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Abstract In order to understand the seasonal variation in microbial biomass and its com-
munity structure in coastal sediments, phospholipid ester-linked fatty acids (PLFA) in
sediments were analysed. The fatty acids consist of saturated, monounsaturated, branched
and polyunsaturated fatty acids and most of them are reported to be characteristic fatty acids
of microorganisms. The calculated microbial biomass showed marked seasonal variation dur-
ing the study period with high microbial biomass in summer and low in winter. In spring, the
calculated microbial biomass were higher than that observed in autumn and winter. Microbial
community structure in the sediments, as determined by PLFA, was dominated by prokaryotes
(high abundances of microbial biomarkers) with a relatively equal proportion of aerobic and
anaerobic bacteria, and also eukaryotes. Among the anaerobic bacteria, the presence of
sulfate reducing bacteria (SRB) was understood from the detection of signature fatty acids of
SRB in the sediments. Relatively low amounts of microeukaryotic biomarker fatty acids
(PUFA) in the sediments suggested that the distribution of microeukaryotes in the surface
sediments was restricted because of the existing environmental condition. Microbial communi-
ty structure in the sediments did not show significant seasonal variation during the study
period.
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INTRODUCTION

In Japan, eutrophication caused by nutrients has been regarded as a serious problem in

many coastal bays. In shallow areas, increased algal biomass induces anoxia in the
sediments resulting the release of nutrients, which again has positive feedback effect on

algal blooms. Sediment provides habitat for many aquatic organisms but also a major
repository for many pollutants and nutrients introduced into surface waters. Both the
organic matter produced by the eutrophication and the pollutants introduced into the coastal
bays have significantly affected the survival of aquatic life. Microorganisms in sediments

are known to play a vital role in the decomposition of organic matter and degradation of
organic pollutants in the sediments. Information about the microbial population in such an

environment are imperative to understand the role played by the microorganisms (RAJEN-
DRAN ef al., 1992¢). However the estimation of microbial biomass and its community struc-
ture in sediments poses a problem to both microbiologists and environmental chemists.
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Although a number of biochemical methods have been followed to determine the microbial
biomass in sediments, all these methods tend to have certain limitations. Recently, special
attention has been focused on the analysis of phospholipids in sediments for both qualitative
and quantitative analyses of microorganisms in sediments. Fatty acid analysis has become a
valuable tool for taxonomical and phylogenic classification (LECHEVALIER, 1977). The
analysis of PLFA in sediments is presently one of the useful chemical methods to determine
the microbial biomass (WHITE, 1983). Measurements of the chemical components of
microbial cells, i.e., phospholipids can be used to identify viable members of microbial com-
munities in sediments and to quantify cell biomass (BALKWILL ef «l., 1988; WHITE, 1983,
1986; WHITE et al., 1979). PLFA analysis allows us to assess the microbial biomass, com-
munity structure and metabolic status without problems associated with direct enumeration
or culture methods (WHITE, 1986). Although the PLFA analysis has been extensively

employed to compare the microbial community structure in sediments of different en-
vironments (BAIRD and WHITE, 1985; BAIRD ef al., 1985; BOBBIE and WHITE, 1980;

RINGELBERG et al., 1988; SMITH ef al., 1985; MANCUSO et al., 1990; RAJENDRAN ef al., 1995b)

or to understand the variation in microbial communities within the coastal environments in
Japan (RAJENDRAN et al., 1992a,b,c,d, 1993a,b, 1994) or to determine the difference between
summer and winter seasons (RAJENDRAN ef al., 1995a), no attempt has been made to employ
this method to understand the seasonal variation in microbial biomass and its community
structure in sediments. Hence, in the present study, PLFA analysis was used to elucidate
the seasonal variation of microbial biomass and its community structure in coastal
sediments.

MATERIALS AND METHODS

Study area and sample collection

The present study area, Kure port, is located in the Hiroshima Bay which is reported to
be affected by eutrophication (Fig. 1).
The study area houses a ship building in-
dustry and is one of the biggest ports in
the Seto Inland Sea of Japan. The present

Kure Port
study area is contaminated by both in-

Sampling Station
dustrial and domestic wastes. The Niko
River is having its exit near the sampling
station. Four sediment samples were col-
lected during each season for one year
from the selected station near the Kure
Marine Station, Hiroshima University, s Np
Japan (34°14'N Lat., 132°33'E Long.) and
the depth of the station is 10 m. The col-
lected sediments were mainly consist of sil-
ty mud with hydrogen sulphide odor, and
they are dark gray to black in color. The - "

collected sediments were frozen at —20°C Fig. 1 Location of the sampling station.
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until analysis.
Lipid extraction

Phosphate buffer, chloroform and methanol (2:3:6 v:viv) were used to extract lipid from
the freeze-dried sediment samples (BAIRD and WHITE, 1985). The extracted lipids were
fractionated into neutral lipids, glycolipids, and phospholipids using silicic acid column
chromatography. A mild alkaline methanolysis was performed to the phospholipid fraction
of the lipids to release and methylate the ester-linked fatty acids (WHITE et al., 1979).
Thin layer chromatography

The resultant fatty acid methyl esters were further purified by thin layer
chromatography as described elsewhere (RAJENDRAN ef al., 1992¢). The precoated silica gel
plates (size 20 cm X 20 cm X 250 um; E. Merck, Germany) were precleaned in hexane-diethyl
ether (1:1 v:v) and then used for thin layer chromatography.

Gas chromatography (GC) and GC-mass spectrometry (GC-MS)

Gas chromatography analyses were carried out using a Hewlett Packard (HP 5890A) gas
chromatograph equipped with a 25 m cross-linked 5% phenyl methylsilicone fused capillary
column (0.2 mm 1.d) and a flame ionization detector. Sample was injected by using HP
7673A automatic sampler in the splitless mode with a 30 sec venting time at 250°C. The
temperature program of GC, as described earlier (RAJENDRAN et al., 1992c), was followed.
Helium was used as a carrier gas. Before GC~MS analysis, comparison of retention times
with known standards of fatty acid methyl esters (Supelco Inc., U.S.A.) was made for ten-
tative peak identification of compounds separated by GC. GC-MS analyses of PLFA
samples were performed on a model HP 5890A gas chromatograph with a model HP 5970
series mass selective detector. The position and geometry of double bond in monoun-
saturated PLFA were determined by GC-MS analysis of the adducts following the DMDS
reaction of the sample as described earlier (NICHOLS ef al., 1986). The nomenclature of
PLFA followed in the present study has already been described (RAJENDRAN ef al., 1992c).
Statistical analysis

Tukey’s Honestly Significant Difference (HSD) test was used to determine the signifi-
cant difference among the means for each PLFA while maintaining an experiment-wise er-
ror rate of alpha=0.05. Tests were performed using a HITAC M-680H (VOS-3) program
with a main frame computer available at the Hiroshima University Information Processing
Saijo Center.

RESULTS

PLFA composition

The mean percentage and standard deviation of individual PLFA in the sediments col-
lected during each season are shown in Table 1. Sixty-three PLFA were identified in the
sediments and they were in the range of C10-25. They consist of saturated fatty acids,
branched fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids (Table
2). High percentages of 16:0 fatty acid were determined in all the samples. The fatty
acids in the range of C12-19 are reported to be bacterial origin (LECHEVALIER, 1977). In
the range of C12-19, even numbered saturated fatty acids were present in higher percen-
tages than branched and unsaturated fatty acids (Table 2), whereas, in autumn samples, the
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Table 1. Percent composition of PLFA in coastal sediments*

Fatty acid Summer Autumn Winter Spring
10:0 0.05:0.06 0.84-+0.67 0.01-£0.04 0.07-40.03
i12:0 0.20-+0.14 0.24-4-0.20 0.0740.17 0.1940.10
al2:0 0.29-+0.39 — — 0.12--0.09
12:0 0.69-0.50 0.55-0.28 0.96+0.36 0.73--0.28
i13:0 0.22-+0.25 0.124-0.08 0.32+0.22 0.19-+0.13
al3:0 0.90-+0.60 1.22-4-0.16 0.7441.06 0.99-4-0.35
13:0 0.324:0.26 0.09-+0.07 0.184-0.21 0.1240.11
bri4:1 0.64-+0.46 0.89--0.58 1.24+1.57 1.8740.42
114:0 1.51-4-0.61 1.31-4-0.36 2.10-+0.40 1.854-0.30
al4:0 0.67-4-0.77 1.26--0.81 0.60-+0.70 0.86-+0.44
14:1d7 — 0.424-0.28 0.72-0.35 0.60-+0.54
14:1d9 0.31+0.36 0.5640.21 0.644-0.18 0.7240.23
14:2 0.9641.10 1.40-4-1.23 0.32-40.64 0.7240.47
14:0 6.62--1.38 4.26-+0.89 8.63141.33 7.7240.78
i15:1 0.694-0.46 0.44-4-0.22 0.1140.13 0.44+0.30
al5:l 0.32-4-0.37 0.35--0.24 0.214+0.14 0.6740.13
i15:0 6.59-+1.34 4.7041.01 6.76-+1.32 6.02-4-0.88
al5:0 8.224-2.32 7.52-+2.97 8.89-4-1.96 7.64+1.71
15:1d7 0.25+0.29 - - 0.204-0.14
15:1d9 0.141+0.16 0.08+0.10 0.1240.25 0.194-0.08
15:0 3.04-+1.55 1.76+0.27 2.42-4-0.54 2.061-0.03
16:2 0.1540.17 0.1740.19 0.18:4-0.21 0.044-0.08
i16:0 1.93+0.30 1.904-0.25 2.23140.26 1.864-0.24
16:1d6 0.33-40.38 0.49--0.10 0.15:4+0.17 0.4840.33
16:1d7 0.74-40.55 0.92:1-0.64 0.7040.48 0.8014-0.50
16:1d9¢ 9.23-40.64 8.60--1.16 8.43-+4-1.42 8.214-2.03
16:1d49¢ 1.454-0.16 1.02+0.32 1.36-+0.45 1.31:4-0.30
16:1d11c 1.744-0.05 1.67-+0.28 1.764-0.38 1.52:4-0.29
16:1d11¢ 0.15-4+0.18 0.144-0.16 — 0.334+0.23
16:0 19.63-4:2.67 16.81-4+4.65 20.24--0.14 19.54--0.96
brl7:1 — 0.24-+0.18 - 0.1140.07
10Mel6:0 1.78-40.97 3.03+1.12 1.72-+1.01 2.5740.84
i17:1 0.3240.22 0.3340.23 0.2140.24 0.26-1+0.18
al7:1 1.0041.00 0.8040.17 0.74+0.50 0.42-4-0.41
i17:0 0.97+0.19 1.024+0.13 1.08+4-0.05 0.924-0.05
al7:0 1.4140.60 1.734-0.36 1.80-+0.10 1.574-0.28
17:1d9¢ 0.51-+0.35 0.68+4-0.20 0.5140.34 0.63+0.04
17:1d9¢ 0.75:40.52 0.59-4-0.44 0.40-4+0.40 0.84--0.12
cy17:0 0.074:0.08 — —_ —
17:0 1.244-0.16 1.29-40.14 1.30-0.03 1.23-40.13
i18:0 0.04-4-0.05 —_ —_ 0.19-+-0.18
al8:0 0.51+0.80 0.15-+0.17 — 0.254-0.17
18:2 1.01:4-0.56 1.23:4+0.33 1.424-0.40 1.094:0.39
18:1d9%¢ 2.11-41.80 1.224-0.24 1.28-4-0.22 1.174:0.04
18:1d9¢ 4.79-+1.23 5.54+42.19 4.261-0.13 3.9340.71
18:1d11e 4.214-2.86 6.73-+1.58 5.35:1-0.88 5.004-0.67

*Mean and standard deviation
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Table 1. contd.

Fatty acid Summer Autumn Winter Spring

18:1d11¢ 0.38-+0.26 0.29-+0.21 0.43--0.30 0.47-40.04
18:1 0.08-+0.09 0.11+0.12 — 0.08+0.09
18:0 3.99+-1.22 4.29-41.61 3.3340.52 3.154-0.61
brl9:1 0.88-+-0.88 0.66-+0.14 0.66-+-0.24 0.434-0.33
10Mel8:0 0.074-0.08 0.3040.20 0.03-4-0.06 0.04--0.07
cy19:0 0.08+-0.10 0.234-0.16 0.13+0.15 0.16-+0.11
20:5 0.584-0.15 1.76-4-1.75 0.324:0.29 0.354-0.25
20:4 1.69-4-0.93 2.721-2.36 0.784:0.27 0.93-40.69
20:1d11c 0.70--0.79 1.65--1.65 0.62-4-0.71 0.48-4-0.04
20:1d11¢ 0.16-4-0.18 0.06-+-0.12 — 0.194-0.13
20:1 0.23-4-0.27 0.1740.14 0.23-4-0.45 0.43+4-0.40
20:0 0.3440.26 0.544-0.20 0.62--0.15 0.494-0.15
22:1 0.68-41.14 0.45-+-0.52 — 0.1940.14
22:0 0.23-4-0.23 0.31-4+0.19 0.164-0.18 0.324-0.19
24:0 0.63-4-0.82 0.11-+0.08 0.104-0.12 0.2840.08
25:0 0.61£1.22 2.05+1.75 2.42-+4.29 3.76+3.17

*Mean and standard deviation

Table 2. Seasonal variation of different groups of PLFA (%) in sediments of the study
area™

PLFA group Summer Autumn Winter Spring

Even numbered
saturated PLFA

(<19) 31.04+2.0 26.8-+5.9 33.24+1.3 31.2+41.1
0dd numbered saturated

PLFA (<20) 4.6-4-1.7 3.1+0.2 3.9-40.7 3.4-0.1
Branched PLFA 29.0-43.5 28.11-6.0 29.441.2 29.012.8
Monounsaturated PLFA

(<19) 27.5+3.7 29.442.7 26.313.8 27.243.0
Polyunsaturated PLFA 2.1+0.8 2.8+1.5 1.9-+0.3 1.8-+0.7
Saturated PLFA (>20) 1.8-+1.6 3.0+1.5 3.3+4.2 48435
Monounsaturated PLFA

(>20) 4.04-2.8 6.81+6.3 2.041.2 2.640.9

*Mean and standard deviation

even numbered saturated fatty acids were detected in lower percentages than branched and
monounsaturated fatty acids. Low percentages of odd numbered saturated fatty acids were
present in all the seasons. Monounsaturated fatty acids longer than 20 carbon atoms and
polyunsaturated fatty acids were also present in small amounts. Significant amounts of
saturated fatty acids 14:0, 16:0, and 18:0 were present. Branched fatty acids iso and
anteiso PLFA in the range of C12-18 were detected. Methyl branching fatty acids 16:0
and 18:0 were also present in the sediments. Low amounts of cyclopropyl fatty acids of
C17 and 19 detected in the sediments. Monounsaturated fatty acids with chain length
shorter than 20 were in the range of C14-18 and the amounts of cis isomer of 16:1d9 were
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Table 3. Seasonal variation in calculated microbial biomass and other ratios in sediments*

Parameter Summer Autumn Winter Spring

Microbial biomass

(107 cells/g) 0.77-40.48 0.56140.23 0.494-0.22 0.694-0.35
Monounsaturated fatty

acids < 19/branched

fatty acids 0.96-+0.17 1.08-0.27 0.904-0.14 0.94+0.15
16:1d9¢/¢ 0.16--0.01 0.12:£0.04 0.16:40.03 0.16-+0.00
ita 15:0/16:0 0.77140.24 0.75:40.28 0.771+0.15 0.704+0.16

*Mean and standard deviation

higher than the f7ans isomer (Table 1). In
general, the number of fatty acids present
in the sediments did not show much varia-
tion among the seasons.
Microbial biomass

The mean total PLFA concentration in
sediment showed marked variation among
the seasons, ranging from 1.12 (winter) to
1.78 (summer) ug/g dry weight sediment
(Fig. 2). During the study period, the

Total PLFA concentration (ug/g)

highest amount of total PLFA was observ- Season
ed in summer and then it reached to the Fig. 2 Seasonal variation in total PLFA con-
lowest value in winter, and in spring, the centration of sediments.

PLFA concentration showed an increasing

trend. The microbial biomass in sediments were calculated by following the factors
reported by BALKWILL ef al. (1988); WHITE ef «l. (1979) and MANCUSO ef al. (1990).
Microbial biomass thus calculated using these conversion factor ranged from 4.9x107
(winter) to 7.7x107 (summer) cells/g dry weight (Fig. 2). The calculated biomass were
abundantly present in summer and then the biomass showed a decreasing trend to reach the
lowest biomass in winter. In spring, the biomass was higher than that observed in winter
and autumn (Fig. 2).

Since the branched and monounsaturated fatty acids are reported to be marker fatty
acids for anaerobic and aerobic bacteria respectively, the ratios of these fatty acids will pro-
vide relative dominance of these microbial groups (RAJENDRAN ef al., 1992¢). During the
study period, these ratios ranged from 0.90 (winter) to 1.08 (Autumn) indicate that these
two groups of bacteria did not show much variation (Table 3). Similarly the ratios iso and
anteiso 15:0 to 16:0 will provide the relative distribution of bacterial biomarker fatty acids
(MANCUSO ef al., 1990) and these ratios also did not show any variation during the study
period (Table 3), revealing not much difference in the lipid contributing microbial com-
munities during the study period. In addition to the microbial biomass and community
structure in sediments, the PLFA composition are also reported to provide information
about the nutritional status of the microorganisms (GUCKERT et al., 1985, 1986). In bacteria
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Table 4. Significant difference in mean values of PLFA in sediments collected during the
four seasons™

Fatty acid Low High
10:0 Winter Summer Spring Autumn
i14:0 Autumn Summer Spring Winter
14:0 Autumn Summer Spring Winter
i15:1 Winter Autumn Spring Summer
als:l Winter Summer Autumn Spring
10Mel18:0 Winter Spring Summer Autumn

*Values increase from left to right and the values connected by a line are not significantly
different.

and sediments, the ratio of trans and c¢is of 16:1d9 are reported to be 0.1 (GILLAN and HOGG,
1984; GUCKERT eof al., 1985, 1986; PERRY ef al.,, 1979) but they are greater than 1 during
starvation. During the study period, the ratios of #/c of 16:1d9 were in the range of 0.12 to
0.16 (Table 3), indicating that the organisms might have been exposed to some physiological
stress.
Microbial community structure

Microbial community structure in sediments of Kure port showed the greater dominance
of prokaryotes, as characterized from the high proportions of microbial marker fatty acids in
the range of C12-19 and relatively a very low presence of microeukaryotes, as evidenced by
the low amounts of microeukaryotic biomarker fatty acids (less than 3% of polyunsaturated
fatty acids). The means of each PLFA that are significantly different among the seasons
are shown in Table 4. Except six fatty acids, a majority of PLFA in sediments did not
show any significant difference among the
four seasons, indicating the absence of

variation in microbial community structure Summer [} Autumn
B Winter B Spring

during the study period. The relative
dominance of microbial groups in

sediments can be explained using the
relative proportions of reported biomarker
fatty acids (FINDLAY ef al., 1990, 1993).
The employment of this classification
revealed the presence of microeukaryotes,
aerobic prokaryotes and eukaryotes,
anaerobic bacteria and SRB in the present
study area (Fig. 3).

Relative percentage of biomarker PLFA

DISCUSSION

Microbial group

PLFA analysis has been used to deter- Fig. 3 Seasonal variation in the relative pro-

. . . . . portion of microbial groups in
mine the r'mcrobxal.blomass and community sediments (I: Microeukaryotes; IT:
structure in estuarine and deep-sea (BAIRD aerobic prokaryotes and eukaryotes;
and WHITE, 1985; BAIRD ef al., 1985), III: anaerobic bacteria; IV: SRB and

coastal (RAJENDRAN ef al., 1992a,b,c.d, other anaerobic prokaryotes).
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1993a,b, 1994, 1995a,b), Antarctic lake (MANCUSO ef al., 1990) and polluted sediments
(SMITH et al., 1985). Of the sixty-three fatty acids identified in the sediment, most of the
PLFA are reported to be microbial in origin. Fatty acids in the range of C12-19 are
reported to be characteristic of bacteria (LECHEVALIER, 1977). Similar patterns of PLFA
profiles were reported in sediments of Hiroshima Bay (RAJENDRAN ef al., 1992¢,d), Osaka
Bay (RAJENDRAN et al, 1992a, 1994), and Kojima Lake (RAJENDRAN ef al., 1995a). The
distribution of branched, monounsaturated, cyclopropyl and certain saturated fatty acids in
sediments has been attributed to the bacterial contribution (GILLAN and H0OGG, 1984; PERRY
et al., 1979; VOLKMAN et al., 1980). High percentages of 16:0 (17 to 20% of total PLFA),
which is commonly present in most organisms, were determined in sediments (Table 1).
Branched fatty acids are reported as signature fatty acids of bacteria (VOLKMAN et al., 1980;
WHITE, 1983), anaerobic bacteria (KANEDA, 1977; TAYLOR and PARKER, 1983), and SRB
(BOON et al., 1977, 1978; EDLUND et al, 1985). The characteristic fatty acids, iso and
anteiso of 15:1 and 17:1, of SRB Desulfovibrio spp (EDLUND et al., 1985) were detected in
the sediment samples of Kure. The fatty acid profile of SRB Desulfobacter spp was
dominated by 10Mel6:0 that was not detected in any other SRB and this fatty acid has
been proposed as signature fatty acid of Desulfobactor spp (EDLUND et al., 1985). In the pe-
sent study period, the detection of these branched PLFA 10Mel6:0, iso and anteiso 15:1
and 17:1 in sediments samples indicated the presence of these SRB. The predominance of
these branched fatty acids in the PLFA profiles make them useful bacterial indicator
(PERRY et al., 1979) and their greater proportion (28 to 29% of total PLFA) in the present
study area must be contributed by anaerobic bacteria and of SRB. The distribution of SRB
in sediments of the present study area could be further confirmed by the reported sulphide
concentration (0.07 to 0.24 mgS/g dry weight) in sediments (IMAMURA, 1991) and the
seasonal variation in the distribution of SRB in sediments of Hiroshima Bay (OKADA,
1991). Like branched fatty acids, monounsaturated fatty acids in sediments are indicative
of bacterial contribution (GILLAN ef al., 1983; PARKES and TAYLOR, 1983; PERRY eof al.,
1979). High amounts of monounsaturated fatty acids (26 to 29% of total PLFA) in
sediments of the present study area are certainly contributed by the bacteria in sediments.

Polyunsaturated fatty acids in sediments are indicative of microeukaryotic input (MAN-
CUSO et al., 1990; VOLKMAN ef al., 1980). The mean percentage of polyunsaturated fatty
acids in sediments ranged from 1.8 to 2.8% of the total PLFA (Table 2). Considerably low
amounts polyunsaturated fatty acids, which are characteristics of eukaryotes, in the PLFA
profiles of the sediments strongly suggested that the PLFA are definitely derived from
bacteria in the sediments. Hydrographical investigation carried out during the study period
showed that the concentrations of dissolved oxygen in the bottom water samples (2 m above
the sediment) were low (NAKANISHI, 1990) and was expected to be lower at the sediment-
water interface. During summer and autumn, the depletion of oxygen in the bottom waters
of Hiroshima Bay and the absence of detectable oxidized sediment layer because of lack of
vertical mixing have been reported (RAJENDRAN ef al, 1992c,d; IMAMURA, 1991).
Hiroshima Bay is reported to be highly polluted because of artificial eutrophication. As
reported by FINDLAY ef al. (1990), the reduced availability of oxygen at the sediment-water
interface probably reduced the survival of microeukryotes in the surface sediments.
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Relatively low amounts or absence of polyunsaturated fatty acids in sediments of eutrophic
bays have been attributed to the reduced condition of the sediment, the reduced availability
of dissolved oxygen, and presence of sulfide in the bottom waters and the organic pollution
(RAJENDRAN ef al., 1992¢). In addition to the eutrophication in the Kure port which is a
part of Hiroshima Bay, the port is reported to be polluted by both domestic and industrial
wastes. The survival of microeukaryotes in sediments of many Japanese coastal bays, in-

cluding Hiroshima Bay are found to be affected by the organic pollution and eutrophicat-
ion. The results of SMITH ef al. (1985) and RAJENDRAN ef al. (1992b, 1993b) also supports
the absence of microeukaryotic contribution of fatty acids to sediments of the present study
area.

The calculated microbial biomass showed marked seasonal variation during the study
period (Table 3). The calculated microbial biomass agreed with the calculated biomass in
sediments of Hiroshima Bay and its adjacent bays (RAJENDRAN ef al., 1992c,d), Kojima Lake
(RAJENDRAN et al., 1995a) and Osaka Bay (RAJENDRAN ef al. 1992a, 1994). Seasonal varia-
tion in microbial biomass could be attributed to the environmental characteristics of the
study area. The oceanographical characteristics of the present study area showed marked
seasonal variation with low temperature and chlorophyll ¢ in winter than other seasons and
not much variation in salinity and density of the water samples (MATSUDA ef al., 1990).
Furthermore, seasonal variation of bacteria in the bottom water samples (2 m above the sedi-
ment) determined by the acridine orange direct counts (NAKANISHI, 1990) was similar to the
seasonal variation observed in the present investigation. Similarly, polarlipid fatty acid
analysis of anoxic sediments of Kojima Lake showed that the calculated microbial biomass
were higher in summer than that in winter (RAJENDRAN et al., 1995a). Microbiological in-
vestigations carried out in the Seto Inland Sea of Japan (VENKATESWARAN ef al., 1989a,b)
also showed low microbial biomass in winter than that observed in other seasons, and they
pointed out that temperature was reported to exert a major influence on the microbial
biomass.

The PLFA profiles of sediments dominated by a increased. proportions of microbial
biomarkers revealed that the microbial contribution of lipid to the sedimentary lipid is the
major one. The distribution of the microeukaryotes, as evidenced by very low eukaryotic
biomarkers because of the environmental conditions of the study area, are rather very much
limited. The observed microbial community structure in sediments is similar to the
reported microbial community structure in sediments of Hiroshima Bay (RAJENDRAN et al.,
1992¢,d; 1993a), Kojima Lake (RAJENDRAN et al., 1995a), Ise Bay (RAJENDRAN ef al., 1992b,
1993b) and Osaka Bay (RAJENDRAN ef al., 1992a, 1994). The results of Tukey’'s HSD test
showed that most of the PLFA, except six fatty acids (Table 4), did not show any signifi-
cant difference among the seasons. The absence of significant difference among the means
of each PLFA suggests that the microbial community structure was not significantly dif-
ferent among the seasons. It could be further confirmed from the lack of variation in the
iso and anteiso of 15:0 to 16:0 ratio (Table 3) during the study period.

From the results of the present investigation, it can be concluded that sedimentary
microbial community structure was dominated by aerobic prokaryotes and eukaryotes,
followed by anaerobic bacteria, SRB and microeukaryotes. The lack of significant dif-
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ference in PLFA profiles indicated the absence of seasonal variation in microbial community
structure. Since the number of sample is limited to four in the present study, it may be dif-
ficult to confirm the absence of seasonal variation. Hence it has been planned to collect a
large number of samples during each season to know the seasonal variation in microbial
community structure. However, marked seasonal wvariation in microbial biomass is
understood.
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