2) 入川充夫, 川見周平, 小川靖之, 藤井堅: 極厚フランジを有 するプレートガーダーの曲げ崩壊形式、鋼構造年次論文報 告集, Vol.15, pp145-152, 2007.
- 3) LRFD 橋梁示方書 AASHTO: LRFD Bridge Design Specification, 2nd Ed, American Association of State Highway and Transportation Officials, Washington, D.C., 1998.
- 4) Schilling, C.G : Autostress Design of Highway Bridges, Phase 3, Moment-Rotation Tests of Steel Bridge Girders, AISI Project 188, 1985.
- 5) P. F. Adams, M. G. Lay, and T. V. Galambos. : Experiments on High-Strength Steel Members, Fritz Laboratory Report No.297. 8, 1964.
- 6) A. F. Lukey and P. F. Adams. : Rotation Capacity of Beams Under Moment Gradient, ASCE Structural Journal, 1969.
- 7) N. M. Holtz, and G. L. Kulak. : Web Slenderness Limits for Compact Beams, Structural Engineering Report No.43, University of Alberta, 1973.
- 8) N. M. Holtz, and G. L. Kulak. : Web Slenderness Limits for Non-Compact Beams, Structural Engineering Report No.51, University of Alberta, 1975.
- 9) 日本道路協会:道路橋示方書·同解説Ⅰ共通編,Ⅱ鋼橋編, 2002.

2008年10月31日 原稿受理