High Speed Rendering Method for Complex Scenes

Matthew W. Johnson 玉木 徹 金田 和文 *水上 嘉樹 *多田村 克己

> 広島大学大学院工学研究科 *山口大学大学院理工学研究科

Goal: Rendering Rainy Scenes

Drive Simulators

- Adverse conditions
- Entertainment
 - Atmosphere, mood

NO IMAGE

Test Drive Unlimited Microsoft Xbox 360, 2004

NO IMAGE

Matrix Revolutions Warner Bros. Pictures 2003

Previous Method

Ray Tracing

- Shoot rays at pixels
- Find intersections
- Return color data
 - Red box
- Store color in pixel

Our Method: Rain Tracer

- Ray trace raindrops
- Environment Map
 Intersection Locations
 - EMIL data
- (x,y,z)~>(θ,Φ)~>(U,V)
 -preprocessing
- (U,V) ~> RGB color -Runtime
- Interpolate (U,V) data [make new drops]

Environment Map

Environment Map:

Environment Map translated to sphere:

Representative Ray Trace Raindrops

- Raindrop "screen"
 stores EMIL data
- EMIL data allows for interpolation
- RGB does not allow interpolation

Ray Trace vs. Interpolation of EMILs

Ray Tracing:

• Intersection: 3x

```
DV = (D^*V):
D2 = (D^*D):
SQ = (DV*DV-D2*((V*V)-R*R)):
if (SQ<0)
        return (false):
SQ = sart(SQ):
T1 = ((-DV+SQ)/D2);
T2 = ((-DV-SQ)/D2);
if ((T1<0.0) && (T2>0.0))
        T = T2:
else if ((T1>0.0) && (T2<0.0))
        T = T1:
else
        T = MIN(T1,T2);
 if (T<0.0)
        return(false);
point = P + (D * T):
return(true):
```

Refraction: 2x

 $\begin{array}{l} n = (n1/n2); \\ c1 = -(normal*incident); \\ ck = 1 - n*n*(1 - c1*c1); \\ lf (ck < 0.0) \\ return(Reflect(refracted, incident, normal)); \\ c2 = sqrt(ck); \\ refracted = (n*incident) + (n*c1 - c2)*normal; \\ return(refracted); \end{array}$

• Reflection: 1x reflected = incident - 2*(incident*normal)*normal;

Ray Tracing continued:

- Intersection: 9mult., 6 add., 1 sqrt, 7 comp.
- Refraction: 14Mult., 8add., 1 comp., 1 sqrt
- Reflection: 7mult., 3add.
- Ray Tracing Total:
 62 multiplications, 37 additions, 5 square roots, 23 comparisons

Interpolation:

- Interpolate: 2x
 - (1-a)U1+a(U2)
- 4 additions, 4 multiplications

Interpolation

Drop A: (x1,y1,z1) Drop B: (x2,y2,z2) Drop C = (1-z)A + z(B) Interpolated Raindrop: Interpolated from (-500,0,0) and (+500,0,0)

Environment Map:

Quality Comparison

Ray Traced Raindrop Position(0,0,-500)

Interpolated Raindrop at Position(0,0,-500) Interpolated from (-500,0,0) and (500,0,0)

Total Difference: 9776 Reflection Difference: 9976 Average Difference in Reflection: 0.149 Number of Pixels: 65536 Screen Size: 256x256

Pixels with Error in Reflection U: 29.83%

Quality Comparison

Interpolated Raindrop at Position(0,0,-500) Interpolated from (-500,0,0) and (500,0,0)

Ray Traced Raindrop Position(0,0,-500)

Reflection U Error in 19552 pixels

No error: Alpha, Reflection V, Refraction U, Refraction V

Calculation Times: (per 1000 raindrops)			
Rain drop Size	Ray Trace	Interpolate	Speed
512x512	45 min	13.4 sec	200x
40x40	170 sec	0.042 sec	400x
14x14	2.3 sec	0.006 sec	380x
*0.000006 sec. Required to start/stop the clock			

Results Example: Light Probe

Light Probe:

512x512 Raindrop Result:

1500x1500 pixels

Fresnel Effect

No Fresnel

Refraction

Reflection

Fresnel

Results Example: Raindrop Resolutions

- 32x32 raindrop scaled up to 256x256
- Fresnel Effect is still visible

Fresnel effect, reflection & refraction

Results: A Rainy Scene

Raindrop sizes: 5 px, 8px, 11px, 14px

Results: Functioned Raindrops

Advantage: No preprocessing

Ray Traced

Surface Fitting

Line Fitting

Level of Detail

Limitations

- Approximated 3D Location
 - Non-real time
 - No objects in real time
- View area restricted
 - Can't interpolate everywhere

Desired Result

Interpolated

Look Down

Look Up

Future Work

- Anti-aliasing
- Video Animation
- Real time
 Environment

Madden 2008 EA Sports

Future Work: Many Viewpoints

• Current:

- One view, many drops
- Next:
 - One drop, many views
- Final:
 - Many drops, many views

